Chemoselective $C(\alpha)$ - $C(\beta)$ bond cleavage of saturated aryl ketones with amines leading to α -ketoamides: A copper-catalyzed aerobic oxidation process with air Chengkou Liu, Zhao Yang, Yu Zeng, Zheng Fang^{*} and Kai Guo^{*}

Contents

1. General information	.2
2. Optimization data	2
2.1. Optimization data of selective cleavage of $C(\alpha)$ - $C(\beta)$ bond	of
propiophenone	2
2.1.1. The base screening	2
2.1.2. The temperature and solvent screening	3
2.1.3 The equiv. of catalyst, amine and base screening	3
2.2. Optimization data of selective cleavage of $C(O)-C(\alpha)$ bond	of
propiophenone	4
3. General experimental details for the synthesis of $C(\alpha)$ - $C(\beta)$ bond cleave	ıge
products	4
4. Control experiments	5
5. Characterization data of $C(\alpha)$ - $C(\beta)$ bond cleavage products	8
6. NMR spectra of products in Table 2, Table 3 and Scheme 2	16
7. References	64

1. General information

Reagents: Commercially available reagents were used without any further purification. Commercially unavailable ketones in Table **2** have been prepared according to the literatures: 3-hydroxy-1-phenyl-1-propanone (entry 25),¹ 3-methoxy-1-phenyl-1-propanone (entry 26),^{1,2} 3-benzoyl-propionitrile (entry 27).³

Solvents: All organic solvents were also of reagent grade quality without any further purification.

Chromatography: Flash column chromatography was performed using silicycle silica gel (200-300 mesh).

Analytical thin-layer chromatography (TLC) was performed on 0.2 mm coated silica gel plates (HSGF 254) and visualized using a UV lamp (254 nm or 365 nm).

Nuclear Magnetic Resonance Spectroscopy:

¹H NMR was recorded on magnet system 400'54 ascend purchased from Bruker Biospin AG. ¹H NMR spectra chemical shifts (δ) are reported in parts per million (ppm) referenced to TMS (0 ppm).

 ^{13}C NMR spectra chemical shifts (δ) are reported in parts per million (ppm) were referenced to carbon resonances in the NMR solvent.

ESI-MS spectra were recorded on Agilent Q-TOF 6520.

2. Optimization data

2.1. Optimization data of selective cleavage of $C(\alpha)$ - $C(\beta)$

bond of propiophenone

2.1.1. The base screening

Entry	Catalyst	Base		Yield			
		(equiv)	3a	4a	3a+4a	ratio	
						(3a/4a)	
1	Cu(OAc) ₂	pyridine	76	16	92	4.75	
2	Cu(OAc) ₂	TEA	68	14	82	4.86	
3	Cu(OAc) ₂	AcONa	74	11	85	6.72	
4	Cu(OAc) ₂	DMAP	59	17	76	3.47	
5	Cu(OAc) ₂	K ₂ CO ₃	trace	trace			
6	Cu(OAc) ₂	Cs ₂ CO ₃	trace	trace			
7	Cu(OAc) ₂	DIPEA	40	7	47	5.71	
8	Cu(OAc) ₂	DBU	30	24	54	1.25	

Table S1. The base screening.^a

^aReaction conditions: 1a (1 mmol), 2a (3 mmol), Cu(OAc)₂ (0.2 mmol), base (2 mmol), toluene (1 mL), 70 $^{\circ}$ C, O₂ (O₂ balloon), 18h. ^bIsolated yield.

2.1.2. The temperature and solvent screening

Entry	T(°C)	Solvent		Yield ratio		
			3a	4a	3a+4a	(3a/4a)
1	100	toluene	76	17	93	4.47
2	90	toluene	83	12	95	6.91
3	80	toluene	81	14	95	5.78
4	70	toluene	83	10	93	8.30
5	60	toluene	69	19	88	3.63
6	50	toluene	57	20	77	2.85
7	70	Neat	66	9	75	7.33
8	70	DMSO	58	7	65	8.28
9	70	DMF	74	12	86	6.17
10	70	dioxane	72	16	88	4.50
11	70	H ₂ O	77	15	92	5.13
12	70	PhCN	78	15	93	5.20

Table S2. The temperature and solvent screening.^a

^aReaction conditions: 1a (1 mmol), 2a (3 mmol), CuSCN (0.2 mmol), DMAP (2 mmol), solvent (1 mL), temperature, O₂ (O₂ balloon), 18h. ^bIsolated yield.

2.1.3 The equiv. of catalyst, amine and base screening

Entry	Equiv. of	Equiv. of	Equiv. of	Yield ^b (%)			Yield ratio
	catalyst	amine	DMAP	3a	4a	3a+4a	(3a/4a)
1	0.20	3.00	2	82	13	95	6.31
2	0.20	3.00	1.5	83	10	93	8.30
3	0.20	3.00	1	79	12	91	6.58
4	0.20	3.00	0.5	72	19	91	3.79
5	0.20	4.00	1.5	83	11	94	7.54
6	0.20	3.50	1.5	82	10	92	8.20
7	0.20	3.00	1.5	83	10	93	8.30
8	0.20	2.50	1.5	78	10	88	7.80
9	0.15	2.50	1.5	79	11	90	7.18
10	0.10	2.50	1.5	81	10	91	8.10
11	0.05	2.50	1.5	83	10	93	8.30

Table S3. The equiv. of catalyst, amine and base screening.^a

^aReaction conditions: 1a (1 mmol), 2a, CuSCN, DMAP, solvent (1 mL), 70 $^{\circ}$ C, O₂ (O₂ balloon), 18h. ^bIsolated yield.

2.2. Optimization data of selective cleavage of $C(0)-C(\alpha)$

bond of propiophenone

As for the formation of C(0)- $C(\alpha)$ bond cleavage product 4a, solvent screening indicated that H_2O was best choice with 9.75 yield ratio of 4a to 3a (Table S4, entries 1-6). However, the conversion was unsatisfactory (Table S4, entry 5). To our delight, 89% 4a was isolated with only trace amounts of 3a when the reaction was performed in H_2O using $Cu(hfacac)_2$ as the catalyst (Table S4, entry 7).

Entry	Catalyst	Solvent		Yield ratio		
			3a	4a	3a+4a	(4a/3a)
1	CuCl ₂ •2H ₂ O	Neat	50	43	93	0.86
2	CuCl ₂ •2H ₂ O	DMSO	8	37	45	4.62
3	CuCl ₂ •2H ₂ O	DMF	47	42	89	0.89
4	CuCl ₂ •2H ₂ O	dioxane	29	50	79	1.72
5	$CuCl_2 \bullet 2H_2O$	H ₂ O	4	39	43	9.75
6	CuCl ₂ •2H ₂ O	PhCN	49	30	78	0.61
7	Cu(hfacac) ₂	H_2O	trace	89	89	

Table S4. The selective cleavage of C(0)- $C(\alpha)$ bond of propiophenone.^a

^aReaction conditions: 1a (1 mmol), 2a (3 mmol), catalyst (0.2 mmol), solvent (1 mL), 70 $^{\circ}$ C, O₂ (O₂ balloon), 36h. ^bIsolated yield.

3. General experimental details for the synthesis of C(α)-C (β) bond cleavage products

To a solution of the specific ketone (1 mmol, 1eq) in toluene (1 mL) was added CuSCN (0.05 mmol, 0.05 eq), DMAP (1.5 mmol, 1,5 eq) and amine (3 mmol, 3eq). The mixture was stirred at 70 $^{\circ}$ C under the open air for about 5-48 h. After the TLC revealed that the full conversion of corresponding ketone was completed, the reaction mixture was cooled and diluted with ethyl acetate (30 mL). The crude product was washed with saturated NH₄Cl solution (30 mL) and water (30 mL). The separated organic layer was dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexanes/ethyl acetate or dichloromethane/methanol to afford the desired product.

4. Control experiments

To a solution of propiophenone (1 mmol, 1eq) in toluene (1 mL) was added CuSCN (0.05 mmol, 0.05 eq), DMAP (1.5 mmol, 1,5 eq) and morpholine (3 mmol, 3eq). The mixture was stirred at 70 $^{\circ}$ C under N₂ for 24 h. The TLC revealed that no desired product was generated.

To a solution of propiophenone (1 mmol, 1eq) in toluene (1 mL) was added CuSCN (0.05 mmol, 0.05 eq), DMAP (1.5 mmol, 1,5 eq), DABCO (3 mmol, 3 eq) and morpholine (3 mmol, 3eq). The mixture was stirred at 70 °C under the open air for 9 h. Then, the reaction mixture was cooled and diluted with ethyl acetate (30 mL). The crude product was washed with saturated NH₄Cl solution (30 mL) and water (30 mL). The separated organic layer was dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexanes/ethyl acetate (6:1) to afford the desired product (3a, 168.7 mg, 77%; 4a, 28.7 mg, 15%).

To a solution of propiophenone (1 mmol, 1eq) in toluene (1 mL) was added CuSCN (0.05 mmol, 0.05 eq), DMAP (1.5 mmol, 1,5 eq) and morpholine (3 mmol, 3eq). The mixture was stirred at 70 $^{\circ}$ C under the open air in the dark for 9 h. Then, the reaction mixture was cooled and diluted with ethyl acetate (30 mL). The crude product was washed with saturated NH₄Cl solution (30 mL) and water (30 mL). The separated organic layer was dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexanes/ethyl acetate (6:1) to afford the desired product (3a, 157.7 mg, 72%; 4a, 17.2 mg, 9%).

To a solution of propiophenone (1 mmol, 1eq) in toluene (1 mL) was added CuSCN (0.05 mmol, 0.05 eq), DMAP (1.5 mmol, 1,5 eq), TEMPO (3 mmol, 3 eq) and morpholine (3 mmol, 3eq). The mixture was stirred at 70 °C under the open air for 9 h. Then, the reaction mixture was cooled and diluted with ethyl acetate (30 mL). The crude product was washed with saturated NH₄Cl solution (30 mL) and water (30 mL). The separated organic layer was dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexanes/ethyl acetate (200:1) to afford the Intermediate A (274.7 mg, 95%).

1-Phenyl-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propan-1-o ne:4

¹H NMR (300 MHz, DMSO) δ 8.01 (dt, *J* = 7.2, 1.5 Hz, 2H), 7.64 (tt, *J* = 7.5, 1.2 Hz, 1H), 7.53 (tt, *J* = 7.2, 1.5 Hz, 2H), 5.00 (q, *J* = 7.0 Hz,

1H), 1.58 – 1.30 (m, 8H), 1.25 (s, 4H), 1.11 (s, 3H), 0.97 (s, 3H), 0.78 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 201.30, 135.21, 133.83, 129.25, 129.15, 85.36, 59.65, 40.16, 34.07, 33.62, 20.48, 20.40, 19.29, 17.05; HRMS (TOF) m/z [M + H]+ Calcd for C₁₈H₂₇NO₂ 290.2115 found 290.2100.

To a solution of propiophenone (1 mmol, 1eq) in toluene (1 mL) was added CuSCN (0.05 mmol, 0.05 eq), DMAP (1.5 mmol, 1,5 eq) and TEMPO (3 mmol, 3 eq). The mixture was stirred at 70 $^{\circ}$ C under the open air for 9 h. Then, the reaction mixture was cooled and diluted with ethyl acetate (30 mL). The crude product was washed with saturated NH₄Cl solution (30 mL) and water (30 mL). The separated organic layer was dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexanes/ethyl acetate (200:1) to afford the Intermediate A (14.5 mg, 5%).

To a solution of propiophenone (1 mmol, 1eq) in toluene (1 mL) was added CuSCN (0.05 mmol, 0.05 eq), DMAP (1.5 mmol, 1,5 eq) and morpholine (3 mmol, 3eq). The mixture was

stirred at 70 $^{\circ}$ C under the open air for 9 h. Then, the reaction mixture was cooled and diluted with ethyl acetate (30 mL). The crude product was washed with saturated NH₄Cl solution (30 mL) and water (30 mL). The separated organic layer was dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexanes/ethyl acetate (6:1) to afford the byproduct B (6.0 mg, 2%).

2,3-di-4-morpholinyl-1-phenyl-2-propen-1-one:5

¹H NMR (400 MHz, DMSO) δ 7.46 – 7.36 (m, 5H), 6.52 (s, 1H), 3.75 (s, 4H), 3.64 - 3.55 (m, 8H), 3.03 (s, 4H); ¹³C NMR (101 MHz, DMSO) δ 193.87, 150.23, 142.25, 130.03, 128.65, 128.41, 122.19, 66.93,

66.78, 50.98, 50.25; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₇H₂₂N₂O₃ 325.1523 found 325.1532.

To a solution of propiophenone (1 mmol, 1eq) in toluene (1 mL) was added CuSCN (0.05 mmol, 0.05 eq), DMAP (1.5 mmol, 1,5 eq) and dibenzylamine (3 mmol, 3eq). The mixture was stirred at 70°C under the open air for 9 h. Then, the reaction mixture was cooled and diluted with ethyl acetate (30 mL). The crude product was washed with saturated NH₄Cl solution (30 mL) and water (30 mL). The separated organic layer was dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexanes/ethyl acetate (9:1) to afford the desired product (82.3 mg, 25%) and the corresponding formamide C (4.5 mg, 2%).

N,N-Dibenzyl-2-oxo-2-phenylacetamide:⁶ ¹H NMR (500 MHz, DMSO) δ 7.93 (d, *J* = 7.3 Hz, 2H), 7.78 (t, *J* = 7.4 Hz, 1H), 7.63 (t, J = 7.7 Hz, 2H), 7.43 (t, J = 7.3 Hz, 2H), 7.38-7.31 (m,

5H), 7.30 – 7.23 (m, 3H), 4.62 (s, 2H), 4.38 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 191.78, 167.54, 136.58, 135.63, 135.60, 133.09, 129.76, 129.19, 129.05, 128.53, 128.33, 128.24, 128.08, 50.60, 47.05; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₂₂H₁₉NO₂ 352.1308 found 352.1318.

N,N-Bis(phenylmethyl)formamide:⁷ ¹H NMR (500 MHz, DMSO) δ 8.50 (s, 1H), 7.40 (t, *J* = 7.3 Hz, 2H), 7.35 (q, *J* =

6.8 Hz, 3H), 7.31 – 7.24 (m, 3H), 7.20 (d, J = 7.3 Hz, 2H), 4.39 (s, 2H), 4.32 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 163.66, 137.14, 137.01, 129.12, 128.95, 128.28, 128.26, 128.14, 127.68, 50.16, 44.70; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₅H₁₅NO 248.1046 found 248.1046.

5. Characterization data

1-Morpholino-2-phenylethane-1,2-dione:6

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.3 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 3.78 (brs, 4H), 3.67 – 3.60

(m, 2H), 3.40 – 3.33 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 191.29, 165.59, 135.08, 133.20, 129.82, 129.24, 66.88, 66.81, 46.41, 41.76; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₃NO₃ 242.0788 found 242.0783.

1-Morpholino-2-(o-tolyl)ethane-1,2-dione:⁸

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 6.8 Hz, 1H),7.50 (t, J = 6.9 Hz, 1H), 7.33 (dd, J = 10.0, 7.7 Hz, 2H), 3.79 (d, J = 3.1 Hz,

4H), 3.69 – 3.65 (m, 2H), 3.42 – 3.37 (m, 2H), 2.66 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.21, 166.30, 141.75, 134.00, 132.82, 131.80, 131.58, 126.33, 66.77, 66.75, 46.38, 41.72, 21.94; HRMS (TOF) m/z [M + H]+Calcd for C₁₃H₁₅NO₃234.1125 found 234.1122.

1-Morpholino-2-(m-tolyl)ethane-1,2-dione:9

Purified by column chromatography (hexanes/ethyl acetate 6:1); White solid; ¹H NMR (300 MHz, DMSO) δ 7.71 (s, 2H), 7.55 (dd, *J* = 19.2, 7.1 Hz, 2H), 3.68 (dd, *J* = 14.2, 3.5 Hz, 4H), 3.52 (t, *J* = 4.2 Hz,

2H), 3.28 (t, J = 5.1 Hz, 2H), 2.41 (s, 3H);¹¹³C NMR (75 MHz, DMSO) δ 191.70, 164.97, 138.98, 135.83, 132.69, 129.25, 129.23, 126.72, 66.03, 65.83, 45.67, 40.99, 20.71; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₅NO₃ 234.1125 found 234.1112.

1-Morpholino-2-(p-tolyl)ethane-1,2-dione:8

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 3.77 (brs, 4H), 3.64 – 3.60 (m, 2H), 3.37 –

3.33 (m, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.98, 165.75, 146.36, 130.73, 129.90, 129.86, 66.82, 66.74, 46.34, 41.64, 22.00; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₅NO₃ 234.1125 found 234.1106.

1-(4-Methoxyphenyl)-2-morpholinoethane-1,2-dione:⁹ Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (t, J = 12.9 Hz, 2H), 6.94 (t, J = 12.3 Hz, 2H), 3.88 – 3.79 (m, 3H), 3.73 (d, J =

25.3 Hz, 4H), 3.60 (t, J = 10.4 Hz, 2H), 3.33 (t, J = 10.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 189.91, 165.89, 165.11, 132.23, 126.24, 114.51, 66.86, 66.76, 55.76, 46.38, 41.64; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₅NO₄ 250.1074 found 250.1072.

1-(4-fluorophenethyl)-2-morpholinoethane-1,2-dione:⁸

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.95 (m, 2H), 7.19 (t, J = 8.5 Hz, 2H), 3.79 (s, 4H), 3.70 – 3.62 (m, 2H), 3.43 – 3.34 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 189.50, 166.94 (d, J=256.7), 165.22, 132.69 (d, J=9.8), 129.75 (d, J=2.8), 116.70, 116.48, 66.89, 66.79, 46.44, 41.84; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₂FNO₃ 238.0874 found 238.0876.

1-(2-Chlorophenyl)-2-morpholinoethane-1,2-dione:¹⁰

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (300 MHz, DMSO) δ 7.85 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.69 (ddd, *J* = 8.7, 6.0, 1.7 Hz, 1H), 7.65 – 7.51 (m, 2H), 3.72-3.66 (m,

2H), 3.65-3.55 (m, 4H), 3.44 (t, J = 5.1 Hz, 2H); ¹³C NMR (75 MHz, DMSO) δ 190.04, 165.26, 135.70, 133.27, 132.88, 132.74, 131.50, 128.38, 66.10, 65.97, 46.12, 41.78; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂ClNO₃ 276.0398 found 276.0366.

1-(3-Chlorophenyl)-2-morpholinoethane-1,2-dione:¹¹ Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (300 MHz, DMSO) δ 7.92 – 7.79 (m, 3H), 7.66 (t, *J* = 7.7 Hz, 1H), 3.74 – 3.67 (m, 2H), 3.67 – 3.61 (m, 2H),

3.54 (t, J = 4.5 Hz, 2H), 3.32 (t, J = 4.8 Hz, 2H).¹³C NMR (75 MHz, DMSO) δ 190.48, 164.64, 135.31, 134.91, 134.68, 131.88, 128.81, 66.52, 66.24, 46.13, 41.62; HRMS (TOF) m/z [M + Na]⁺Calcd for C₁₂H₁₂ClNO₃ 276.0398 found 276.0394.

1-(4-Chlorophenyl)-2-morpholinoethane-1,2-dione:⁶ Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.85 (m, 2H), 7.56 – 7.46 (m, 2H), 3.82 – 3.74 (m, 4H), 3.69 – 3.63 (m, 2H),

3.42 – 3.34 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 188.83, 164.04, 140.76, 130.61, 130.18, 128.64, 65.88, 65.79, 45.43, 40.85; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂ClNO₃ 276.0398 found 276.0391.

1-(4-bromophenethyl)-2-morpholinoethane-1,2-dione:⁸ Purified by column chromatography (hexanes/ethyl acetate 6:1); White solid; ¹H NMR (300 MHz, DMSO) δ 7.84 (s, 4H), 3.74-3.68 (m, 2H), 3.67-3.62 (m, 2H), 3.53 (t, *J* = 4.2 Hz, 2H), 3.30 (t, *J* = 4.5

Hz, 2H); ¹³C NMR (75 MHz, DMSO) δ 190.51, 164.42, 132.53, 131.65, 131.16, 129.52, 66.05, 65.77, 45.66, 41.09; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂BrNO₃ 319.9893 found 319.9872.

1-(4-iodophenyl)-2-morpholinoethane-1,2-dione:¹²

Purified by column chromatography (hexanes/ethyl acetate 6:1); White solid; ¹H NMR (300 MHz, DMSO) δ 8.02 (d, *J* = 8.2 Hz, 2H), 7.65 (d, *J* = 8.1 Hz, 2H), 3.72 – 3.67 (m, 2H), 3.65 – 3.60 (m, 2H),

3.52 (t, *J* = 5.1 Hz, 2H), 3.27 (t, *J* = 4.5 Hz, 2H); ¹³C NMR (75 MHz, DMSO) δ 191.41, 164.94, 138.87, 132.37, 131.19, 105.07, 66.52, 66.25, 46.12, 41.54; HRMS (TOF) m/z [M + Na]⁺ Calcd

Methyl 4-(2-morpholino-2-oxoacetyl)benzoate:9

Purified by column chromatography (hexanes/ethyl acetate 4:1); Yellow solid; ¹H NMR (300 MHz, DMSO) δ 8.15 (d, *J* = 8.1 Hz, 2H), 8.04 (d, *J* = 8.1 Hz, 2H), 3.90 (s, 3H), 3.76 – 3.59 (m, 4H), 3.53 (t, *J* = 4.2 Hz, 2H), 3.30 (t, *J* = 5.8 Hz, 2H); ¹³C NMR

(75 MHz, DMSO) δ 191.26, 165.76, 164.82, 136.30, 135.26, 130.42, 130.10, 66.51, 66.24, 53.10, 46.14, 41.62; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₄H₁₅NO₅ 300.0842 found 300.0844.

1-Morpholino-2-(4-(trifluoromethyl)phenyl)ethane-1,2-di one:⁸

Purified by column chromatography (hexanes/ethyl acetate 5:1); White solid; ¹H NMR (300 MHz, DMSO) δ 8.12 (d, *J* = 8.4 Hz, 2H), 7.98 (d, *J* = 8.4 Hz, 2H), 3.74 – 3.69 (m, 2H), 3.68 – 3.63

(m, 2H), 3.54 (t, J = 5.1 Hz, 2H), 3.33 (t, J = 4.5 Hz, 2H); ¹³C NMR (75 MHz, DMSO) δ 190.79, 164.63, 136.18, 134.74, 134.30, 130.68, 126.79 (q, J = 3.4 Hz), 125.79, 66.54, 66.24, 46.13, 41.65; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₃H₁₂NO₃F₃ 310.0661 found 310.0672.

1-Morpholino-2-(2-nitrophenyl)ethane-1,2-dione:13

Purified by column chromatography (hexanes/ethyl acetate 4:1); Yellow solid; ¹H NMR (400 MHz, DMSO) δ 8.19 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.95 (td, *J* = 7.5, 1.1 Hz, 1H), 7.91 – 7.82 (m, 2H), 3.75 (d, *J* = 1.2

Hz, 4H), 3.65 (t, J = 4.4 Hz 2H), 3.55 (t, J = 5.2 Hz, 2H); ¹³C NMR (101 MHz, DMSO) δ 187.03, 161.75, 147.07, 134.83, 133.48, 131.71, 131.14, 124.15, 66.01 (d, J = 16.8 Hz), 45.98, 42.11; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂N₂O₅ 287.0638 found 287.0637.

1-Morpholino-2-(3-nitrophenyl)ethane-1,2-dione:⁸

Purified by column chromatography (hexanes/ethyl acetate 4:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (t, J = 1.8 Hz, 1H), 8.48 (ddd, J = 8.2, 2.2, 1.0 Hz, 1H), 8.34 – 8.27 (m, 1H),

7.74 (t, J = 8.0 Hz, 1H), 3.83 – 3.79 (m, 4H), 3.72 – 3.67 (m, 2H), 3.46 – 3.42 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 188.25, 164.00, 148.73, 135.24, 134.66, 130.48, 128.96, 124.64, 66.85, 66.74 46.48, 42.10; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂N₂O₅ 287.0638 found 287.0623.

= 5.2 Hz, 2H), 3.56 (t, J = 4.4 Hz, 2H), 3.36 (t, J = 4.8 Hz, 2H); ¹³C NMR (101 MHz, DMSO) δ 189.78, 163.89, 150.90, 136.96, 130.84, 124.37, 66.05, 65.73, 45.66, 41.23; HRMS (TOF) m/z [M + K]+ Calcd for C₁₂H₁₂N₂O₅ 303.0378 found 303.0330.

1-Morpholino-2-(naphthalen-2-yl)ethane-1,2-dione:¹³ Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 8.04 – 7.86 (m, 4H), 7.61 (dt, J = 28.4, 7.3 Hz, 2H), 3.84 (s, 4H), 3.72 –

3.61 (m, 2H), 3.47 – 3.36 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 191.34, 165.70, 136.54, 133.16, 132.53, 130.53, 130.02, 129.66, 129.30, 128.08, 127.35, 123.68, 66.87, 66.82, 46.47, 41.83; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₆H₁₅NO₃ 270.1125 found 270.1140.

1-Morpholino-2-(thiophen-2-yl)ethane-1,2-dione:⁸

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (ddd, J = 5.9, 4.4, 1.0 Hz, 2H), 7.17 (dd, J = 4.8, 4.0 Hz, 1H), 3.78 – 3.71 (m, 4H), 3.69 – 3.62 (m,

2H), 3.51 - 3.44 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 182.90, 164.41, 140.36, 136.87, 136.37, 128.82, 66.89, 66.70, 46.52, 42.03; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₀H₁₁NO₃S 226.0532 found 226.0552.

1-Morpholino-2-(pyridine-3-yl)ethane-1,2-dione:8

Purified by column chromatography (hexanes/ethyl acetate 4:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 8.81 – 8.75 (m, 1H), 8.19 (dd, J = 8.0, 2.0 Hz, 1H), 7.46 – 7.37 (m, 1H), 3.72 (s, 4H),

3.63 – 3.58 (m, 2H), 3.38 – 3.33 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 189.45, 164.13, 154.80, 151.17, 136.73, 128.77, 123.92, 66.68, 66.55, 46.25, 41.79; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₁H₁₂N₂O₃ 221.0921 found 221.0928.

1-Phenyl-2-(piperidin-1-yl)ethane-1,2-dione:⁸

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 1.4 Hz, 2H), 7.65 – 7.59 (m, 1H), 7.49 (t, J = 7.7 Hz, 2H), 3.69 (s, 2H), 3.31 – 3.23 (m, 2H),

1.71 – 1.64 (m, 4H), 1.57 – 1.47 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 192.05, 165.54, 134.74, 133.36, 129.65, 129.09, 47.12, 42.24, 26.29, 25.54, 24.47; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₅NO₂ 218.1184 found 218.1184.

1-(4-Methylpiperazin-1-yl)-2-phenylethane-1,2-dione:¹¹ Purified by column chromatography (dichloromethane/methanol 30:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.87 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 3.82 – 3.71 (m, 2H),

3.39 – 3.28 (m, 2H), 2.51 – 2.45 (m, 2H), 2.36 – 2.32 (m, 2H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.54, 165.44, 134.88, 133.16, 129.69, 129.11, 54.95, 54.49, 46.04, 45.81, 41.20; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₆N₂O₂ 233.1285 found 233.1281.

1-Phenyl-2-(pyrrolidin-1-yl)ethane-1,2-dione:6

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.94 (m, 2H), 7.62 (t, J = 8.0 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 3.64 (t, J = 6.8 Hz, 2H), 3.40 (t, J = 6.2 Hz, 2H), 2.00 – 1.87 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 191.59, 164.93, 134.59, 132.86, 129.80, 128.91, 46.62, 45.19, 25.85, 23.96; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₃NO₂ 204.1019 found 204.1026.

N,N-Diethyl-2-oxo-2-phenylacetamide:6

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.85 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 3.53 (q, J = 7.2 Hz, 2H), 3.21 (q, J

= 7.1 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.66, 166.80, 134.64, 133.28, 129.64, 129.01, 42.16, 38.85, 14.14, 12.87; HRMS (TOF) m/z [M + H]+ Calcd for C₁₂H₁₅NO₂ 206.1176 found 206.1191.

N-Butyl-2-oxo-2-phenylacetamide:¹³

Purified by column chromatography (hexanes/ethyl acetate 7:1); Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.23 (m, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.8 Hz, 2H), 7.07 (s, 1H), 3.32

(dd, J = 13.4, 7.0 Hz, 2H), 1.56 – 1.47 (m, 2H), 1.38-1.28 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.93, 160.75, 133.32, 132.35, 130.17, 127.44, 38.13, 30.30, 19.03, 12.68; HRMS (TOF) m/z [M + H]+ Calcd for C₁₂H₁₅NO₂ 206.1176 found 206.1193.

Morpholino(phenyl)methanone:14

Purified by column chromatography (hexanes/ethyl acetate 6:1); White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.38 (m, 5H), 3.90–3.36 (m, 8H); ¹³C NMR (101 MHz, CDCl₃) 169.4, 134.3, 128.9, 127.5, 126.1, 65.9, 47.3,

41.6; HRMS (TOF) m/z [M + H]⁺ Calcd for $C_{11}H_{13}NO_2$ 191.1019 found 191.1039.

(2-methylphenyl)(morpholino)methanone:14

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.17 (m, 1H), 7.17–7.10 (m, 2H), 7.10-7.55 (m, 1H), 3.79–3.65 (m, 4H), 3.49 (s, 2H), 3.16 (d, *J* = 4.5 Hz,

2H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.07, 134.60, 133.15, 129.48, 128.03, 124.98, 124.80, 65.96, 65.91, 46.23, 40.88, 17.99; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₅NO₂ 206.1136 found 206.1153.

(3-methylphenyl)(morpholino)methanone:15

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.18 (m, 1H), 7.17-7.13 (m, 2H), 7.09 (d, *J* = 7.4 Hz, 1H), 3.74 – 3.31 (m, 8H), 2.29 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 169.59, 137.47, 134.28, 129.54, 127.34, 126.67, 122.95, 65.87, 47.15, 41.50, 20.34; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₅NO₂ 206.1136 found 206.1149.

(4-methylphenyl)(morpholino)methanone:14

Purified by column chromatography (hexanes/ethyl acetate 6:1);

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 3.89-3.41 (m, 8H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.64, 139.08, 131.31, 128.13, 126.21, 65.90, 20.37; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₅NO₂ 206.1136 found 206.1147.

(4-methoxyphenyl)(morpholino)methanone:14

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dt, *J* = 8.8, 2.0 Hz, 2H), 6.92 (dt, *J* = 8.8, 2.0 Hz, 2H), 3.84 (s, 3H), 3.76 – 3.54 (m, 8H); ¹³C

NMR (101 MHz, CDCl₃) δ 169.43, 159.90, 128.19, 126.32, 112.78, 65.92, 54.35; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₅NO₃ 222.1085 found 222.1094.

(4-hydroxyphenyl)(morpholino)methanone:16

Purified by column chromatography (hexanes/ethyl acetate 3:1); white solid; ¹H NMR (500 MHz, DMSO) δ 9.85 (s, 1H), 7.29 (d, *J* = 8.1 Hz, 2H), 6.83 (d, *J* = 8.3 Hz, 2H), 3.60 (t, *J* = 4.2 Hz, 4H), 3.51 (s,

4H); ¹³C NMR (126 MHz, DMSO) δ 169.83, 159.24, 129.72, 126.24, 115.36, 66.60; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₁H₁₃NO₂ 230.0788 found 230.0794.

(4-fluorophenyl)(morpholino)methanone:17

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (500 MHz, DMSO) δ 7.51-7.25 (m, 2H), 7.27 (tt, *J* = 9.1, 2.1 Hz, 2H), 3.70-3.31 (m, 8H); ¹³C NMR (126 MHz, DMSO) δ

168.11, 163.47, 161.51, 131.92, 131.90, 129.58, 129.51, 115.37, 115.20, 65.96; HRMS (TOF) m/z [M + Na]⁺ Calcd for $C_{11}H_{12}FNO_2$ 232.0744 found 232.0752.

(2-chlorophenyl)(morpholino)methanone:18

Purified by column chromatography (hexanes/ethyl acetate 6:1); white solid; ¹H NMR (500 MHz, DMSO) δ 7.58 – 7.53 (m, 1H), 7.50 – 7.39 (m, 3H), 3.74-3.64 (m, 4H), 3.56 (t, *I* = 4.7 Hz, 2H), 3.15 (t, *I* = 4.5 Hz, 2H); ¹³C

NMR (126 MHz, DMSO) δ 165.54, 135.38, 130.46, 129.30, 129.07, 127.92, 127.52, 66.00, 65.84, 46.58, 41.47; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₁H₁₂ClNO₂ 248.0449 found 248.0459.

(3-chlorophenyl)(morpholino)methanone:18

Purified by column chromatography (hexanes/ethyl acetate 6:1); colorless liquid; ¹H NMR (500 MHz, DMSO) δ 7.54 – 7.46 (m, 3H), 7.42 – 7.38 (m, 1H), 3.63 (s, 6H), 3.36 (s, 2H); ¹³C NMR (126 MHz,

DMSO) δ 167.38, 137.62, 133.22, 130.22, 129.33, 126.76, 125.42, 65.92, 47.47, 42.02; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₁H₁₂ClNO₂ 248.0449 found 248.0455.

(4-chlorophenyl)(morpholino)methanone:14

Purified by column chromatography (hexanes/ethyl acetate 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (q, *J* = 8.5 Hz, 4H), 3.89-3.36 (m, 8H);

 ^{13}C NMR (101 MHz, CDCl₃) δ 168.37, 135.03, 132.61, 127.86, 127.65, 65.83; HRMS (TOF) m/z [M + Na]+ Calcd for C₁₁H₁₂ClNO₂ 248.0449 found 248.0462.

(4-bromophenethyl)(morpholino)methanone:14

Purified by column chromatography (hexanes/ethyl acetate 6:1); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.29 (dt, *J* = 8.4, 1.6 Hz, 2H), 3.85-3.40 (m, 8H); ¹³C NMR (101 MHz, CDCl₃) δ

168.38, 133.08, 130.82, 127.83, 123.25, 65.81; HRMS (TOF) m/z $[M + H]^+$ Calcd for $C_{11}H_{12}BrNO_2$ 271.1260 found 271.1282.

(4-iodophenyl)(morpholino)methanone:15

Purified by column chromatography (hexanes/ethyl acetate 6:1); White solid; ¹H NMR (500 MHz, DMSO) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 3.71-3.34 (m, 8H); ¹³C NMR (126 MHz, DMSO) δ

168.19, 137.16, 134.94, 129.02, 96.25, 65.94; HRMS (TOF) m/z [M + Na]⁺ Calcd for $C_{11}H_{12}INO_2$ 339.9805 found 339.9811.

4-(4-Morpholinylcarbonyl)benzoic acid methyl ester:²¹ Purified by column chromatography (hexanes/ethyl acetate 4:1); white solid; ¹H NMR (500 MHz, DMSO) δ 8.04 (d, *J* = 7.9 Hz, 2H), 7.57 (d, *J* = 7.9 Hz, 2H), 3.90 (s, 3H), 3.78-3.52 m, 6H), 3.33 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 168.55, 166.14, 140.56,

130.86, 129.76, 127.76, 66.47, 52.76; HRMS (TOF) m/z $[M + Na]^+$ Calcd for $C_{13}H_{15}NO_4$ 272.0896 found 272.0890.

(4-(trifluoromethyl)phenyl)(morpholino)methanone:¹⁷ Purified by column chromatography (hexanes/ethyl acetate 5:1); White solid; ¹H NMR (500 MHz, DMSO) δ 7.84 (d, *J* = 6.6 Hz, 2H), 7.67 (d, *J* = 7.7 Hz, 2H), 3.79-3.49 (m, 6H), 3.39-3.25 (m, 2H); ¹³C

NMR (126 MHz, DMSO) δ 168.17, 140.20, 130.21 (q, *J* = 32.2 Hz), 128.27, 127.62, 125.91 (q, *J* = 3.7 Hz), 125.45, 123.27, 121.12, 66.45, 47.67, 42.32; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂F₃NO₂ 282.0712 found 282.0722.

4-Morpholinyl-2-naphthalenylmethanone:18

Purified by column chromatography (hexanes/ethyl acetate 6:1); Yellow solid; ¹H NMR (500 MHz, DMSO) δ 8.05 – 7.97 (m, 4H), 7.64 – 7.58 (m, 2H), 7.55 (d, *J* = 8.3 Hz, 1H), 3.65 (s, 8H); ¹³C NMR (126

MHz, DMSO) δ 169.00, 133.04, 132.88, 132.16, 128.26, 127.97, 127.58, 127.02, 126.63, 126.47, 124.40, 66.05; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₅H₁₅NO₂ 242.1176 found 242.1191.

Phenyl(piperidin-1-yl)methanone:17

Purified by column chromatography (hexanes/ethyl acetate 6:1); Colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 5H), 3.63 (s, 2H), 3.27

(s, 2H), 1.70–1.35 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.29, 135.51, 128.32, 127.37, 125.76, 47.75, 42.11, 25.49, 24.63, 23.57; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₅NO 190.1187 found 190.1190.

(4-Methyl-1-piperazinyl)phenylmethanone:19

Purified by column chromatography (dichloromethane/methanol 30:1); Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.34 (m, 5H), 3.78 (s, 2H), 3.39 (s, 2H), 2.53 – 2.27 (m, 7H); ¹³C NMR (101 MHz, CDCl₃) δ

169.33, 134.73, 128.68, 127.46, 126.01, 54.16, 53.63, 46.51, 44.89, 40.92; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₆N₂O 205.1296 found 205.1304.

Phenyl(pyrrolidin-1-yl)methanone:19

Purified by column chromatography (hexanes/ethyl acetate 6:1); Colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.41 (m, 2H), 7.35 – 7.28 (m, 3H), 3.46 (d, *J* = 78.4 Hz, 4H), 1.84 (s, 4H); ¹³C NMR (101 MHz, CDCl₃)

 δ 168.74, 136.17, 128.76, 127.22, 126.05, 48.60, 45.18, 25.36, 23.46; HRMS (TOF) m/z [M + H]+ Calcd for C_{11}H_{13}NO 176.1031 found 176.1042.

N,N-Diethylbenzamide:19

Purified by column chromatography (hexanes/ethyl acetate 6:1); Colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.31 (m, 5H), 3.54 (s, 2H), 3.25 (s, 2H), 1.27 – 0.99 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ

170.32, 136.24, 128.08, 127.37, 125.26, 42.29, 38.21, 13.18, 11.91; HRMS (TOF) m/z [M + H]⁺ Calcd for $C_{11}H_{15}NO$ 178.1187 found 178.1189.

N-n-Butylbenzamide:20

Purified by column chromatography (hexanes/ethyl acetate 7:1); White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.51 (m, 2H), 7.48 – 7.09 (m, 3H), 6.40-6.07 (m, 1H), 3.53 – 3.11 (m, 2H), 1.65-1.50 (m,

2H), 1.45-1.31 (m, 2H), 0.99-0.82 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.57, 134.89, 131.25, 128.49, 126.85, 39.81, 31.74, 20.16, 13.77; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₁H₁₅NO 178.1187 found 178.1191.

6. NMR spectra of products in Table 2, Table 3 and Scheme 2

7.4

7.5

7.7 ppm . 7.6

8.0

7.9

. 7.8

7. References

- 1, A. T. Khan, T. Parvin, L. H. Choudhury, S. Ghosh, Tetrahedron Lett., 2007, 48, 2271.
- 2, H. Esaki, F. Aoki, M. Umemura, M. Kato, T. Maegawa, Y. Monguchi, H. Sajiki, Chem.-Eur. J., 2007, 13, 4052.
- 3, X.-W. Lan, N.-X. Wang, C.-B. Bai, C.-L. Lan, T. Zhang, S.-L. Chen, Y.-L. Xing, Org. Lett., 2016, 18, 5986.
- 4, M. Pouliot, P. Renaud, K. Schenk, A. Studer, T. Vogler, Angew. Chem. Int. Ed., 2009, 48, 6037.
- 5, P. Duhamel, L. Duhamel, V. Truxillo, *Tetrahedron Lett.*, 1974, **15**, 51.
- 6, J.-P. Wan, Y. Lin, X. Cao, Y. Liu, L. Wei, Chem. Commun., 2016, 52, 1270.
- 7, H.-Y. Liu, Q.-Q. Mei, Q.-L. Xu, J.-L. Song, H.-Z. Liu, B.-X. Han, Green Chem., 2017, **19**, 196.
- 8, W. Wei, Y. Shao, H.-Y. Hu, F. Zhang, C. Zhang, Y. Xu, X.-B. Wan, J. Org. Chem., 2012, 77, 7157.
- 9, H.-Y. Du, Q. Ruan, M.-H. Qi, W. Han, J. Org. Chem., 2015, 80, 7816.
- 10, S. Meena, R. Singh, R. A. Vishwakarma, M. A. Aga, S. K. Jain, *Tetrahedron Lett.*, 2016, **57**, 3715.
- 11, N. Mupparapu, R. A. Vishwakarma, Q. N. Ahmed, *Tetrahedron*, 2015, **71**, 3417.
- 12, M. Lamani, K. R. Prabhu, Chem.-Eur. J., 2012, 18, 14638.
- 13, C.-K. Liu, Z. Yang, S.-Y. Guo, Y. Zeng, N. Zhu, X. Li, Z. Fang, K. Guo, Org. Biomol. Chem., 2016, 14, 8570.
- 14, Z.-F. Wang, C.-B. Liu, Y. Huang, Y.-C. Hu, B. Zhang, Chem. Commun., 2016, 52, 2960.
- 15, T. Wang, L. Yuan, Z.-G. Zhao, A.-L. Shao, M. Gao, Y.-F. Huang, F. Xiong, H.-L. Zhang, J.-F. Zhao, *Green Chem.*, 2015, **17**, 2741.
- 16, G. O'Mahony, A. K. Pitts, Org. Lett., 2010, **12**, 2024.
- 17, Z. Wu, K. L. Hull, Chem. Sci., 2016, 7, 969.
- 18, K. Wu, Z.-L. Huang, Y.-Y. Ma, A.-W. Lei, RSC Adv., 2016, 6, 24349.
- 19, P.-J. Chen, H.-Y. Wang, A.-Y. Peng, *RSC Adv.*, 2015, **5**, 94328.
- 20, Y.-M. Liu, S.-C. Shi, M. Achtenhagen, R.-Z. Liu, M. Szostak, Org. Lett., 2017, 19, 1614.
- 21, R. Cadoni, A. Porcheddu, G. Giacomelli, L. De Luca, Org. Lett., 2012, 14, 5014.