Electronic Supplementary Information

Catalytic Asymmetric Synthesis of Pyrrolidine Derivatives Bearing Heteroatom-Substituted Quaternary Stereocenters

Zhi-Peng Wang, Qi Wu, Jia Jiang, Zi-Rui Li, Xiao-Jiao Peng, Pan-Lin Shao* and Yun He*

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P.R. China.

E-mail: shaopl@cqu.edu.cn; yun.he@cqu.edu.cn.

Table of Contents	Page
I. General Information	2
II. Synthesis of Precatalyst 3a and Bifunctional Squaramide Catalyst 8	3
III. Synthesis of Substrates	4
IV. Synthesis of Isocyanoacetates	7
V. Substrates Scope of Isocyanoacetates	8
VI. Substrates Scope with α -Tosyloxyacrylate	23
VII. Organocatalytic [3 + 2] Cyclization of 7 and 2a	26
VIII. Reduction of Compound 10	27
IX. CD Spectra	
X. X-ray Crystallographic Analysis and Determination of Configuration of the Pr	oducts29
XI. References	
XII. NMR Spectra of the Products	34

I. General Information

¹H and ¹³C NMR spectra were recorded on an Agilent 400MR spectrometer at ambient temperature. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: ¹H (chloroform δ 7.26), ¹³C (chloroform δ 77.0). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. Melting point (M.P.) was obtained on SGW X-4A. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. High resolution mass spectra (HRMS) were obtained on a Bruker SolariX 7.0T spectrometer. **Optical rotations** were recorded on a Rudolph Autopol I automatic polarimeter. Enantiomeric excesses (ee) were determined by HPLC analysis on Agilent HPLC units, including the following instruments: pump, G1311C; detector, G1314F; column, Chiralpak AD-H, OD-H, AS-H, OJ-H, IA-H.

Unless otherwise noted, all the reactions were carried out in air. Dichloromethane (DCM), chloroform (CHCl₃) and toluene were distilled from calcium hydride. Tetrahydrofuran (THF) and ether were dried and distilled from sodium. N, N-Dimethylformamide (DMF) was dried over calcium hydride and distilled under vacuum. Deuterated solvents were purchased from Cambridge Isotope Laboratories and used as received without further purification. All the chemicals were purchased from commercial suppliers and used as received without further purification.

II. Synthesis of Precatalyst 3a and Bifunctional Squaramide Catalyst 8

II.I Synthesis of Precatalyst 3a

Quinine **3-1** (3.24 g, 10.00 mmol) and triphenylphosphine (2.62 g, 10.00 mmol) were dissolved in anhydrous THF (100 mL), the solution was cooled to 0 °C, diethyl azodicarboxylate (2.00 g, 10.00 mmol) was added slowly. To the resulting solution was added dropwise the solution of diphenyl phosphoryl azide (2.10 mL, 10.00 mmol) in anhydrous THF (10.00 mL) at 0 °C. The mixture was allowed to warm to ambient temperature. After 24 h, it was heated to 50 °C when more triphenylphosphine (2.90 g, 11.00 mmol) was added, and the mixture was allowed to stir at 50 °C for additional 3 h. After that the solution was cooled to ambient temperature and H₂O (1.00 mL) was added. After the reaction mixture was stirred for another 10 h, solvents were removed in vacuo and the residue was dissolved in CH₂Cl₂ and 10% hydrochloric acid (100 mL). The aqueous phase was washed with CH₂Cl₂ (4 × 50 mL). Then the aqueous phase was made alkaline with excess aqueous ammonia and was washed with CH₂Cl₂ (4 × 50 mL). The combined organic phases was dried over Na₂SO₄ and concentrated to get yellow oil, which was used directly without further purification.

To the solution of the obtained *epi*-quinine derivative (2.20 g, 6.80 mmol) in anhydrous CH_2Cl_2 (100 mL) was added 2-(diphenylphosphino)benzoic acid **3-2** (2.3 g, 7.50 mmol), 4-dimethylaminopyridine (166.00 mg, 1.36 mmol) and *N,N'*-dicyclohexylcarbodiimide (1.55 g, 7.50 mmol). The reaction mixture was stirred at ambient temperature for 12 h, concentrated and purified by flash chromatography (hexanes/ethyl acetate 1:1) to yield **3-3** as white solids (90% yield).

To a solution of 3-3 (3.10 g, 5.00 mmol) in EtOH (100 mL) was added 10% Pd/C

(300 mg). The reaction mixture was stirred under a hydrogen atmosphere for 24 h at ambient temperature, and then filtered through celite washing with EtOH (3×20 mL). The filtrate was concentrated and purified by flash chromatography (hexanes/ethyl acetate 1:1) to yield the precatalyst **3a** 2.90 g as white solid (95% yield).

The product spectrum was matched with reported.¹

II.II Synthesis of Bifunctional Squaramide Catalyst 8

To a stirred solution of 3,4-diethoxycyclobutane-1,2-dione **8-1** (1.00 g, 5.80 mmol) and zinc trifluoromethanesulfonate (40.00 mg, 0.12 mmol) in methanol (10.0 mL) at room temperature was added 3,5-bis(trifluoromethyl)aniline **8-2** (1.10 g, 4.80 mmol). After stirring for 24 h, a white precipitate formed, which was filtered and washed with methanol (3×5 mL), yielding **8-3** 1.38 g as a white solid (81% yield).

To a stirred solution of 9-epiaminohydroquinine **8-4** (325.0 mg, 1.0 mmol) in methanol (5.0 mL) was added 3-((3, 5-bis(trifluoromethyl)phenyl)amino)-4-ethoxycy-clobutane-1,2-dione **8-3** (355.0 mg, 1.0 mmol). After stirring for 48 h, a white precipitate formed, which was filtered and washed with methanol (3×5 mL), yielding the catalyst **8** 400.0 mg as a white solid (63% yield).

The product spectrum was matched with reported.²

III. Synthesis of Substrates

III.I Synthesis of α-thioacrylates

$$\int CO_2 Me \xrightarrow{1. Br_2, DCM, 0 \circ C, 12 h} Br CO_2 Me + {}^{t}BuSH \xrightarrow{Et_3N} DMF, reflux$$
1-1
1-2
1-3
1a

To a solution of methyl acrylate 1-1 (100.0 mmol) in 100mL DCM was added

bromine (110.0 mmol, dissolved in 20 mL DCM) dropwise below 0 °C, stirred at this temperature for 12 h. After completion, quenched with saturated Na₂S₂O₄ aqueous solution 10 mL, the aqueous layer was extracted with dichloromethane (3×50 mL), the combined organic layers were dried over Na₂SO4, filtered and concentrated to give the crude methyl 2,3-dibromo-propionate as pale yellow oil quantitatively, which was used directly without further purification. The crude methyl 2, 3-dibromopropionate was dissolved in a mixture of 200 mL ether, the resulting mixture was added 16.7 mL (120.0 mmol) of triethylamine. The reaction mixture was stirred for 5 h at room temperature. After completion, the precipitate was filtered with celite, the solvent was removed, and the residue was distilled in vacuo to yield pure methyl 2-bromoacrylate **1-2** 13.2 g (80% for 2 steps, b. p. 65°C, 50 mmHg).³ This compound is not stable in air.

Following the modified conditions developed by Stella and coworkers⁴. To a solution of methyl 2-bromoacrylate **1-2** (8.0 g, 48.5 mmol) in DMF was added mercaptans **1-3** (44.1 mmol), then triethylamine (8.1 mL, 58.1 mmol) was added dropwise, the mixture was heated to 110 °C for 24 h. After completion, the reaction mixture was washed with water, extracted with EA, the combined organic solvent was removed in vacuum to obtain brown oil, which was distilled in vacuum to give the desired product **1a** as colorless oil. 83% yield. ¹H **NMR** (400 MHz, Chloroform-d) δ 6.75 (d, *J* = 1.3 Hz, 1H), 6.13 (d, *J* = 1.3 Hz, 1H), 3.79 (s, 3H), 1.31 (s, 9H); ¹³C **NMR** (101 MHz, Chloroform-d) δ 167.00, 137.14, 134.38, 52.65, 46.32, 30.70. **HRMS** (ESI): m/z calcd. for [C₈H₁₄NaO₂S, M+Na]⁺: 197.0607; found: 197.0606.

The product was prepared following the modified conditions by Iriuchijima and coworkers.⁵ To a solution of mercaptan **1-4** (19.7 mmol) in 50 mL MeOH was added methyl α -bromopropanoate **1-5** (3.3 g, 19.7 mmol), then Et₃N (2.4 g, 24.0 mmol) was added dropwise at 0 °C followed by refluxing for 3 h. After the starting material was

consumed completely by monitoring with TLC, the reaction mixture was extracted with DCM (3 × 50 mL), the combined organic phase was dried over Na₂SO₄ and evaporated at 30 °C in vacuum, the crude product **1-6** was used in the next step without further purification. Sulfuryl chloride (1.62 g, 12.00 mmol) was added to a stirred solution of the residue prepared above (12.00 mmol) in chloroform (50 ml) at 0 °C. The solution was stirred at 0 °C for 10 min, and then refluxed with stirring at 65 °C for 10 h. After the reaction completion, quenched with saturated NaHCO₃, extracted with DCM, dried over Na₂SO₄, and concentrated to give pale yellow oil, which was purified by flash chromatography (petroleum ether:EtOAc = 100:1) to give the pure product **11** as colorless oil, 70% yield. ¹H **NMR** (400 MHz, Chloroform-d) δ 6.34 (s, 1H), 5.41 (s, 1H), 3.80 (s, 3H), 2.71 (t, *J* = 7.4 Hz, 2H), 1.68 – 1.61 (m, 2H), 1.45 (h, *J* = 7.4 Hz, 2H), 0.93 (t, *J* = 7.4 Hz, 3H); ¹³C **NMR** (101 MHz, Chloroform-d) δ 165.06, 137.55, 118.98, 52.64, 31.14, 29.71, 22.16, 13.61. **HRMS** (ESI): m/z calcd. for [C₈H₁₄NaO₂S, M+Na]⁺: 197.0607; found: 197.0605.

III.II Synthesis of α-tosyloxyacrylate⁶

$$\begin{array}{c} O \\ \hline \\ CO_2Me \end{array} + T_SCI \xrightarrow{Et_3N} TSO CO_2Me \\ \hline \\ THF/HMPA \end{array}$$

To a solution of triethylamine (6.0 mL) in dry THF (20.0 mL) and HMPA (1.0 mL) at -10 °C under N₂ atmosphere, a solution of pyruvate **5-1** (5.0 g, 49.0 mmol) in dry THF (10.0 mL) was added dropwise. Then a solution of TsCl (9.8 g, 51.6 mmol) in dry THF (10.0 mL) was slowly added at the same temperature, the resulting mixture was stirred at -10 °C until **5-1** was consumed. The solvent was removed in vacuo, and the residue was redissolved in CH₂Cl₂ (50.0 mL). A saturated aqueous solution of NH₄Cl (100.0 mL) was added and the aqueous layer was extracted with CH₂Cl₂ (3 × 50.0 mL). The combined organic extracts were dried over MgSO₄, the solvent was evaporated in vacuo. The residue was successively purified by flash column chromatography on silica gel (hexane/EtOAc, 20:1) to give the acrylate **5** (7.5 g, 60% yield) as colorless oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.76 (d, *J* = 8.4 Hz, 2H),

7.30 (d, J = 7.9 Hz, 2H), 6.07 (d, J = 2.4 Hz, 1H), 5.54 (d, J = 2.4 Hz, 1H), 3.63 (s, 3H), 2.39 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 161.33, 145.76, 143.01, 132.36, 129.78, 128.48, 117.07, 52.64, 21.61; HRMS (ESI): m/z calcd. for [C₁₁H₁₂NaO₅S, M+Na]⁺: 279.0298; found: 279.0298.

IV. Synthesis of Isocyanoacetates

General procedure: Isocyanoacetates **2** were synthesized according to the procedure reported by Zhu.⁷

To a solution of amino acid **2-1** in methanol was added $SOCl_2$ dropwise at 0 °C. The mixture was stirred at RT for 10 hours and evaporated to dryness to give the corresponding methyl ester hydrochloride which was directly used without further purification.

To a solution of the methyl ester hydrochloride prepared above in ACN was added ammonium formate and the mixture was heated to 80 °C for 20 h. ACN was evaporated. The residue was dissolved in AcOEt and washed with water. The aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine, dried over sodium sulfate and concentrated under reduced pressure to give corresponding formamide **2-2** which was used in the next step without purification.

To a solution of formamide **2-2** (1.0 equiv) in CH_2Cl_2 (0.3 M) was added diisopropylamine (2.8 equiv). The mixture was cooled to -30 °C and POCl₃ (1.1 equiv) was added slowly. The resulting mixture was stirred at -30 °C for 2 h and quenched with a 10% aqueous solution of K₂CO₃. The aqueous layer was extracted with CH_2Cl_2 (3 × 20 mL), the combined organic layers were washed with brine, dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to afford pure product **2**.

Methyl 2-isocyanohexanoate (2h)

Brown liquid, 70% yield. ¹H NMR (400 MHz, Chloroform-d) δ 4.27– ⁿBu ⁿBu ⁿCN $\leftarrow CO_2Me$ ²h ¹A.24 (m, 1H), 3.79 (s, 3H), 1.89 (p, J = 7.0 Hz, 2H), 1.48 – 1.39 (m, 2H), 1.38 – 1.31 (m, 2H), 0.92 – 0.89 (m, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 167.30, 159.88, 56.48, 53.24, 32.39, 27.21, 21.73, 13.67. HRMS (ESI): m/z calcd. for [C₈H₁₃NNaO₂, M+Na]⁺: 178.0838; found: 178.0837.

Dimethyl 2-isocyanopentanedioate (2i)

 $\begin{array}{l} \overset{\mathsf{CH}_2\mathsf{CP}_2\mathsf{CO}_2\mathsf{Me}}{\overset{\mathsf{CO}_2\mathsf{Me}}{2\mathsf{i}}} & \text{Colorless oil, 41\% yield. } ^{\mathbf{I}}\mathbf{H} \ \mathbf{NMR} \ (400 \ \mathrm{MHz}, \ \mathrm{Chloroform-d}) \ \delta \\ & 4.44 \ (\mathrm{dd}, J = 8.5, 4.9 \ \mathrm{Hz}, 1\mathrm{H}), \ 3.80 \ (\mathrm{s}, 3\mathrm{H}), \ 3.68 \ (\mathrm{s}, 3\mathrm{H}), \ 2.56 - 2.51 \\ & (\mathrm{m}, 2\mathrm{H}), \ 2.29 \ (\mathrm{dtd}, J = 15.0, \ 7.6, \ 5.0 \ \mathrm{Hz}, 1\mathrm{H}), \ 2.19 - 2.10 \ (\mathrm{m}, 1\mathrm{H}); \ ^{13}\mathbf{C} \ \mathbf{NMR} \ (101 \ \mathrm{MHz}, \ \mathrm{Chloroform-d}) \ \delta \ 172.06, \ 166.61, \ 160.90, \ 55.40, \ 53.47, \ 51.95, \ 29.17, \ 27.67. \\ & \mathbf{HRMS} \ (\mathrm{ESI}): \ \mathrm{m/z} \ \mathrm{calcd.} \ \mathrm{for} \ [\mathrm{C}_8\mathrm{H}_{11}\mathrm{NNaO}_4, \ \mathrm{M+Na}]^+: \ 208.0580; \ \mathrm{found}: \ 208.0581. \end{array}$

Methyl 2-cyclohexyl-2-isocyanoacetate (2k)

White solid, 80% yield. **M.P.** 50 °C-52 °C. ¹**H NMR** (400 MHz, CN CO_2Me Chloroform-d) δ 4.14 (d, J = 4.7 Hz, 1H), 3.81 (s, 3H), 1.96 (br, 1H), 1.80 (dq, J = 9.4, 3.0 Hz, 2H), 1.66 (tdd, J = 18.7, 9.3, 5.5 Hz, 3H), 1.35 - 1.14 (m, 5H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 166.87, 160.21, 62.31, 53.13, 40.27, 29.54, 27.12, 25.68, 25.47, 25.41. **HRMS** (ESI): m/z calcd. for [C₁₀H₁₅NNaO₂, M+Na]⁺: 204.0995; found: 204.0996.

V. Substrates Scope of Isocyanoacetates

General procedure A. To a 10 mL tube charged with 3a (12.30 mg, 0.02 mmol) and

Ag₂O (2.30 mg, 0.01 mmol) was added CHCl₃ (1 mL). The mixture was stirred at -20 °C for 5 minutes, then the α -thioacrylate **1a** (17.40 mg, 0.10 mmol) and isocyanoacetate **2a** (21.02 mg, 0.12 mmol) were added. The reaction mixture was stirred at -20 °C until **1a** was consumed, and then filtered through a pad of silica gel and washed with ethyl acetate. The solvent was removed under reduced pressure and then the residue was dissolved in MeOH (1.00 mL), NaCNBH₃ (12.57 mg, 0.20 mmol) and HOAc (12.01 mg, 0.20 mmol) were added sequentially at room temperature. The reaction mixture was stirred at room temperature for 0.5 h, and then concentrated, purified by flash chromatography on silica gel (hexanes/ethyl acetate, 2:1) to afford the product **4a**.

V.I Characterization of Compounds

Dimethyl (2*R*,4*R*)-4-(*tert*-butylthio)-2-phenylpyrrolidine-2,4-dicarboxylate (4a)

Optical Rotation: $[\alpha]^{25}_{D} = -3.2$, (c= 0.41, CHCl₃). The absolute configuration of **4a** was assigned by analogy to **4g**. *trans:cis* = 75:25, 98% ee, 96% ee [HPLC condition: Chiralpak OJ-H+AD-H+OJ-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 0.8 mL/min, wavelength = 210 nm, t_R = 45.0 min (*cis*-minor), t_R = 51.6 min (*cis*major), t_R = 64.8 min (*trans*-major), t_R = 71.8 min (*trans*-minor)].

Dimethyl (2R,4S)-4-(tert-butylthio)-2-phenylpyrrolidine-2,4-dicarboxylate (4a' minor isomer)

CO₂Me White solid, M.P. 134-136 °C, $R_f = 0.2$ (silica gel, petroleum ^tBuS CO₂Me ether: EtOAc = 10:1). ¹H NMR (600 MHz, Chloroform-d) δ 7.56 (d, ΄́Ρh 4a' (minor isomer) J = 7.6 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.26 – 7.24 (m, 1H), 3.94 (d, J = 11.7 Hz, 1H), 3.77 (d, J = 13.5 Hz, 1H), 3.75 (s, 3H), 3.65 (s, 3H), 3.01 (d, J = 13.5 Hz, 1H), 3.75 (s, 3H), 3.65 (s, 3H), 3.01 (d, J = 13.5 Hz, 1H), 3.75 (s, 3H), 3.65 (s, 3H), 3.01 (d, J = 13.5 Hz, 1H), 3.75 (s, 3H), 3.65 (s, 3H), 3.01 (d, J = 13.5 Hz, 1H), 3.75 (s, 3H), 3.65 (s, 3H), 3.01 (d, J = 13.5 Hz, 1H), 3.75 (s, 3H), 3.65 (s, 3H), 3.01 (d, J = 13.5 Hz, 1H), 3.75 (s, 3H), 3.65 (s, 3H), 3.01 (s,11.8 Hz, 1H), 2.39 (d, J = 13.5 Hz, 1H), 1.72 (br, 1H), 1.31 (s, 9H); ¹³C NMR (151 MHz, Chloroform-d) δ 174.69, 174.31, 142.60, 128.26, 127.55, 126.27, 71.62, 57.78, 57.22, 53.11, 52.76, 50.20, 46.48, 31.70; HRMS (ESI), m/z calcd. for [C₁₈H₂₆NO₄S, M+H]⁺: 352.1577; found: 352.1580; **Optical Rotation**: $[\alpha]^{25}_{D} = -46.2$, (c= 0.50, CHCl₃).

xylate (4b)

The general procedure A was followed. Colorless oil, $R_f = 0.6$ (silica gel, petroleum ether: EtOAc = 2:1), 97% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.43 (d, J = 8.9 Hz, 2H), 6.83 (d, J =8.9 Hz, 2H), 3.78 (s, 3H), 3.75 (d, J = 11.4 Hz, 1H), 3.71 (s, 3H), 3.64 (s, 3H), 3.20 (d, J = 11.3 Hz, 1H), 3.11 (d, J = 14.1 Hz, 1H), 2.97 (d, J = 14.1 Hz, 1H), 1.34 (s, 9H);

¹³**C NMR** (101 MHz, Chloroform-d) δ 175.24, 174.01, 158.97, 134.02, 127.29, 113.59, 71.08, 57.47, 57.07, 55.24, 52.82, 52.50, 48.43, 46.66, 31.57; **HRMS** (ESI), m/z calcd. for [C₁₉H₂₇NNaO₅S, M+Na]⁺: 404.1502; found: 404.1501.

Optical Rotation: $[\alpha]^{25}_{D} = -2.7$, (c= 0.37, CHCl₃). The absolute configuration of **4b** was assigned by analogy to **4g**. *trans:cis* = 67:33, 94% ee, 93% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 95:5, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 14.8 min (*trans*-minor), t_R = 16.2 min (*cis*-minor), t_R = 21.4 min (*trans*-major), t_R = 28.7 min (*cis*-major)].

Dimethyl (2*R*,4*R*)-4-(*tert*-butylthio)-2-(4-chlorophenyl)pyrrolidine-2,4-dicarboxylate (4c)

^tBUS, P_{H} CO₂Me ^tBUS, P_{H} CO₂

7.26 (dd, J = 8.8, 0.9 Hz, 1H), 3.71 (s, 3H), 3.3.68 (d, J = 0.9 Hz, 1H), 3.63 (s, 3H), 3.21 (d, J = 11.2 Hz, 1H), 3.13 (d, J = 14.0 Hz, 1H), 2.94 (d, J = 14.1 Hz, 1H), 2.73 (br, 1H), 1.33 (s, 9H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 174.74, 173.70, 140.67, 133.46, 128.34, 127.65, 71.03, 57.28, 57.02, 53.03, 52.54, 48.37, 46.76, 31.55; **HRMS** (ESI), m/z calcd. for [C₁₈H₂₄ClNNaO₄S, M+Na]⁺: 408.1007; found: 408.0989.

Optical Rotation: $[\alpha]^{25}_{D} = -15.9$, (c= 0.37, CHCl₃). The absolute configuration

of 4c was assigned by analogy to 4g. trans: cis = 69:31, 98% ee, 96% ee [HPLC] condition: Chiralpak AD-H+OJ-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 0.8mL/min, wavelength = 210 nm, t_R = 25.4 min (*cis*-minor), t_R = 27.0 min (*cis*-major), $t_R = 29.8 \min (trans-minor), t_R = 45.7 \min (trans-major)].$

Dimethyl (2R,4R)-4-(tert-butylthio)-2-(2-methoxyphenyl)pyrrolidine-2,4-dicarboxylate (4d)

CO₂Me ^tBuS_{//,} MeO 4d

The general procedure A was followed. Colorless oil, $R_f = 0.6$ CO₂Me (silica gel, petroleum ether: EtOAc = 2:1), 93% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.50 (dd, J = 7.7, 1.7 Hz, 1H), 7.23 (dd, J =7.7, 1.6 Hz, 1H), 6.94 (td, J = 7.6, 1.2 Hz, 1H), 6.83 (dd, J = 8.2, 1.1 Hz, 1H), 4.00 (dd, J = 9.9, 1.1 Hz, 1H), 3.76 (s, 3H), 3.64 (s, 3H), 3.59 (s, 3H), 3.24 (d, J = 9.9 Hz)1H), 3.09 – 2.99 (m, 2H), 1.70 (br, 1H), 1.34 (s, 9H); ¹³C NMR (101 MHz, Chloroform-d) & 174.62, 174.37, 156.46, 131.19, 128.65, 125.83, 120.38, 110.71, 68.19, 57.04, 55.76, 55.29, 52.53, 52.45, 46.55, 46.39, 31.61; HRMS (ESI), m/z calcd. for [C₁₉H₂₈NO₅S, M+H]⁺: 382.1683; found: 382.1682.

Optical Rotation: $[\alpha]^{25}_{D} = -55.9$, (c= 0.24, CHCl₃). The absolute configuration of 4d was assigned by analogy to 4g. trans:cis = 56:44, 98% ee, 95% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min,

wavelength = 254 nm, t_R = 18.9 min (*trans*-minor), t_R = 20.7 min (*cis*-minor), t_R = 49.3 min (*trans*-major), $t_R = 54.1 \text{ min } (cis\text{-major})$].

Dimethyl (2R,4R)-4-(tert-butylthio)-2-(2-chlorophenyl)pyrrolidine-2,4-dicarboxylate (4e)

CO₂Me ^tBuS_/, CO₂Me CI 4e

The general procedure A was followed. Colorless oil, $R_f = 0.2$ (silica gel, petroleum ether: EtOAc = 10:1), 97% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.76 (dd, J = 7.6, 2.0 Hz, 1H), 7.32 (dd, J = 7.4, 1.8 Hz, 1H), 7.25 - 7.18 (m, 2H), 4.00 (d, J = 9.3, 1.4 Hz, 1H), 3.68 (s, 3H), 3.54 (s, 3H), 3.33 (d, J = 14.0 Hz, 1H), 3.25 (d, J = 9.3 Hz, 1H), 2.99 (dd, J = 14.0, 1.4 Hz, 1H), 1.60 (br, 1H), 1.34 (s, 9H); ¹³C NMR (101 MHz, Chloroform-d) δ 174.02, 173.34, 141.01, 132.34, 129.88, 128.63, 127.11, 126.41, 69.37, 56.64, 55.64, 53.00, 52.43, 46.68, 46.43, 31.62.; **HRMS** (ESI), m/z calcd. for $[C_{18}H_{24}CINNaO_4S]$, M+Na]⁺: 408.1007; found: 408.0990.

Optical Rotation: $[\alpha]^{25}_{D} = -68.6$, (c= 0.22, CHCl₃). The absolute configuration of 4e was assigned by analogy to 4g. trans: cis = 57:43, 97% ee, 96% ee [HPLC] condition: Chiralpak AS-H+IA-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 0.8mL/min, wavelength = 210 nm, t_{R} = 19.6 min (*trans*-minor), t_{R} = 23.0 min (*cis*-minor), $t_{R} = 30.3 \text{ min} (trans-major), t_{R} = 35.6 \text{ min} (cis-major)].$

Dimethyl (2S,4R)-2-benzyl-4-(tert-butylthio)pyrrolidine-2,4-dicarboxylate (4f)

The general procedure A was followed. White solid, **M.P.** 120-122 ^{*BUS, CO₂Me ^{*BuS, CO₂Me ^{*BuS, CO₂Me ^{*BuS, CO₂Me ^{*BuS, CO₂Me ^{*BuS, CO₂Me ^{*C}, $R_f = 0.4$ (silica gel, petroleum ether:EtOAc = 5:1). 95% yield. ¹H **NMR** (400 MHz, Chloroform-d) δ 7.26 – 7.19 (m, 5H), 3.81 (dd, J = 11.8, 1.5 Hz, 1H), 3.68 (s, 3H), 3.64 (s, 3H), 3.28 (dd, J = 13.7, 1.5 Hz, 1H), 3.10 (d, J = 13.2 Hz, 1H), 2.91 (dd, J = 15.3, 12.5 Hz, 2H), 2.11 (d, J = 13.7 Hz, 1H), 1.32 (s, 9H); ¹³C **NMR** (101 MHz, Chloroform-d) δ 175.46, 174.25, 136.73, 129.93, 128.06, 126.80, 70.27, 57.70, 56.74, 52.70, 52.39, 49.08, 46.49, 45.35, 31.70; **HRMS** (ESI): m/z calcd. for [C₁₉H₂₈NO₄S, M+H]⁺: 366.1734; found: 366.1718.}}}}}}

Optical Rotation: $[\alpha]^{25}{}_{D} = -49.2$, c = 0.25, CHCl₃). The absolute configuration of **4f** was assigned by analogy to **4g**. *trans:cis* = 68:32, 97% ee, 92% ee [HPLC condition: Chiralpak AD-H+AD-H+OJ-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 0.8 mL/min, wavelength = 210 nm, $t_{R} = 35.5 \text{ min}$ (*cis*-minor), $t_{R} = 38.9 \text{ min}$ (*cis*-major), $t_{R} = 45.0 \text{ min}$ (*trans*-minor), $t_{R} = 48.3 \text{ min}$ (*trans*-major)].

V MAU 400- 300- 100- 0 200- 30-	NOT A. Wavelengtr-210 rm (E-DATA 20	WZ_LC 2019-02:20 17-04-30 WZEF1-04:3-2 CHIRA				WD1 A Waekegin-210 nm (± 10A1	AW2_EF_C 30H-	95 g	2316-02-23 17-44-40 D)	
Peak # 1 2 3 4	RetTime Type [min] 	Width Area [min] [mAU*s] 0.5320 438.29099 0.7584 1.11584e4 0.8229 450.72763 1.1594 2.75617e4	Height [mAU] 9.67601 221.25592 6.40972 348.97766	Area % 1.1065 28.1712 1.1379 69.5843	Peak # 1 2 3 4	RetTime Type [min] 34.361 BB 37.597 BB 43.198 BB 46.912 BB	Width [min] 0.6353 0.7134 0.9442 1.0643	Area [mAU*s] 5757.07715 5772.78955 1.05252e4 1.04992e4	Height [mAU] 134.64734 123.36200 164.21930 142.96860	Area % 17. 6846 17. 7328 32. 3312 32. 2514

Dimethyl (2S,4R)-4-(tert-butylthio)-2-methylpyrrolidine-2,4-dicarboxylate (4g)

The general procedure A was followed. White solid, **M.P.** 60-62 °C, The general procedure A was followed. White solid, **M.P.** 60-62 °C, $R_f = 0.2$ (silica gel, petroleum ether:EtOAc = 2:1). 86% yield. ¹H **NMR** (400 MHz, Chloroform-d) δ 3.81 (dd, J = 12.0, 1.4 Hz, 1H), 3.71 (d, J = 1.6 Hz, 6H), 3.18 (dd, J = 13.8, 1.4 Hz, 1H), 3.02 (d, J = 12.0 Hz, 1H), 2.50 (br, 1H), 1.94 (d, J = 13.9 Hz, 1H), 1.43 (s, 3H), 1.31 (s, 9H); ¹³C **NMR** (101 MHz, Chloroform-d) δ 176.61, 174.17, 65.52, 57.74, 57.59, 52.75, 52.72, 50.25, 46.57, 31.68, 26.85; **HRMS** (ESI): m/z calcd. for [C₁₃H₂₃NNaO₄S, M+Na]⁺: 312.1240; found: 312.1231.

Optical Rotation: $[\alpha]^{25}_{D} = -11.9$, (c= 0.37, CHCl₃). The absolute configuration of **4g** was assigned by its single crystal. *trans:cis* = 67:33, 96% ee, 93% ee [HPLC condition: Chiralpak OJ-H+AD-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 0.8 mL/min, wavelength = 210 nm, t_R = 22.6 min (*cis*-minor), t_R = 23.8 min (*trans*-minor), t_R = 26.5 min (*trans*-major), t_R = 28.9 min (*cis*-major)].

Dimethyl (2S,4R)-2-butyl-4-(tert-butylthio)pyrrolidine-2,4-dicarboxylate (4h)

The general procedure A was followed. White solid, **M.P.** 35-37 °C, $_{H}^{CO_2Me}$ $R_f = 0.5$ (silica gel, petroleum ether:EtOAc = 5:1), 90% yield. ¹H **NMR** (400 MHz, Chloroform-d) δ 3.77 (s, 3H), 3.74 (s, 3H), 3.70 (dd, J = 10.9, 0.9 Hz, 1H), 3.04 (d, J = 11.0 Hz, 1H), 2.68 (dd, J = 14.3, 0.9 Hz, 1H), 2.54 (d, J = 14.3 Hz, 1H), 1.77 (td, J = 12.6, 12.1, 4.5 Hz, 1H), 1.51 (td, J = 13.3, 12.9, 3.7 Hz, 1H), 1.31 (s, 9H), 1.27 – 1.24 (m, 4H), 1.03 – 0.98 (m, 1H), 0.87 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (101 MHz, Chloroform-d) δ 176.62, 174.52, 68.94, 57.70, 56.49, 52.71, 52.42, 47.35, 46.50, 40.09, 31.62, 27.03, 22.82, 13.93; **HRMS** (ESI), m/z calcd. for [C₁₆H₃₀NO₄S, M+H]⁺: 332.1890; found: 332.1879.

Optical Rotation: $[\alpha]^{25}_{D} = -11.4$, (c= 0.18, CHCl₃). The absolute configuration of **4h** was assigned by analogy to **4g**. *trans:cis* = 61:39, 96% ee, 92% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 1.0 mL/min, wavelength = 210 nm, t_R = 8.2 min (*trans*-minor), t_R = 9.5 min (*cis*-minor), t_R = 15.0 min (*cis*-major), t_R = 19.5 min (*trans*-major)].

The general procedure A was followed. Colorless oil, $R_f = 0.2$ (silica gel, petroleum ether:EtOAc = 5:1), 95% yield. ¹H NMR (400 MHz, Chloroform-d) δ 3.83 (dd, J = 12.1, 1.8 Hz, 1H), 3.72 (s, 3H), 3.70 (s, 3H), 3.64 (s, 3H), 3.19 (dd, J = 13.8, 1.7 Hz, 1H), 2.88 (dd, J = 12.1, 0.8 Hz, 1H), 2.44 (tt, J = 13.1, 5.5 Hz, 1H), 2.18 – 2.10 (m, 2H), 1.97 (d, J = 13.8 Hz, 1H), 1.94 – 1.88 (m, 1H), 1.31 (s, 9H).; ¹³C NMR (101 MHz, Chloroform-d) δ 175.66, 174.17, 173.54, 68.40, 57.90, 57.12, 52.78, 52.69, 51.61, 49.51, 46.43, 34.68, 31.72, 29.98; HRMS (ESI), m/z calcd. for [C₁₆H₂₈NO₆S, M+H]⁺: 362.1632; found: 362.1630.

Optical Rotation: $[\alpha]^{25}_{D} = -28.3$, (c= 0.23, CHCl₃). The absolute configuration of **4i** was assigned by analogy to **4g**. *trans:cis* = 60:40, 96% ee, 96% ee [HPLC condition: Chiralpak AD-H+OJ-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 0.8 mL/min, wavelength = 210 nm, t_R = 37.5 min (*trans*-minor), t_R = 40.3 min (*cis*-minor), t_R = 46.3 min (*trans*-major), t_R = 50.5 min (*cis*-major)].

Dimethyl (2R,4R)-4-(tert-butylthio)-2-isopropylpyrrolidine-2,4-dicarboxylate (4j)

The general procedure A was followed. White solid, **M.P.** 79-81 °C, ^tBus, A_{j} $CO_{2}Me$ $R_{f} = 0.5$ (silica gel, petroleum ether:EtOAc = 5:1), 99% yield. ¹H **NMR** (400 MHz, Chloroform-d) δ 3.83 (dd, J = 11.8, 1.8 Hz, 1H), 3.71 (s, 3H), 3.69 (s, 3H), 3.14 (dd, J = 13.7, 1.8 Hz, 1H), 2.82 (d, J = 11.8 Hz, 1H), 2.09 (d, J = 13.7 Hz, 1H), 1.94 (p, J = 6.7 Hz, 1H), 1.65 (br, 1H), 1.32 (s, 9H), 0.91 (d, J = 6.7 Hz, 3H), 0.84 (d, J = 6.7 Hz, 3H); ¹³C **NMR** (101 MHz, Chloroform-d) δ 176.54, 174.31, 72.59, 58.75, 56.93, 52.68, 52.45, 46.36, 46.22, 35.94, 31.72, 18.12, 16.91; **HRMS** (ESI), m/z calcd. for [C₁₅H₂₇NNaO₄S, M+Na]⁺: 340.1553; found: 340.1541.

Optical Rotation: $[\alpha]^{25}{}_{D} = -41.7$, (c= 0.30, CHCl₃). The absolute configuration of **4j** was assigned by analogy to **4g**. *trans:cis* = 53:47, 97% ee, 97% ee [HPLC condition: Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 1 mL/min, 4 °C, wavelength = 210 nm, t_R = 6.9 min (*trans*-minor), t_R = 8.9 min (*cis*-minor), t_R = 9.6 min (*cis*-major), t_R = 12.4 min (*trans*-major)].

Dimethyl (2R,4R)-4-(tert-butylthio)-2-cyclohexylpyrrolidine-2,4-dicarboxylate (4k)

CO₂Me ^tBuS_/,

CO₂Me $R_f = 0.5$ (silica gel, petroleum ether: EtOAc = 5:1), 87% yield. ¹H 4k **NMR** (400 MHz, Chloroform-d) δ 3.81 (dd, J = 11.8, 1.8 Hz, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 3.11 (dd, J = 13.7, 1.8 Hz, 1H), 2.81 (d, J = 11.8 Hz, 1H), 2.13 (d, J = 13.7 Hz, 1H), 1.81 - 1.71 (m, 3H), 1.64 - 1.59 (m, 1H), 1.64 - 1.58 (m, 1H), 1.31 (s, 8H), 1.56 – 1.53 (m, 1H), 1.31 (s, 8H), 1.38 – 1.42 (m, 1H), 1.31 (s, 9H), 1.25 - 1.98 (m, 4H), 1.19 - 1.15 (m, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 176.50, 174.33, 72.50, 58.66, 56.83, 52.62, 52.41, 46.33, 46.08, 45.73, 31.73, 28.33, 26.86, 26.44, 26.34, 26.23; **HRMS** (ESI), m/z calcd. for $[C_{18}H_{32}NO_4S, M+H]^+$:

The general procedure A was followed. White solid, M.P. 76-78 °C,

358.2047; found: 358.2031.

Optical Rotation: $[\alpha]^{25}_{D} = -56.6$, (c= 0.23, CHCl₃). The absolute configuration of 4k was assigned by analogy to 4g. trans:cis = 52:48, 98% ee, 97% ee [HPLC] condition: Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 1.0 mL/min, 4 °C, wavelength = 210 nm, $t_R = 8.3 \text{ min}$ (*cis*-minor), $t_R = 9.5 \text{ min}$ (*trans*-minor), $t_R = 100 \text{ mm}$ 14.4 min (*trans*-major), $t_R = 21.0 \text{ min } (cis\text{-major})$].

Dimethyl (2S,4R)-2-benzyl-4-(butylthio)pyrrolidine-2,4-dicarboxylate (4l)

The general procedure A was followed. White solid, M.P. = 75-77 ° $H_{H}^{OO_2Me}$ C, R $_f = 0.2$ (silica gel, petroleum ether:EtOAc = 8:1), 93% yield. ¹H 41 NMR (600 MHz, Chloroform-d) δ 7.24 – 7.23 (m, 2H), 7.20 (dd, J =10.8, 7.5 Hz, 3H), 3.68 (s, 3H), 3.64 (s, 3H), 3.61 (d, J = 11.8 Hz, 1H), 3.12 (dd, J =22.5, 13.6 Hz, 2H), 2.98 (dd, J = 12.6, 4.1 Hz, 2H), 2.60 – 2.51 (m, 2H), 2.06 (d, J =14.0 Hz, 1H), 1.09 (br, 1H), 1.49 (dt, J = 15.2, 7.5 Hz, 2H), 1.39 – 1.33 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-d) δ 175.42, 172.80, 136.49, 129.85, 128.16, 126.88, 70.53, 56.17, 55.59, 52.65, 52.38, 46.27, 45.18, 31.24, 30.59, 22.02, 13.59.; HRMS (ESI), m/z calcd. for [C₁₉H₂₈NO₄S, M+H]⁺: 366.1734; found: 366.1734.

Optical Rotation: $[\alpha]^{25}_{D} = -11.8$, (c= 0.4, CHCl₃). The absolute configuration of **41** was assigned by analogy to **4g**. *trans:cis* = 57:43, 96% ee, 94% ee [HPLC condition: Chiralpak IF-H column, *n*-hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min , wavelength = 254 nm, t_R = 8.3 min (*trans*-minor), t_R = 9.8 min (*trans*-major), t_R = 17.6 min (*cis*-minor), t_R = 44.2 min (*cis*-major)].

Dimethyl (2S,4R)-2-benzyl-4-(benzylthio)pyrrolidine-2,4-dicarboxylate (4m)

The general procedure A was followed. White solid, M.P. = 72-74 °C, $M_{H}^{CO_2Me}$ R $_f = 0.2$ (silica gel, petroleum ether:EtOAc = 8:1), 95% yield. ¹H M_{H}^{M} NMR (600 MHz, Chloroform-d) δ 7.28 (d, J = 4.4 Hz, 3H), 7.26 – 7.18 (m, 5H), 7.16 (d, J = 7.1 Hz, 2H), 3.79 (s, 1H), 3.64 (s, 3H), 3.60 (s, 3H), 3.57 (d, J = 11.9 Hz, 1H), 3.47 (s, 1H), 3.10 (t, J = 14.0 Hz, 2H), 2.96 (d, J = 12.5 Hz, 2H), 2.05 (d, J = 14.1 Hz, 1H), 1.78 (br, 1H); ¹³C NMR (151 MHz, Chloroform-d) δ 175.43, 172.52, 137.12, 136.49, 129.85, 128.98, 128.51, 128.16, 127.22, 126.88, 70.44, 56.85, 55.57, 52.61, 52.36, 46.14, 45.22, 35.77; HRMS (ESI), m/z calcd. for [C₂₂H₂₆NO₄S, M+H]⁺: 400.1577; found: 400.1579.

Optical Rotation: $[\alpha]^{25}_{D} = -31.8$, (c= 0.50, CHCl₃). The absolute configuration of **4m** was assigned by analogy to **4g**. *trans:cis* = 57:43, 92% ee, 88% ee [HPLC condition: Chiralpak IC-H column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min , wavelength = 254 nm, t_R = 11.5 min (*trans*-major), t_R = 15.8 min (*trans*-minor), t_R = 18.4 min (*cis*-minor), t_R = 29.0 min (*cis*-major)].

Dimethyl (2*S*,4*S*)-2-benzyl-4-(benzylthio)pyrrolidine-2,4-dicarboxylate (4m' minor isomer)

White solid, **M.P.** 65-67 °C, $R_f = 0.2$ (silica gel, petroleum ^{CO₂Me ^{Am' (minor isomer)} White solid, **M.P.** 65-67 °C, $R_f = 0.2$ (silica gel, petroleum ^{ether:EtOAc= 5:1). ¹H NMR (600 MHz, Chloroform-d) δ 7.28 – 7.21 (m, 8H), 7.14 (d, J = 7.0 Hz, 2H), 3.75 (s, 1H), 3.64 (s, 6H), 3.47 (d, J = 11.5 Hz, 1H), 3.08 (d, J = 13.2 Hz, 1H), 3.02 (d, J = 11.5 Hz, 1H), 2.84 (d, J = 13.2 Hz, 1H), 2.61 (q, J = 14.4 Hz, 2H), 1.62 (br, 1H); ¹³C NMR (151 MHz, Chloroform-d) δ 175.55, 172.56, 136.79, 136.39, 129.83, 128.99, 128.48, 128.12, 127.19, 126.88, 70.20, 56.87, 55.16, 52.60, 52.25, 45.58, 44.34, 35.53; HRMS (ESI), m/z calcd. for [C₂₂H₂₆NO₄S, M+H]⁺: 400.1577; found: 400.1575; **Optical Rotation**: [α]²⁵_D = -31.2, (c= 0.43, CHCl₃).}}

Dimethyl (2S,4R)-2-benzyl-4-(phenylthio)pyrrolidine-2,4-dicarboxylate (4n)

 $\begin{array}{c} CO_2 Me \\ PhS_{77}, \underbrace{\begin{subarray}{c} CO_2 Me \\ N \\ H \\ Bn \\ \begin{subarray}{c} CO_2 Me \\ Bn \\ \begin{subarray}{c} H \\ \begin{subarray}{c} CO_2 Me \\ Bn \\ \begin{subarray}{c} H \\ \begin{subarray}{c} CO_2 Me \\ \begin{subarray}{c} H \\ \begin{subarray}{c} H \\ \begin{subarray}{c} CO_2 Me \\ \begin{subarray}{c} H \\ \b$

The general procedure A was followed. White solid, M.P. = 81-83 °C, R_f = 0.2 (silica gel, petroleum ether:EtOAc = 7:1), 91% yield. ¹H NMR (600 MHz, Chloroform-d) δ 7.42 (d, J = 7.4 Hz, 2H), 7.36 (t, J

= 7.2 Hz, 1H), 7.31 (t, J = 7.3 Hz, 2H), 7.25 (t, J = 7.1 Hz, 2H), 7.22 – 7.21 (m, 1H), 7.18 (d, J = 7.3 Hz, 2H), 3.62 (s, 3H), 3.58 (s, 3H), 3.49 (d, J = 11.9 Hz, 1H), 3.14 (d, J = 13.3 Hz, 1H), 3.05 (d, J = 12.0 Hz, 1H), 3.02 – 3.00 (m, 1H), 2.17 (d, J = 14.2 Hz, 1H), 1.85 (br, 1H); ¹³**C NMR** (151 MHz, Chloroform-d) δ 175.41, 172.47, 136.48, 135.61, 131.41, 129.87, 129.36, 128.91, 128.18, 126.90, 70.58, 59.96, 55.46, 52.48, 52.35, 45.81, 45.31; **HRMS** (ESI), m/z calcd. for $[C_{21}H_{24}NO_4S, M+H]^+$: 386.1421; found: 386.1420.

Optical Rotation: $[\alpha]^{25}_{D} = -20.8$, (c= 0.50, CHCl₃). The absolute configuration of **4n** was assigned by analogy to **4g**. *trans:cis* = 60:40, 98% ee, 96% ee [HPLC condition: Chiralpak IF-H column, *n*-hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min , wavelength = 254 nm, t_R = 11.2 min (*trans*-minor), t_R = 11.7 min (*trans*-major), t_R = 24.0 min (*cis*-minor), t_R = 35.2 min (*cis*-major)].

VI. Substrates Scope with α-Tosyloxyacrylate

General procedure B. To a 10 mL tube charged with **3a** (12.30 mg, 0.02 mmol) and Ag_2O (2.30 mg, 0.01 mmol) was added CHCl₃ (1.0 mL). The mixture was stirred at - 20 °C for 5 minutes, then the methyl 2-(tosyloxy)acrylate **5** (25.60 mg, 0.10 mmol) and isocyanoacetate **2g** (13.56 mg, 0.12 mmol) were added. The reaction mixture was stirred at -20 °C until **5** was consumed, and then filtered through a pad of silica gel and washed with ethyl acetate. The solvent was removed under reduced pressure and then the residue was dissolved in MeOH (1.0 mL), NaCNBH₃ (12.56 mg, 0.20 mmol) and HOAc (12.00 mg, 0.20 mmol) were added sequentially at room temperature. The

reaction mixture was stirred at room temperature for 0.5 h, and then concentrated, purified by flash chromatography on silica gel (hexanes/ethyl acetate, 2:1) to afford the product 6a.

VI.I Characterization of Compounds

Dimethyl (2S,4R)-2-methyl-4-(tosyloxy)pyrrolidine-2,4-dicarboxylate (6a)

TsO_{*I*, Me H GaThe general procedure **B** outlined above was followed. Colorless oil, $R_f = 0.2$ (silica gel, petroleum ether:EtOAc = 2:1), 90% yield. ¹H **NMR** (400 MHz, Chloroform-d) δ 7.84 (d, J = 8.2 Hz, 2H), 7.35 (d,}

J = 7.8 Hz, 2H), 3.79 (s, 3H), 3.75 (s, 3H), 3.56 (dd, J = 13.4, 1.5 Hz, 1H), 3.43 (d, J = 13.4 Hz, 0H), 3.04 (d, J = 15.0 Hz, 1H), 2.44 (s, 4H), 2.04 (br, 1H), 1.45 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 175.76, 169.79, 145.00, 134.94, 129.70, 127.70, 93.00, 66.41, 56.87, 53.04, 52.71, 47.27, 25.73, 21.66; HRMS (ESI), m/z calcd. for [C₁₆H₂₁NNaO₇S, M+Na]⁺: 394.0931; found: 394.0912.

Optical Rotation: $[\alpha]^{25}_{D} = +5.76$, (c= 0.50, CHCl₃). The absolute configuration of **6a** was assigned by analogy to **4g**. *trans:cis* = 60:40, 98% ee, 94% ee [HPLC condition: Chiralpak AS-H+AD-H+AD-H column, *n*-hexane/*i*-PrOH = 60:40, flow rate = 0.7 mL/min, wavelength = 210 nm, t_R = 82.8 min (*cis*-major), t_R = 89.0 min (*cis*minor), t_R = 152.9 min (*trans*-minor), t_R = 157.9 min (*trans*-major)].

Peal #	K RetTime [min]	e Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	e Type	Width [min]	Area [mAU∗s]	Height [mAU]	Area %
1	82.785	BB	1. 4113	3. 83549e4	410.04474	38. 1798	1	81.776	BB	1.1220	1.46561e4	180. 84023	13. 0652
2	89.030	BB	1.3359	757.72058	8.09587	0.7543	2	86.536	BB	1.2963	1.46010e4	153.21259	13.0160
3	152.940	BV	1.7565	913. 69861	6.16723	0.9095	3	147.347	BB	1.8987	4.14984e4	259. 57254	36. 9936
4	157.850	VB	3. 1824	6. 04323e4	269.26468	60.1565	4	155. 381	BB	2. 3112	4.14215e4	209. 36278	36. <mark>9</mark> 252

Dimethyl (2S,4R)-2-benzyl-4-(tosyloxy)pyrrolidine-2,4-dicarboxylate (6b)

The general procedure **B** outlined above was followed. White solid, **M.P.** 72-74 ° C, $R_f = 0.2$ (silica gel, petroleum ether:EtOAc = 5:1), 96% yield. ¹**H** NMR (400 MHz, Chloroform-d) δ 7.83 (d, J = 8.3Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 7.23 – 7.21 (m, 3H), 7.08 (dd, J = 7.4, 2.1 Hz, 2H), 3.78 (s, 3H), 3.69 (s, 3H), 3.48 – 3.40 (m, 2H), 3.12 (dd, J = 19.9, 14.1 Hz, 2H), 2.92 (d, J = 13.3 Hz, 1H), 2.57 (d, J = 15.4 Hz, 1H), 2.46 (s, 3H), 2.12 (br, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 174.79, 170.07, 144.93, 135.98, 135.02, 129.71, 129.69, 128.30, 127.70, 127.05, 91.71, 70.80, 56.16, 53.08, 52.46, 45.84, 45.01, 21.70; **HRMS** (ESI), m/z calcd. for [C₂₂H₂₅NNaO₇S, M+Na]⁺: 470.1244; found: 470.1228.

Optical Rotation: $[\alpha]^{25}_{D} = -18.4$, (c= 0.50, CHCl₃). The absolute configuration of **6b** was assigned by analogy to **4g**. *trans:cis* = 60:40, 97% ee, 92% ee [HPLC condition: Chiralpak AS-H+AD-H column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 210 nm, t_R = 20.5 min (*cis*-minor), t_R = 22.3 min (*cis*-major), t_R = 35.5 min (*trans*-major), t_R = 41.0 min (*trans*-minor)].

Dimethyl (2R,4R)-2-phenyl-4-(tosyloxy)pyrrolidine-2,4-dicarboxylate (6c)

TsO_N $\stackrel{CO_2Me}{\stackrel{Ph}{}_{\text{Ph}}}$ The general procedure **B** outlined above was followed. Colorless oil, $R_f = 0.2$ (silica gel, petroleum ether:EtOAc = 5:1), 93% yield. ¹H **NMR** (400 MHz, Chloroform-d) δ 7.70 (d, J = 8.3 Hz, 2H), 7.46 (dd,

J = 7.9, 1.8 Hz, 2H), 7.26 (t, J = 8.0 Hz, 5H), 3.82 (s, 3H), 3.69 (s, 3H), 3.60 – 3.56(m, 2H), 3.46 (d, J = 12.6 Hz, 1H), 2.84 (d, J = 14.7 Hz, 1H), 2.41 (s, 3H); ¹³C **NMR** (101 MHz, Chloroform-d) δ 174.09, 170.42, 144.74, 141.08, 134.98, 129.62, 128.40, 127.77, 127.46, 126.02, 91.51, 72.18, 55.88, 53.13, 53.09, 47.43, 21.63; **HRMS** (ESI), m/z calcd. for [C₂₁H₂₄NO₇S, M+H]⁺: 434.1268; found: 434.1263.

Optical Rotation: $[\alpha]^{25}_{D} = -2.56$, (c= 0.39, CHCl₃). The absolute configuration of **6c** was assigned by analogy to **4g**. *trans:cis* = 69:31, 99% ee, 83% ee [HPLC condition: Chiralpak AD-H+AD-H column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm, t_R = 28.9 min (*cis*-minor), t_R = 32.1 min (*cis*-major), t_R = 43.4 min (*trans*-minor), t_R = 51.6 min (*trans*-major)].

Dimethyl (2*R*,4*S*)-2-phenyl-4-(tosyloxy)pyrrolidine-2,4-dicarboxylate (6c' minor isomer)

7.25 (m, 1H), 3.76 (s, 3H), 3.69 (t, J = 13.4 Hz, 1H), 3.64 (s, 3H), 3.56 (d, J = 14.7 Hz, 1H), 3.42 (d, J = 13.4 Hz, 1H), 2.79 (d, J = 14.7 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (151 MHz, Chloroform-d) δ 173.93, 169.17, 144.92, 141.93, 134.94, 129.64, 128.36, 127.77, 127.67, 126.32, 92.89, 71.81, 56.07, 53.09, 52.99, 48.43, 21.67; HRMS (ESI), m/z calcd. for [C₂₁H₂₃NNaO₇S, M+Na]⁺: 456.1087; found: 456.1090; **Optical Rotation**: [α]²⁵_D = +40.5, (c= 0.60, CHCl₃).

VII. Organocatalytic [3 + 2] Cyclization of 7 and 2a

Dimethyl (4*R*,5*S*)-5-methyl-4-phenyl-1-tosyl-4,5-dihydro-1*H*-imidazole-4,5-dicar boxylate (10)

Procedure: To a 10 mL tube charged with catalyst **8** (12.6 mg, 0.02 mmol) was added Et₂O (2 mL). The mixture was stirred at 0 °C for 5 minutes, then the acrylate **7**⁸ (25.5 mg, 0.1 mmol) and isocyanoacetate **2a** (21.0 mg, 0.12 mmol) were added. The reaction mixture was stirred at 0 °C until **7** was consumed. The solvent was removed under reduced pressure and then purified by flash chromatography on silica gel to afford the product **10**. White solid, 98% yield, **M.P.** 40-42 °C, $R_f = 0.2$ (silica gel, petroleum ether:EtOAc = 2:1). ¹**H NMR** (400 MHz, Chloroform-d) δ 7.92 (s, 1H), 7.69 (dd, J = 6.9, 1.5 Hz, 2H), 7.31 (td, J = 7.6, 7.1, 3.0 Hz, 5H), 7.26 – 7.24 (m, 2H), 3.72 (s, 1H), 3.41 (s, 3H), 2.41 (s, 3H), 1.13 (s, 3H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 170.80, 169.99, 149.50, 144.99, 136.07, 133.96, 129.83, 128.93, 128.54, 127.42, 126.86, 89.38, 72.74, 53.17, 52.45, 21.60, 20.14. **HRMS** (ESI), m/z calcd. for [C₂₁H₂₂N₂NaO₆S, M+Na]⁺: 453.1091; found: 453.1086.

Optical Rotation: $[\alpha]^{25}_{D} = +23.0$, (c= 0.35, CHCl₃). The absolute configuration of **10** was assigned by single crystal **11**. *cis:trans* = 88:12, 90% ee (*cis*) [HPLC condition: Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm, t_R = 31.4 min, t_R = 38.3 min].

VIII. Reduction of Compound 10

Dimethyl (4R,5S)-5-methyl-4-phenyl-1-tosylimidazolidine-4,5-dicarboxylate (11)

To a solution of amine **10** (43.0 mg, 0.1 mmol) in 2 mL MeOH was added 10% Pd/C (4.3 mg), the reaction mixture was stirred under a hydrogen atmosphere for 12 h at ambient temperature, and then filtered through celite washing with MeOH (3 x 5 mL). The filtrate was concentrated and purified by flash chromatography to yield 43.2 mg of **11** in 99% yield. White solid, **M.P.** 122-123 °C, R_f = 0.4 (silica gel, petroleum ether:EtOAc = 2:1). ¹H NMR (400 MHz, Chloroform-d) δ 7.60 (d, *J* = 8.4 Hz, 2H), 7.48 (dd, *J* = 7.0, 2.9 Hz, 2H), 7.31 – 7.30 (m, 3H), 7.21 (d, *J* = 8.0 Hz, 2H), 4.84 (t, *J* = 7.8 Hz, 1H), 4.75 (t, *J* = 7.1 Hz, 1H), 3.70 (m, 4H), 3.60 (s, 3H), 2.38 (s, 3H), 1.46 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 171.96, 170.52, 143.52, 137.56,

135.81, 129.41, 128.43, 128.17, 127.54, 127.03, 79.18, 71.64, 65.78, 53.05, 52.71, 21.47, 20.26. **HRMS** (ESI), m/z calcd. for $[C_{21}H_{24}N_2NaO_6S, M+Na]^+$: 455.1247; found: 455.1246.

Optical Rotation: $[\alpha]^{25}_{D} = -48.5$, (c= 0.38, CHCl₃), 98% ee (After recrystallization) [HPLC condition: Chiralpak AD-H column, n-hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm, t_R = 31.8 min, t_R = 50.7 min].

IX. CD Spectra

Pyrrolidine **6a** (*trans*) showed different behaviors in the specific rotation. Thus the CD spectra of **6a** (*trans*) and **6b** (*trans*) were recorded, which showed **6a** (*trans*) and **6b** (*trans*) have the same absolute configuration (Figure 1).

Figure 1. CD spectra of 6a and 6b

X. X-ray Crystallographic Analysis and Determination of Configuration of the Products

The absolute configuration of 4g (2*S*,4*R*) was assigned by X-ray crystallographic analysis of a single crystal 4g (Figure 2). The crystal was prepared from the solution of 4g in 2-propanol/hexane at ambient temperature. The absolute configuration of compound 4g (2*S*,4*R*) was deduced. The configurations of 4a-4n were assigned by analogy.

Figure 2. X-ray structure of 4g

Identification code	CCDC 1538775
Empirical formula	C ₁₃ H ₂₃ NO ₄ S
Formula weight	289.38
Temperature/K	293.15
Crystal system	orthorhombic
Space group	P212121
a/Å	6.1598(3)
b/Å	8.1330(4)
c/Å	31.1006(15)
α /°	90
β /°	90
γ /°	90
Volume/Å3	1558.07(13)
Z	4
ρ calcg/cm3	1.234
μ /mm-1	0.217
F(000)	624.0
Crystal size/mm3	$0.35 \times 0.25 \times 0.25$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.368 to 52.744
Index ranges	$-7 \le h \le 7, -10 \le k \le 10, -38 \le l \le 38$
Reflections collected	7147
Independent reflections	3140 [Rint = 0.0281, Rsigma = 0.0458]
Data/restraints/parameters	3140/0/182
Goodness-of-fit on F2	1.058
Final R indexes [I>= 2σ (I)]	R1 = 0.0466, wR2 = 0.0947
Final R indexes [all data]	R1 = 0.0588, wR2 = 0.1025
Largest diff. peak/hole / e Å-3	0.17/-0.18
Flack parameter	0.00(5)

Table 1. Crystal data and structure refinement for CCDC 1538775

The absolute configuration of 11 (4R, 5S) was assigned by X-ray crystallographic

analysis of a single crystal 11 (Figure 3). The crystal was prepared from the solution of 11 in ethyl acetate/hexane at ambient temperature. The absolute configuration of 10 (4R,5S) was deduced.

Figure 3. X-ray structure of 11

Identification code	CCDC 1538777
Empirical formula	$C_{21}H_{24}N_2O_6S$
Formula weight	432.48
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	7.9925(3)
b/Å	13.9906(4)
c/Å	19.0487(6)
α /°	90
β /°	90
γ /°	90
Volume/Å3	2130.03(12)
Ζ	4
ρ calcg/cm3	1.349
μ /mm-1	0.192
F(000)	912.0

 $? \times ? \times ?$

Crystal size/mm3

Table 2. Crystal data and structure refinement for CCDC 1330/7	structure refinement for CCDC 1538777
---	---------------------------------------

32

Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.654 to 52.744
Index ranges	$-9 \le h \le 9, -17 \le k \le 17, -23 \le l \le 23$
Reflections collected	29209
Independent reflections	4342 [Rint = 0.0357, Rsigma = 0.0232]
Data/restraints/parameters	4342/0/279
Goodness-of-fit on F2	1.113
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0389, wR2 = 0.0939
Final R indexes [all data]	R1 = 0.0451, $wR2 = 0.0980$
Largest diff. peak/hole / e Å-3	0.25/-0.47
Flack parameter	0.00(2)

XI. References

- a) Y. Huang, L. Yang, P. Shao and Y. Zhao, *Chem. Sci.*, 2013, 4, 3275; b) P.-L.
 Shao, J.-Y. Liao, Y. A. Ho and Y. Zhao, *Angew. Chem. Int. Ed.*, 2014, 53, 5435.
- H. Y. Bae, S. Some, J. H. Lee, J.-Y. Kim, M. J. Song, S. Lee, Y. J. Zhang and C. E. Song, *Adv. Synth. Catal.*, 2011, 353, 3196.
- a) B. Moon, S. Han and D. Kim, *Org. Lett.*, 2005, 7, 3359; b) W. Buckel, A. J. Pierik, S. Plett, A. Alhapel, D. Suarez, S. Tu and B. T. Golding, *Eur. J. Inorg. Chem.*, 2006, 3622.
- 4. J.-L. Boucher and L. Stella, Tetrahedron, 1988, 44, 3595.
- a) S. Iriuchijima, K. Tanokuchi, K. Tadokoro and G. Tsuchihashi, *Agr. Bioi. Chem.*, 1976, 40, 1031; b) S. B. Boga, A.-B. Alhassan, A. B. Cooper, N.-Y. Shih and R. J. Doll, *Tetrahedron Letters*, 2009, 50, 5315.
- R. Herrera, H. A. Jiménez-Vázquez, A. Modelli, D. Jones, B. C. Söderberg and J. Tamariz, *Eur. J. Org. Chem.*, 2001, 4657.
- 7. T. Buyck, Q. Wang and J. Zhu, Angew. Chem. Int. Ed., 2013, 52, 12714.
- P. M. T. Ferreira, L. S. Monteiro, G. Pereira, L. Ribeiro, J. Sacramento and L. Silva, *Eur. J. Org. Chem.*, 2007, 5934.

XII. NMR Spectra of the Products

