A Practical Approach for the Synthesis of Oxindole and Isatin Derivatives by Pd-Catalyzed Intramolecular

Amination

Yubo Pang,[†] Mingyu Guan,[†] Runsheng Zeng^{*†} and Yingsheng Zhao^{*†}

*Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China

Supporting information

Table of Contents

1. Reagents	S2
2. Instruments	S2
3. Experimental section	S2
4. Preparation of glycine dimethylamide	S2
5. Preparation of various phenylacetamide	S3
6. Screening of reaction conditions	S11
7. Palladium-Catalyzed intramolecular γ -C(sp ²)–H amination	S12
8. Synthesis of the isatin derivatives	S19
9. Gram scale intramolecular γ -C(sp2)–H amination reaction	S20
10. The transformation of directing group	S21
11. References	S22

1. Reagents: Unless otherwise noted, all reagents were purchased from commercial suppliers and usedwithout further purification. Column chromatography purifications were performed using 300–400 mesh silica gel.

2. Instruments: NMR spectra were recorded on Varian Inova–400 MHz, Inova–300 MHz, Bruker DRX–400 or Bruker DRX–500 instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: s = singlet, d = doublet, q = quartet, brs = broad singlet, m = multiplet. HRMS analyses were carried out using a Bruker micrOTOF–Q instrument or a TOF–MS instrument.

3. Experimental section: Unless otherwide noted, all experiments were performed under air atmosphere. No reaction required anhydrous condition. All the glasswares used in the experiments were dried by vacuum oven.

4. Preparation of glycine dimethylamide

4.1 Preparation of N-Boc-glycine dimethylamide

A mixture of N-Boc-Gly-OH (50 mmol, 1.0 equiv), dimethylamine (55 mmol, 1.1 equiv), EDCI (55 mmol, 1.1 equiv), HOBt (55 mmol, 1.1 equiv), DIPEA (150 mmol, 3.0 equiv) and DMAP (2.5 mmol, 5 mol%) in DMF (0.2 M) was stirred at room temperature overnight. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with saturated ammonium chloride, sodium bicarbonate and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give N-Boc-glycine dimethylamide as a white solid in 87% yield.

4.2 Preparation of 2-Amino Acetyl dimethylamide hydrochloride

$$^{t}Bu \xrightarrow{O} H \xrightarrow{NMe_2} HCI (37\%) \xrightarrow{HCI (37\%)} HCI H_2N \xrightarrow{O} NMe_2$$

 $0 \circ C, 2 h$

N-Boc-glycine dimethylamide (4.08 g, 20 mmol) was dissolved in 1,4-dioxane (32 mL) and Concentrated hydrochloric acid (16 mL) was added. The reaction mixture was stirring at ice bath over 2 h. The solvent was concentrated under vacuum to give 2-amino acetic dimethylamide, hydrochloride as a white solid in 95% yield. The crude product was used in the next step without any purification.

N-Boc-glycine dimethylamide was obtained as a while solid (8.91g, 87%). ¹H NMR (400 MHz, CDCl₃) δ 5.51 (brs, 1H), 3.92 (d, J = 8.4 Hz, 2H), 2.96 (s, 3H), 2.94 (s, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 156.1, 79.7, 42.5, 36.0, 35.8, 28.6; HRMS Calcd for C₉H₁₈N₂O₃ [M+H⁺]: 203.1396, Found: 203.1380.

2-amino acetic dimethylamide, hydrochloride was obtained as a while solid (2.65 g, 95%). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (brs, 3H), 4.13 (d, *J* = 4.4 Hz, 2H), 3.02 (s, 3H), 2.95 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 40.9, 36.7, 36.1.

5. General procedures for the preparation of various phenylacetamide

5.1 preparation of various carboxylic acid substrates

4- methyl phenylacetic acid (10 mmol, 1.0 equiv), amine (11 mmol, 1.1 equiv), EDCI (11 mmol, 1.1 equiv), HOBt (11 mmol, 1.1 equiv), DIPEA (30 mmol, 3.0 equiv) and DMAP (0.5 mmol, 5 mol%) in DMF (0.2 M) was stirred at room temperature overnight. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with saturated ammonium chloride, sodium bicarbonate and brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give **2c** as a white solid in 80% yield.

2a was obtained as a while solid (1.97g, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.32 – 7.25 (m, 3H), 6.64 (brs, 1H), 4.02 (d, *J* = 3.6 Hz, 2H), 3.62 (s, 2H), 2.96 (s, 3H), 2.94 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 167.3, 134.2, 128.9, 128.5, 126.9, 43.1, 40.9, 35.4, 35.0; HRMS Calcd for C₁₂H₁₆N₂O₂ [M+Na⁺]: 243.1109, Found: 243.1114.

2b was obtained as a while solid (2.03 g, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 7.6 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 2H), 6.66 (brs, 1H), 3.94 (d, *J* = 4.0 Hz, 2H), 3.71 (s, 3H), 3.48 (s, 2H), 2.88 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 167.8, 158.7, 130.3, 126.7, 114.2, 55.1, 42.5, 41.3, 35.8, 35.4; HRMS Calcd for C₁₃H₁₈N₂O₃ [M+H⁺]: 251.1396, Found: 251.1399.

2c was obtained as a while solid (1.88 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.11 – 7.05 (m, 4H), 6.73 (brs, 1H), 3.92 (d, *J* = 4.0 Hz, 2H), 3.49 (s, 2H), 2.85 (s, 6H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 167.78, 136.6, 131.6, 129.4, 129.1, 42.9, 41.2, 35.7, 35.3, 21.0; HRMS Calcd for C₁₃H₁₈N₂O₂ [M+H⁺]: 235.1438, Found: 235.1447.

2d was obtained as a while solid (1.82 g, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* =8.0 Hz, 2H), 6.74 (brs, 1H), 4.02 (d, *J* = 4.0 Hz, 2H), 3.65 (s, 2H), 2.96 (s, 3H), 2.95 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 167.8, 139.0, 129.7, 127.4 (q, *J*_{C-F}= 225.7 Hz), 125.7 (q, *J*_{C-F} = 3.4 Hz), 43.1, 41.5, 35.9, 35.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.53; HRMS Calcd for C₁₃H₁₅F₃N₂O₂ [M+H⁺]: 289.1164, Found: 289.1163.

2e was obtained as a while solid (2.36 g, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 6.63 (brs, 1H), 4.02 (d, J = 4.0 Hz, 2H), 3.56 (s, 2H), 2.97 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 167.8, 133.8, 132.0, 131.1, 121.4, 42.9, 41.5, 36.0, 35.7; HRMS Calcd for C₁₂H₁₅BrN₂O₂ [M+Na⁺]: 321.0215, Found: 321.0205.

2f was obtained as a while solid (2.22 g, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.0 Hz, 4H), 7.44 – 7.41 (m, 2H), 7.39 – 7.30 (m, 3H), 6.66 (brs, 1H), 4.04 (d, *J* = 4.0 Hz, 2H), 3.65 (s, 2H), 2.96 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 167.3, 140.2, 139.7, 133.2, 129.3, 128.3, 127.2, 126.8, 126.6, 42.7, 41.0, 35.4, 35.1; HRMS Calcd for C18H20N2O2 [M+H⁺]: 297.1603, Found: 297.1624.

2g was obtained as a while solid (2.71 g, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.81 – 7.79 (m, 2H), 7.48 – 7.42 (m, 4H), 6.67 (brs, 1H), 4.03 (d, *J* = 4.0 Hz, 2H), 3.65 (s, 2H), 2.97 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 167.9, 167.4, 134.9, 134.6, 131.9, 131.0, 130.2, 127.0, 124.0, 43.4, 41.6, 36.1, 35.8; HRMS Calcd for C₂₀H₂₀N₃O₄ [M+H⁺]: 366.1454, Found: 366.1462.

2h was obtained as a while solid (2.25 g, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 7.2 Hz, 1H), 7.09 – 7.05 (m, 1H), 6.66 (brs, 1H), 4.01 (d, *J* = 4.0 Hz, 2H), 3.53 (s, 2H), 3.02 (s, 3H), 3.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 167.9, 138.4, 137.2, 136.6, 130.7, 128.8, 94.9, 43.0, 41.7, 36.1, 35.8; HRMS Calcd for C₁₂H₁₅IN₂O₂ [M+H⁺]: 347.0256, Found: 347.0250.

2i was obtained as a while solid (1.96 g, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.52 – 7.45 (m, 2H), 7.45 – 7.37 (m, 1H), 6.91 (brs, 1H), 4.02 (d, *J* = 4.0 Hz, 2H), 3.63 (s, 2H), 2.93 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 167.9, 136.2, 132.4, 130.2 (q, *J*_{C-F} = 32.0 Hz), 128.6, 125.6 (q, *J*_{C-F} = 3.3 Hz), 123.8 (q, *J*_{C-F} = 270.7 Hz), 123.3 (q, *J*_{C-F} = 3.0 Hz), 42.1, 41.0, 35.5, 35.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.61; HRMS Calcd for C1₃H₁₅F₃N₂O₂ [M+H⁺]: 289.1164, Found: 289.1160.

2j was obtained as a while solid (2.36 g, 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.19 – 7.11 (m, 2H), 6.93 (brs, 1H), 3.97 (d, *J* = 4.0 Hz, 2H), 3.51 (s, 2H), 2.89 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 167.8, 137.2, 132.2, 130.2, 130.1, 127.9, 122.6, 42.7, 41.4, 35.9, 35.5; HRMS Calcd for C1₂H1₅BrN₂O₂ [M+H⁺]: 299.0395, Found: 299.0384.

2k was obtained as a while solid (2.01g, 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 1H), 7.25 (d, *J* = 6.8 Hz, 2H), 7.18 (d, *J* = 6.8 Hz, 1H), 6.80 (brs, 1H), 4.02 (d, *J* = 4.0 Hz, 2H), 3.57 (s, 2H), 2.95 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 167.9, 136.9, 134.7, 130.2, 129.6, 127.6, 127.6, 43.1, 41.6, 36.1, 35.7; HRMS Calcd for C₁₂H₁₅ClN₂O₂ [M+H⁺]: 255.0900, Found: 255.0880.

21 was obtained as a while solid (2.10 g, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.21 (m, 2H), 6.97 (brs, 1H), 6.95 – 6.86 (m, 2H), 3.97 (d, *J* = 4.0 Hz, 2H), 3.88 (s, 3H), 3.61 (s, 2H), 2.93 (s, 3H), 2.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 167.9, 157.1, 131.1, 128.8, 123.5, 120.9, 110.6, 55.5, 41.5, 38.5, 35.9, 35.5; HRMS Calcd for C₁₃H₁₈N₂O₃ [M+H⁺]: 251.1396, Found: 251.1393.

2m was obtained as a while solid (2.43 g, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.0 Hz, 1H), 7.09 (d, J = 7.6 Hz,1H), 7.05 – 7.01 (m, 1H), 6.90-6.86 (m, 1H), 6.38 (brs, 1H), 3.75 (d, J = 4.0 Hz, 2H), 3.49 (s, 2H), 2.67 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 167.7, 134.7, 133.1, 131.7, 129.2, 128.0, 125.0, 43.7, 41.5, 35.9, 35.6; HRMS Calcd for C₁₂H₁₅BrN₂O₂ [M+Na⁺]: 321.0215.; Found: 321.0212.

2n was obtained as a while solid (2.32g, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* =8.4 Hz,1H), 7.41 – 7.28 (m, 2H), 6.99 – 6.95 (m, 1H), 6.61 (brs, 1H), 4.02 (d, *J* =4.0 Hz, 2H), 3.77 (s, 2H), 2.95 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 167.8, 139.9, 138.2, 130.9, 129.3, 128.9, 101.3, 48.4, 41.6, 36.0, 35.6; HRMS Calcd for C₁₂H₁₅N₂O₂ [M+H⁺]: 347.0256, Found: 347.0257.

20 was obtained as a while solid (1.92 g, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 4H), 6.46 (brs, 1H), 3.98 (d, *J* = 3.6 Hz, 2H), 3.61 (s, 2H), 2.92 (s, 3H), 2.91 (s, 3H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 167.8, 137.1, 133.1, 130.8, 130.5, 127.9, 126.7, 41.6, 41.4, 35.9, 35.6, 19.6; HRMS Calcd for C₁₃H₁₈N₂O₂ [M+H⁺]: 235.1438, Found: 235.1449.

2p was obtained as a while solid (1.64g, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 7.6 Hz, 1H), 7.09 – 7.00 (m, 2H), 6.50 (brs, 1H), 4.05 (d, *J* = 4.0 Hz, 2H), 3.64 (s, 2H), 3.00 (s, 3H), 2.99 (s, 3H), 2.35 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 167.3, 131.1, 129.9, 126.8, 40.7, 35.4, 35.0, 20.6, 19.0; HRMS Calcd for C₁₄H₂₀N₂O₂ [M+H⁺]: 249.1603, Found: 249.1609.

2q was obtained as a while solid (2.02 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.27 (d, *J* = 8.4 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 1H), 6.80 (brs, 1H), 4.01 (d, *J* = 4.0 Hz, 2H), 3.68 (s, 2H), 2.94 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 167.7, 135.1, 133.8, 132.3, 131.6, 129.4, 127.5, 41.5, 40.4, 35.9, 35.5; HRMS Calcd for C₁₂H₁₄Cl₂N₂O₂ [M+H⁺]: 289.0511, Found: 289.0513.

2r was obtained as a while solid (1.96 g, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.39 (m, 1H), 7.38 (s, 1 H), 7.14 (d, *J* = 8.4 Hz, 1H), 6.74 (brs, 1H), 4.02 (d, *J* = 4.0 Hz, 2H), 3.54 (s, 2H), 2.97 (s, 3H), 2.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 167.8, 135.0, 132.8, 131.5, 131.4, 130.8, 128.8, 42.5, 41.6, 36.0, 35.7; HRMS Calcd for C₁₂H₁₄Cl₂N₂O₂ [M+H⁺]: 289.0511.; Found: 289.0510.

2s was obtained as a while solid (1.77 g, 63%). ¹H NMR (400 MHz, CDCl₃) δ 6.83 – 6.82 (m, 2H), 6.80 (s, 1H), 6.63 (s, 1H), 4.00 (d, *J* = 4.0 Hz, 2H), 3.87 (s, 3H), 3.85 (s, 3H), 3.54 (s, 2H), 2.95 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 167.7, 149.0, 148.1, 127.1, 121.4, 112.3, 111.3, 55.8, 55.7, 42.9, 41.3, 35.8, 35.4; HRMS Calcd for C₁₄H₂₀N₂O₄ [M+H⁺]: 281.1501, Found: 281.1504.

2t was obtained as a while solid (1.95 g, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.74 (s, 1H), 7.50 – 7.44 (m, 2H), 7.40 (d, *J* = 4.4 Hz, 2H), 6.67 (brs, 1H), 4.01 (s, 2H), 3.88 (s, 2H), 2.78 (s, 3H), 2.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 167.6, 133.9, 132.1, 131.1, 128.7, 128.2, 128.1, 126.5, 125.9, 125.6, 123.8, 41.3, 41.2 35.7, 35.3.; HRMS Calcd for C₁₆H₁₈N₂O₂ [M+H⁺]: 271.1447, Found: 271.1450.

4g was obtained as a while solid (2.56 g, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.56 (brs, 1H), 4.06 – 3.90 (m, 2H), 3.62 – 3.57 (m, 1H), 2.94 (s, 3H), 2.93 (s, 3H), 2.43 (d, *J* = 7.2 Hz, 2H), 1.98 – 1.72 (m, 2H), 1.51 (d, *J* = 7.2 Hz, 3H), 0.88 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 168.0, 140.7, 138.3, 129.6, 127.3, 46.6, 45.1, 41.5, 35.9, 35.6, 30.2, 22.5, 18.5; HRMS Calcd for C₁₇H₂₆N₂O₂ [M+Na⁺]: 313.1892, Found: 313.1882.

4h was obtained as a while solid (2.11 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 7.2 Hz, 2H),7.40 – 7.36 (m, 2H), 7.31 – 7.27 (m, 1H), 6.45 (brs, 1H), 4.00 (d, J = 4.0 Hz, 2H), 2.97 (s, 3H), 2.96 (s, 3H), 1.64 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 177.3, 168.1, 144.9, 128.7, 127.1, 126.3, 46.9, 41.6, 35.9, 35.6, 27.0; HRMS Calcd for C₁₄H₂₀N₂O₂ [M+H⁺]: 249.1603, Found: 249.1612.

4i was obtained as a while solid (1.94 g, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.45 (m, 1H), 7.39 – 7.30 (m, 2H), 7.26 – 7.21 (m, 2H), 6.47 (brs, 1H), 4.08 – 3.94 (m, 2H), 2.95 (s, 3H), 2.92 (s, 3H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 167.5, 167.4, 133.8, 133.4, 130.3, 130.0, 129.5, 127.3, 72.3, 41.3, 35.9, 35.6, 20.9; HRMS Calcd for $C_{14}H_{17}ClN_2O_4$ [M+H⁺]: 313.0955, Found: 313.0949.

4j was obtained as a while solid (1.86 g, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.2 Hz, 2H), 7.38 (s, 1H), 7.29 (d, *J* = 7.2 Hz, 3H), 6.07 (brs, 1H), 3.98 (d, *J* = 1.0 Hz, 2H), 2.92 (s, 3H), 2.88 (s, 3H), 2.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 168.3, 167.5, 135.5, 128.9, 128.7, 127.4, 75.4, 41.1, 35.8, 35.5, 20.9; HRMS Calcd for C₁₄H₁₈N₂O₄ [M+H⁺]: 279.1345, Found: 279.1347.

4k was obtained as a while solid (2.18 g, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.30 (m, 2H), 7.29 – 7.23 (m, 2H), 6.41 (brs, 1H), 3.94 (d, *J* = 4.0 Hz, 2H), 2.93 (s, 6H), 2.87 – 2.77 (m, 2H), 2.52 – 2.39 (m, 2H), 2.15 – 2.04 (m, 1H), 1.95 – 1.79 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 167.4, 142.4, 132.1, 128.3, 127.2, 52.0, 41.0, 35.3, 34.9, 31.8, 16.0; HRMS Calcd for C₁₅H₁₉ClN₂O₂ [M+H⁺]: 295.1213, Found: 295.1202.

5.2 Preparation of various directing groups protected 4-Methylphenylacetic acid

5.2.1 N-Boc-amino acid

Amino acid (20 mmol, 1.0 equiv) and Na₂CO₃ (40 mmol, 2.0 equiv) were dissolved in 1,4-dioxane (60 mL). Then, di-tert-butyl-dicarbonate (30 mmol, 1.5 equiv) was added. The resultant solution was allowed to react at 0 $^{\circ}$ C for 2 h and at room temperature overnight. Then, 1 M HCl (15 mL) was added dropwise to adjust pH value of the solution to about 5 at 0 $^{\circ}$ C. The solution was extracted with EtOAc (3 × 40 mL) and CH₂Cl₂ (3 × 40 mL), respectively. The organic phases were mixed and dried with anhydrous Na₂SO₄. The reaction afforded N-Boc-amino acid. Oil-like solid, yield 96%.

5.2.2 N-Boc-Amino dimethylamide

N-Boc-Amino acid (15 mmol, 1.0 equiv), amine (16.5 mmol, 1.1 equiv), EDCI (16.5 mmol, 1.1 equiv), HOBt (16.5 mmol, 1.1 equiv), DIPEA (30 mmol, 2.0 equiv), and DMAP (0.75 mmol, 5 mol%) in DMF (0.2 M) was stirred at room temperature overnight. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with saturated ammonium chloride, sodium bicarbonate and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give N-Boc-Amino amide as a white solid in 85% yield.

5.2.3 2-Amino Dimethylamide Hydrochloride

N-Boc-Amino amide (12 mmol, 1.0 equiv) was dissolved in 1,4-dioxane (19.2 mL) and Concentrated hydrochloric acid (9.6 mL) was added. The reaction mixture was Stirring at ice bath over 2 h. The solvent was concentrated under vacuum to give 2-amino amide hydrochloride as a white solid in 90% yield.

5.2.4 2-(4-MethylPhenylAcetAmido) Dimethylamide

4-Mephenylacetic acid (10 mmol, 1.0 equiv), 2-amino dimethylamide hydrochloride (11 mmol, 1.1 equiv), EDCI (11 mmol, 1.1 equiv), HOBt (11 mmol, 1.1 equiv), DIPEA (30 mmol, 3.0 equiv), and DMAP (0.5 mmol, 5 mol%) in DMF (0.2 M) was stirred at room temperature overnight. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with saturated ammonium chloride, sodium bicarbonate and brine, dried over anhydrous Na₂SO₄, and

concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to various amide as a white solid in 78% yield.

4a was obtained as a white solid (1.94 g, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.07 (m, 4H), 6.80 (d, *J* =6.8 Hz, 1H), 4.87-4.80 (m, 1H), 3.47 (s, 2H), 2.99 (s, 3H), 2.88 (s, 3H), 2.28 (s, 3H), 1.23 (d, *J* =6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 170.5, 136.7, 131.7, 129.5, 129.2, 45.2, 43.1, 36.9, 35.7, 21.1, 18.5; HRMS Calcd for $C_{14}H_{20}N_2O_2$ [M+H⁺]: 249.1603, Found: 249.1600.

4b was obtained as a white solid (2.16 g, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.07 (m, 4H), 6.75 (d, *J* =7.6 Hz, 1H), 4.87 – 4.82 (m, 1H), 3.48 (s, 2H), 3.01 (s, 3H), 2.88 (s, 3H), 2.27 (s, 3H), 1.75 – 1.67 (m, 1H), 1.55 – 1.43 (m, 1H), 0.79 (t, *J* =7.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 170.9, 136.6, 131.9, 129.5, 129.1, 49.9, 43.1, 37.1, 35.6, 25.7, 21.0, 9.4; HRMS Calcd for C₁₅H₂₂N₂O₂ [M+Na⁺]: 285.1579, Found: 285.1565.

4c was obtained as a white solid (2.07 g, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.10 (m, 4H), 6.51 (d, J = 8.4 Hz, 1H), 4.80 – 4.76 (m, 1H), 3.51 (s, 2H), 3.07 (s, 3H), 2.91 (s, 3H), 2.30 (s, 3H), 1.95 – 1.87 (m, 1H), 0.87 (d, J = 6.8 Hz, 3H), 0.77 (d, J = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 171.2, 136.8, 131.9, 129.6, 129.3, 53.5, 43.3, 37.5, 35.7, 31.6, 21.2, 19.6, 17.6; HRMS Calcd for C₁₆H₂₄N₂O₂ [M+H⁺]: 277.1916, Found: 277.1913.

4d was obtained as a white solid (1.98 g, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.08 (m, 4H), 6.70 (d, J = 8.4 Hz, 1H), 5.00 – 4.95 (m, 1H), 3.48 (s, 2H), 3.05 (s, 3H), 2.89 (s, 3H), 2.28 (s, 3H), 1.59 – 1.50 (m, 1H), 1.47 – 1.33 (m, 2H), 0.91 (d, J = 6.4 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 171.0, 136.7, 131.9, 129.5, 129.2, 47.3, 43.0, 42.3, 37.1, 35.8, 24.7, 23.4, 22.0, 21.1; HRMS Calcd for C₁₇H₂₆N₂O₂ [M+H⁺]: 291.2073, Found: 291.2063.

4e was obtained as a white solid (1.94 g, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.08 (m, 4H), 6.56 (d, J = 8.8 Hz, 1H), 4.82 – 4.78 (m, 1H), 3.50 (s, 2H), 3.08 (s, 3H), 2.90 (s, 3H), 2.29 (s, 3H), 1.74

- 1.63 (m, 1H), 1.44 - 1.34 (m, 1H), 1.04 - 0.92 (m, 1H), 0.84 (d, J = 6.8 Hz, 3H), 0.79 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 171.2, 136.7, 131.9, 129.5, 129.2, 52.8, 43.1, 38.0, 37.6, 35.7, 24.3, 21.1, 15.6, 11.2; HRMS Calcd for C₁₇H₂₆N₂O₂ [M+H⁺]: 291.2073, Found: 291.2063.

4f was obtained as a white solid (2.02 g, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.06 (m, 4H), 6.37 (d, *J* = 9.2 Hz, 1H), 4.82-4.78 (m, 1H), 3.57 – 3.46 (m, 2H), 3.08 (s, 3H), 2.92 (s, 3H), 2.31 (s, 3H), 1.72 – 1.53 (m, 6H), 1.19 – 0.97 (m, 4H), 0.91 – 0.81 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 171.2, 136.8, 132.0, 129.6, 129.3, 53.1, 43.1, 41.3, 37.6, 35.7, 29.9, 28.2, 26.2, 26.1, 26.0, 21.1; HRMS Calcd for C₁₉H₂₈N₂O₂ [M+H⁺]: 317.2229, Found: 317.2219.

6. Screening of reaction conditions of intramolecular δ -C(sp2)–H amination

Me 2c NMe ₂	Pd(OAc) ₂ , Oxidant solvent, additive temperature, Air, 24 h	Sc N	2O ✓ NMe₂
------------------------	---	------	-----------------

Table 1. Screening o	f reaction	conditions ^{<i>a</i>}
----------------------	------------	---------------------------------------

entry	oxidant	additive	temperature	solvent	yeild
1	PhI(OAc) ₂	PivOH	80 °C	DCE	67%
2	PhI(OAc) ₂	PivOH	80 °C	THF	22%
3	PhI(OAc) ₂	PivOH	80 °C	HFIP	35%
4	PhI(OAc) ₂	PivOH	80 °C	1,4-dioxiane	45%
5	PhI(OAc) ₂	PivOH	80 °C	Ac2O	17%
6	PhI(OAc) ₂	PivOH	80 °C	toluene	70%
7	PhI(OAc) ₂	-	80 °C	toluene	83%
8	PhI(OAc) ₂	-	60 °C	toluene	91%
9	PhI(OAc) ₂	-	25 °C	toluene	53%
10^{b}	PhI(OAc) ₂	-	60 °C	toluene	-
11	$K_2S_2O_8$	-	60 °C	toluene	-
12	NFSI	-	60 °C	toluene	-
13	DTBP	-	60 °C	toluene	-
14	NaIO ₄	-	60 °C	toluene	-

15 $Cu(OAc)_2$ - 60 °C toluene -

^{*a*}Reaction conditions: **2c** (0.1 mmol), Pd(OAc)₂ (5 mol%), PhI(OAc)₂ (1.5 equiv), in solvent (0.5 mL),60 °C, 24 h. Yield was based on GC using tridecane as the internal standard. ^{*b*}No Pd(OAc)₂.

7. Palladium-catalyzed intramolecular γ-C(sp2)–H amination

A mixture of acid derivatives (0.2 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.2 mg, 0.05 equiv), $PhI(OAc)_2$ (96.6 mg, 1.5 equiv) and toluene (1 mL) in a 25 mL glass vial (under air atmosphere, sealed with PTFE cap) was heated at 60 °C for 24 hours (36 hours). The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the cyclized product.

3a was obtained as a while solid (37.5 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 7.04-7.00 (m, 1H), 6.80 (d, *J* = 7.6 Hz, 1H), 4.51 (s, 2H), 3.59 (s, 2H), 3.11 (s, 3H), 2.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 166.2, 144.5, 128.0, 124.5, 124.3, 122.6, 109.0, 41.9, 36.7, 35.9, 35.7; HRMS Calcd for C₁₂H₁₄N₂O₂ [M+H⁺]: 219.1134, Found: 219.1123.

3b was obtained as a white solid (45.3 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.4 Hz, 1H), 6.53 (d, *J* = 8.0 Hz, 1H), 6.42 (s, 1H), 4.49 (s, 2H), 3.79 (s, 3H), 3.53 (s, 2H), 3.11 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 166.2, 160.2, 145.8, 125.1, 116.3, 106.8, 97.2, 55.8, 42.1, 36.9, 36.1, 35.3; HRMS Calcd for C₁₃H₁₆N₂O₃ [M+H⁺]: 249.1239, Found: 249.1242.

3c was obtained as a white solid (38.7 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 7.6 Hz, 1H), 6.63 (s, 1H), 4.50 (s, 2H), 3.55 (s, 2H), 3.12 (s, 3H), 2.98 (s, 3H), 2.34 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 166.4, 144.7, 138.2, 124.3, 123.4, 121.4, 109.9, 42.0, 36.9, 36.1, 35.6, 22.0; HRMS Calcd for C₁₃H₁₆N₂O₂ [M+H⁺]: 233.1290, Found: 233.1297.

3d was obtained as a white solid (30.9 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (dd, J = 17.60, 9.6 Hz, 2H), 6.96 (s, 1H), 4.53 (s, 2H), 3.64 (s, 2H), 3.14 (s, 3H), 2.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 165.5, 145.3, 130.6 (q, $J_{C-F} = 32.3$ Hz), 128.4, 124.8, 124.2 (q, $J_{C-F} = 243.0$ Hz), 119.8 (q, $J_{C-F} = 4.0$ Hz), 105.7 (q, $J_{C-F} = 3.7$ Hz), 41.8, 36.7, 36.1, 35.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.22; HRMS Calcd for C₁₃H₁₃F₃N₂O₂ [M+H⁺]: 287.1007, Found: 287.0998.

3e was obtained as a white solid (37.3 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 4.50 (s, 2H), 3.60 (s, 2H), 3.11 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 165.9, 143.8, 131.0, 127.8, 126.4, 115.4, 110.6, 42.0, 36.8, 36.1, 35.7; HRMS Calcd for C₁₃H₁₃BrN₂O₂ [M+H⁺]: 297.0239, Found: 297.0225.

3f was obtained as a white solid (45.8 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 6.8 Hz, 2H), 7.44 – 7.41 (m, 2H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 6.99 (s, 1H), 4.56 (s, 2H), 3.63 (s, 2H), 3.13 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 166.1, 145.2, 141.7, 141.4, 128.9, 127.6, 127.5, 124.8, 123.5, 121.8, 108.0, 42.0, 36.8, 36.1, 35.6; HRMS Calcd for C₁₈H₁₈N₂O₂ [M+H⁺]: 295.1447, Found: 295.1436.

3g was obtained as a white solid (52.9 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.91 (m, 2H), 7.81-7.77 (m, 2H), 7.37 (d, J = 7.2 Hz, 1H), 7.13 (d, J = 7.2 Hz, 1H), 6.94 (s, 1H), 4.55 (s, 2H), 3.61 (s, 2H), 3.10 (s, 3H), 2.95 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 167.4, 166.0, 145.4, 134.8, 134.7, 131.9, 131.7, 124.9, 124.3, 124.0, 120.9, 107.8, 42.2, 36.9, 36.1, 35.6, 29.9; HRMS Calcd for C₂₀H₁₇N₃O₄ [M+H⁺]: 364.1219, Found: 364.1215.

3h was obtained as a white solid (38.5 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 2H), 6.59 (d, *J* = 8.0 Hz, 1H), 4.49 (s, 2H), 3.58 (s, 2H), 3.11 (s, 3H), 2.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 167.9, 138.4, 137.2, 136.6, 130.7, 128.8, 94.9, 43.0, 41.7, 36.1, 35.8; HRMS Calcd for C₁₂H₁₃IN₂O₂ [M+H⁺]: 345.0022, Found: 345.0010.

3i was obtained as a white solid (33.1 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 9.0 Hz, 1H), 7.50 (s, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 4.55 (s, 2H), 3.65 (s, 2H), 3.14 (s, 3H), 2.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 165.7, 147.7, 135.6 (q, *J*_{C-F} = 34.3 Hz), 125.9 (q, *J*_{C-F} = 4.3 Hz), 123.2 (q, *J*_{C-F} = 286.1 Hz),124.9, 121.7 (q, *J*_{C-F} = 4.0 Hz), 108.9, 41.9, 36.8, 36.1, 35.6; HRMS Calcd for C₁₃H₁₃F₃N₂O₂ [M+H⁺]: 287.1007, Found: 287.0999.

3j was obtained as a white solid (36.7 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 6.69 (d, *J* = 8.4 Hz, 1H), 4.50 (s, 2H), 3.60 (s, 2H), 3.12 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 165.9, 143.8, 131.0, 127.8, 126.4, 115.4, 110.6, 42.0, 36.8, 36.1, 35.7; HRMS Calcd for C₁₂H₁₃BrN₂O₂ [M+H⁺]: 297.0239, Found: 297.0229.

3k was obtained as a white solid (35.2 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (s, 1H), 7.21 (d, J = 11.6 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 4.50 (s, 2H), 3.59 (s, 2H), 3.11 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 166.0, 143.3, 128.1, 126.0, 125.0, 110.1, 42.0, 36.8, 36.0, 35.7; HRMS Calcd for C₁₂H₁₃ClN₂O₂ [M+H⁺]: 253.0666, Found: 253.0650.

31 was obtained as a white solid (42.1 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.19 (m, 1H), 6.60 (d, *J* = 8.4 Hz, 1H), 6.49 (d, *J* = 4.0 Hz, 1H), 4.50 (s, 2H), 3.85 (s, 3H), 3.52 (s, 2H), 3.10 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 166.4, 145.8, 129.4, 111.1, 105.8, 102.6, 55.7, 42.3, 36.9, 36.1, 33.6; HRMS Calcd for C₁₃H₁₆N₂O₃[M+H⁺]: 249.1239, Found: 249.1236.

3m was obtained as a white solid (33.7 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 7.2 Hz, 1H), 7.15-7.11 (m, 1H), 6.76 (d, *J* = 7.6 Hz, 1H), 4.52 (s, 2H), 3.57 (s, 2H), 3.13 (s, 3H), 2.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 165.9, 145.5, 129.6, 125.6, 125.3, 119.2, 107.9, 42.1, 37.1, 36.8, 36.0; HRMS Calcd for C₁₂H₁₃BrN₂O₂ [M+H⁺]: 297.0239, Found: 297.0223.

3n was obtained as a white solid (37.8 mg, 55%) ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 1H), 6.99-6.95 (m, 1H), 6.77 (d, *J* = 7.6 Hz, 1H), 4.48 (s, 2H), 3.48 (s, 2H), 3.12 (s, 3H), 2.97 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 165.9, 144.8, 131.6, 129.8, 108.8, 92.4, 42.2, 40.5, 36.9, 36.1; HRMS Calcd for C₁₂H₁₃IN₂O₂ [M+H⁺]: 345.0022, Found: 345.0008.

30 was obtained as a white solid (38.5 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.12 (m, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 7.6 Hz, 1H), 4.50 (s, 2H), 3.48 (s, 2H), 3.10 (s, 3H), 2.96 (s, 3H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 166.3, 144.3, 134.2, 128.1, 124.0, 123.1, 106.6, 42.1, 36.8, 36.0, 34.8, 18.7; HRMS Calcd for C₁₃H₁₆N₂O₂ [M+H⁺]: 233.1290, Found: 233.1277.

3p was obtained as a white solid (30.5 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 6.67 (s, 1H), 6.47 (s, 1H), 4.48 (s, 2H), 3.43 (s, 2H), 3.11 (s, 3H), 2.97 (s, 3H), 2.30 (s, 3H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 166.4, 144.4, 138.1, 133.8, 124.7, 120.1, 107.4, 42.1, 36.8, 36.0, 34.6, 21.9, 18.6; HRMS Calcd for C₁₄H₁₈N₂O₂ [M+H⁺]: 247.1447, Found: 247.1443.

3q was obtained as a white solid (26.9 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 7.03 (s, 1H), 6.68 (s, 1H), 4.47 (s, 2H), 3.56 (s, 2H), 3.12 (s, 3H), 2.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.3 , 165.4, 146.5, 134.7, 131.0, 122.6, 121.5, 108.4, 42.0, 36.8, 36.1, 35.0; HRMS Calcd for C₁₂H₁₂Cl₂N₂O₂ [M+H⁺]: 287.0354, Found: 287.0350.

3r was obtained as a white solid (29.8 mg, 52%). ¹H NMR (400 MHz, $CDCl_3$) δ 7.31 (s, 1H), 6.86 (s, 1H), 4.48 (s, 2H), 3.57 (s, 2H), 3.12 (s, 3H), 2.98 (s, 3H); ¹³C NMR (101 MHz, $CDCl_3$) δ 174.7, 165.5, 144.3, 132.0, 126.4, 124.3, 111.1, 41.9, 36.8, 36.1, 35.3; HRMS Calcd for $C_{12}H_{12}Cl_2N_2O_2$ [M+H⁺]: 287.0354, Found: 287.0330.

3s was obtained as a white solid (28.4 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 1H), 6.57 (s, 1H), 4.50 (s, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.54 (s, 2H), 3.12 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 166.7, 149.7, 145.4, 138.5, 115.1, 109.9, 95.7, 57.2, 56.7, 42.6, 37.1, 36.1, 35.9; HRMS Calcd for C₁₄H₁₈Cl₂N₂O₄ [M+H⁺]: 279.1345, Found: 279.1300.

3t was obtained as a white solid (25.8 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.77 (m, 2H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.50-7.46 (m, 1H), 7.36-7.32 (m, 1H), 7.12 (d, *J* = 8.8 Hz, 1H), 4.59 (s, 2H), 3.84 (s, 2H), 3.13 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 166.5, 142.1, 130.2, 129.8, 129.2, 129.0, 127.4, 124.1, 122.7, 117.7, 110.5, 42.0, 36.8, 36.0, 34.9; HRMS Calcd for C₁₆H₁₆N₂O₂ [M+H⁺]: 269.1290, Found: 269.1262.

5a was obtained as a white solid (35.6 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 7.6 Hz, 1H), 7.01 (s, 1H), 6.85 (d, *J* = 7.2 Hz, 1H), 5.42 (q, *J* = 6.8 Hz, 1H), 3.51 (s, 2H), 2.94 (s, 3H), 2.90 (s, 3H), 2.34 (s, 3H), 1.51 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 169.4, 142.8, 138.6, 124.3, 123.4, 121.5, 111.9, 47.1, 37.2, 36.5, 35.2, 22.1, 14.9; HRMS Calcd for C₁₄H₁₈N₂O₂ [M+H⁺]: 247.1447, Found: 247.1444.

5b was obtained as a white solid (36.5 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 7.6 Hz, 1H), 7.08 (s, 1H), 6.84 (d, *J* = 7.6 Hz, 1H), 5.23 – 5.19 (m, 1H), 3.60 – 3.46 (m, 2H), 2.95 (s, 3H), 2.93(s, 3H), 2.33 (s, 3H), 2.16 – 1.98 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 169.0, 143.0, 138.5, 124.2, 123.3, 121.3, 112.3, 52.9, 37.2, 36.4, 35.1, 22.1, 22.0, 10.6; HRMS Calcd for C₁₅H₂₀N₂O₂ [M+H⁺]: 261.1603, Found: 261.1599.

5c was obtained as a white solid (33.0 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 1H), 7.10 (d, J = 7.6 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 4.94 (d, J = 10.8 Hz, 1H), 3.04 (s, 3H), 2.94 (s, 3H), 2.91 –

2.82 (m, 1H), 2.34 (s, 3H), 1.05 (d, J = 6.4 Hz, 3H), 0.75 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 168.4, 143.4, 138.4, 124.0, 123.3, 121.1, 113.2, 57.4, 37.5, 36.3, 35.1, 26.8, 22.2, 20.6, 18.4; HRMS Calcd for C₁₆H₂₂N₂O₂ [M+H⁺]: 275.1760, Found: 275.1444.

5d was obtained as a white solid (31.8 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 4.8 Hz, 1H), 7.10 (s, 1H), 6.84 (d, J = 7.6 Hz, 1H), 5.39 (t, J = 7.4 Hz, 1H), 3.51 (q, J = 16.9 Hz, 2H), 2.97 (s, 3H), 2.93 (s, 3H), 1.95 (t, J = 7.0 Hz, 2H), 1.49 – 1.41 (m, 1H), 0.98 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 169.3, 143.1, 138.5, 124.2, 123.3, 121.4, 112.5, 49.7, 37.7, 37.3, 36.5, 35.2, 24.9, 23.4, 22.4, 22.1; HRMS Calcd for C₁₇H₂₄N₂O₂ [M+H⁺]: 289.1916, Found: 289.1911.

5e was obtained as a white solid (31.2 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 7.6 Hz, 1H), 5.03 (d, *J* = 10.8 Hz, 1H), 3.59 – 3.43 (m, 2H), 3.06 (s, 3H), 2.93 (s, 3H), 2.70 – 2.61 (m, 1H), 2.34 (s, 3H), 1.21 – 1.14 (m, 1H), 1.03-0.92 (m, 1H), 0.98 (d, *J* = 6.4 Hz, 3H), 0.79 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 168.5, 143.4, 138.3, 123.9, 123.3, 121.1, 113.3, 56.2, 37.6, 36.3, 35.1, 32.6, 24.4, 22.1, 16.5, 10.9; HRMS Calcd for C₁₇H₂₄N₂O₂ [M+H⁺]: 289.1916, Found: 289.1905.

5f was obtained as a white solid (30.2 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.81 (d, *J* = 7.6 Hz, 1H), 5.01 (d, *J* = 10.8 Hz, 1H), 3.57 – 3.41 (m, 2H), 3.01 (s, 3H), 2.90 (s, 3H), 2.57-2.49 (m, 1H), 2.33 (s, 3H), 1.91 (d, *J* = 12.0 Hz, 1H), 1.69 (d, *J* = 12.0 Hz, 1H), 1.61 (s, 2H), 1.34 – 1.24 (m, 2H), 1.11 (t, *J* = 9.4 Hz, 2H), 0.98 – 0.86 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 168.2, 143.4, 138.3, 123.9, 123.2, 121.0, 113.0, 56.0, 37.4, 36.2, 35.5, 35.0, 31.1, 28.1, 26.4, 25.8, 25.7, 22.1; HRMS Calcd for C₁₉H₂₆N₂O₂ [M+H⁺]:315.2073, Found: 315.2066.

5g was obtained as a white solid (52.6 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J = 7.6 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.62 (s, 1H), 4.55 – 4.43 (m, 2H), 3.10 (s, 3H), 2.96 (s, 3H), 2.45 (d, J =

7.2 Hz, 2H), 1.88 – 1.81 (m, 1H), 1.48 (d, J = 7.6 Hz, 3H), 0.89 (d, J = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 179.3, 166.5, 143.3, 142.1, 127.9, 123.5, 123.2, 109.7, 45.9, 42.2, 40.4, 36.9, 36.0, 30.4, 22.6, 22.6, 15.8; HRMS Calcd for C₁₇H₂₄N₂O₂ [M+H⁺]:289.1916.; Found: 289.1905.

5h was obtained as a white solid (45.4 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.19 (m, 2H), 7.06-7.03 (m, 1H), 6.83 (d, *J* = 7.6 Hz, 1H), 4.51 (s, 2H), 3.09 (s, 3H), 2.96 (s, 3H), 1.41 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 181.6, 166.4, 142.1, 135.6, 127.9, 122.8, 122.4, 109.0, 44.3, 42.0, 36.8, 36.0, 24.7; HRMS Calcd for C₁₄H₁₈N₂O₂ [M+H⁺]:247.1447, Found: 247.1434.

5i was obtained as a white solid (52.2 mg, 84%) ¹H NMR (400 MHz, $CDCl_3$) δ 7.27-7.23 (m, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.18 (s, 1H), 4.66 (d, *J* = 16.4 Hz, 1H), 4.34 (d, *J* = 16.4 Hz, 1H), 3.11 (s, 3H), 2.98 (s, 3H), 2.20 (s, 3H); ¹³C NMR (101 MHz, $CDCl_3$) δ 171.8, 169.7, 165.7, 145.6, 131.7, 131.7, 121.6, 108.2, 69.0, 42.5, 36.9, 36.1, 20.5; HRMS Calcd for $C_{14}H_{15}ClN_2O_2$ [M+H⁺]:311.0799, Found: 311.0790.

5j was obtained as a white solid (50.4 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 7.2 Hz, 1H), 7.32-7.28 (m, 1H), 7.07-7.03 (m, 1H), 6.84 (d, J = 7.6 Hz, 1H), 6.05 (s, 1H), 4.63 (d, J = 8.0 Hz, 1H), 4.39 (d, J = 8.0 Hz, 1H), 3.11 (s, 3H), 2.98 (s, 3H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 170.5, 165.9, 144.0, 130.6, 125.8, 124.4, 123.5, 109.6, 70.0, 42.3, 36.9, 36.1, 21.0; HRMS Calcd for C₁₄H₁₆N₂O₄ [M+H⁺]:277.1188, Found: 277.1182.

5k was obtained as a white solid (53.9 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.73 (s, 1H), 4.43 (s, 2H), 3.08 (s, 3H), 2.94 (s, 3H), 2.68 – 2.58 (m, 2H), 2.38 – 2.27 (m, 3H), 2.26 – 2.13 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 180.4, 165.9, 143.6, 133.5, 132.5, 109.3, 47.9, 41.8, 36.7, 35.9, 31.6, 16.8; HRMS Calcd for C₁₄H₁₅ClN₂O₂ [M+H⁺]: 293.1057, Found: 293.1047.

8. Synthesis of the isatin derivatives

A mixture of acid derivatives (0.2 mmol, 1.0 equiv), Pd(OAc)₂ (0.01mmol, 5mol%), PhI(OAc)₂ (0.6 mmol, 3 equiv) and toluene (1 mL) in a 25 mL glass vial (under air atmosphere, sealed with PTFE cap) was heated at 80 °C for 24 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the cyclized product.

6a was obtained as a orange solid (48.1 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.86 (s, 1H), 4.53 (s, 2H), 3.14 (s, 3H), 3.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.5, 164.9, 158.6, 152.4, 145.1, 126.6, 124.5, 116.3, 112.1, 41.9, 36.8, 36.2; HRMS Calcd for C₁₂H₁₁ClN₂O₃ [M+H⁺]: 267.0536, Found: 267.0530.

6b was obtained as a orange solid (40.3 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.05 (s, 1H), 4.58 (s, 2H), 3.16 (s, 3H), 3.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 182.3, 164.7, 157.9, 151.6, 139.2 (q, $J_{C-F} = 25.7$ Hz), 125.9, 123.1 (q, $J_{C-F} = 234.0$ Hz), 121.2 (q, $J_{C-F} = 1.3$ Hz), 108.2 (q, $J_{C-F} = 4.0$ Hz), 41.9, 36.8, 36.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.64; HRMS Calcd for C₁₃H₁₁F₃N₂O₃ [M+H⁺]: 301.0800, Found: 301.0806.

6c was obtained as a orange solid (49.7 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 4.54 (s, 2H), 3.13 (s, 3H), 2.99 (s, 3H); ¹³C NMR (101 MHz, 101 MHz).

CDCl₃) δ 181.9, 165., 157.9, 150.1, 140.8, 128.3, 119.0, 117.0, 113.1, 41.9, 36.9, 36.1; HRMS 0 for C₁₂H₁₁BrN₂O₃ [M+H⁺]: 311.0031, Found: 311.0021.

6d was obtained as a orange solid (36.1 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.08 (s, 1H), 6.76 (s, 1H), 4.53 (s, 2H), 3.14 (s, 3H), 3.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 164.6, 157.8, 153.0, 144.9, 134.8, 125.5, 113.6, 110.5, 42.0, 36.8, 36.2; HRMS Calcd for C₁₂H₁₀Cl₂N₂O₃ [M+H⁺]: 301.0147, Found: 301.0141.

9. Gram scale of intramolecular y-C(sp2)-H amination reaction

To a 50 mL sealed tube (under air atmosphere, sealed with PTFE cap) equipped with a magnetic stir bar was sequentially added phenylacetamide (6 mmol, 1.0 equiv), Pd(OAc)₂ (0.12 mmol, 2 mol%), PhI(OAc)₂ (9 mmol, 1.5 equiv), toluene (30 mL). The reaction was stirred for 48 h at 60 °C and cooled down to room temperature. The crude reaction mixture was diluted with EtOAc (30 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 20 mL of EtOAc. The filtrate was concentrated *in vacuo*, and the resulting residue was purified by column chromatography on silica gel using EtOAc/PE as the eluent.

10. The transformation of directing group

10.1 2-(5-Chloro-2-oxo-2,3-dihydroindol-1-yl)acetic acid 7k

A mixture of the cyclized product 3k (0.2 mmol, 1.0 equiv) and hydrobromide acid (1 mL) in a 25 mL glass vial (under air atmosphere, sealed with PTFE cap) was heated at 80 °C for 18 hours. The reaction mixture was cooled to room temperature. Water was added and the mixture was extracted with EtOAc. The combined organic layer was washed with water and brine, dried over Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product 7k as a white solid in 92% yield.

10.2 2-(5-Chloro-2-oxo-2,3-dihydroindol-1-yl)acetic ether 8k

A mixture of the cyclized product $3\mathbf{k}$ (1 mmol, 1.0 equiv), hydrochloric acid (2.5 mL) and EtOH (2.5 mL) in a 25 mL glass vial (under air atmosphere, sealed with PTFE cap) was heated at 80 °C for 24 hours. The reaction mixture was cooled to room temperature. Water was added and the mixture was extracted with EtOAc. The combined organic layer was washed with water and brine, dried over Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product $\mathbf{8k}$ as a white solid in 84% yield.

10.3 2-(5-Chloro-2-oxo-2,3-dihydroindol-1-yl)acetamide V

A mixture of the product **8k** (0.2 mmol, 1.0equiv) and aqueous ammonia 28% w/w (1 mL) in a 25 mL glass vial (under air atmosphere, sealed with PTFE cap). After stirring at 40 °C for 18 hours, Water was added and the mixture was extracted with EtOAc. The combined organic layer was washed with water and brine, dried over Na_2SO_4 , and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product **V** as a white solid in 81% yield.

7k was obtained as a white solid (41.4 mg, 92%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.28 (s, 1H), 7.24 (d, J = 6.8 Hz, 1H), 6.76 (d, J = 6.8 Hz, 1H), 4.09 (s, 2H), 3.57 (s, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 173.9, 144.1, 127.1, 126.7, 125.4, 124.1, 110.2, 69.8, 43.3, 35.2; HRMS Calcd for C₁₀H₈ClNO₃ [M+H⁺]: 225.0193, Found: 225.0180.

8k was obtained as a white solid (212.5 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 7.2 Hz, 1H), 7.23 (s, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 4.44 (s, 2H), 4.22 (q, *J* = 7.2 Hz, 2H), 3.59 (s, 2H), 1.27 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 167.6, 142.6, 128.3, 128.1, 126.0, 125.3, 109.3, 62.1, 41.6, 35.6, 14.3; HRMS Calcd for C₁₂H₁₂ClNO₃ [M+H⁺]: 253.0506, Found: 253.0516.

V was obtained as a white solid (36.3 mg, 81%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.60 (s, 1H), 7.33 (s, 2H), 7.29 (d, J = 6.0 Hz, 1H) 7.23 (s, 1H), 6.85 (d, J = 8.0 Hz, 1H), 4.24 (s, 2H), 3.60 (s, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 174.1, 168.3, 143.5, 127.1, 126.9, 125.8, 124.3, 109.8, 42.1, 35.2; HRMS Calcd for C₁₀H₉ClN₂O₂ [M+H⁺]: 224.0353, Found: 224.0350.

11. References

1. Masayuki, W.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058-14059.

2. He, G.; Zhang, S.-Y.; William A.-N.; Li, Q.; Chen, G. Angew. Chem. Int. Ed. 2013, 52, 11124-11128.

3. Guan, M.-Y.; Pang, Y.-B.; Zhang, J.-Y.; Zhao, Y.-S. Chem. Commun. 2016, 52, 7043-7046.

4. Fabienne, B.; Laurent, D.; Deltent, M.-F.; Frank, D.; Luc, G.; Xavier, I.; Emmanuel, S.; Natacha,

V. Organic Process Research & Development. 2009, 13, 443-449.

5. Wang, C. Chen, C.-P. Zhang, J.-Y. Han, J.; Wang, Q.; Yao, Y.-M.; Zhao, Y.-S. *Angew. Chem. Int. Ed.* **2014**, 53, 9884 –9888.

NMR spectra

