Supporting Information

Cu-catalyzed tertiary alkylation of α -(trifluoromethyl)styrenes with tertiary alkylmagnesium reagents

Wenpeng Dai, Yingyin Lin, Yan Wan and Song Cao*

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and

Technology (ECUST), Shanghai 200237, China

*Corresponding author. E-mail address: scao@ecust.edu.cn

Table of contents

1.	General information	S2
2.	General procedures for the synthesis of the target compounds 3	S2
3.	Analytical data of the target compounds 3	S3
4.	1 H, 13 C, 19 F NMR and HRMS (EI) spectra of the target compounds 3	S 8

1. General information

All reagents were of analytical grade, and obtained from Adamas-beta and other suppliers and used without further purification. THF and other solvents were dried by standard method prior to use. Melting points were measured in an open capillary using Büchi melting point B-540 apparatus and are uncorrected. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a 400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C NMR, and 376 MHz for ¹⁹F NMR, respectively) using TMS as internal standard. CDCl₃ was used as the NMR solvent in all cases. High resolution mass spectra (HRMS) were recorded under electron impact conditions using a MicroMass GCT CA 055 instrument and recorded on a MicroMass LCTTM spectrometer. Silica gel (300–400 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates.

2. General procedures for the synthesis of target compounds 3

To a solution of α -(trifluoromethyl)styrenes (1.0 mmol) and 25 mol% (22.5 mg) CuCN in THF (3 mL) was added dropwise a solution of the Grignard reagents (1.5 mmol) in THF at room temperature under argon atmosphere. The mixture was stirred for about 3 h at room temperature (monitored by TLC and GC-MS). After the completion of reaction, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl (5 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layer was washed with water and brine, then dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel using *n*-hexane as eluent to afford the pure target compounds **3**.

The α -(trifluoromethyl)styrenes (1a–n) used in this reaction:

The α-(trifluoromethyl)styrenes (**1a–n**) were prepared according to the reported procedure(S. Barroso, G. Blay, L. Cardona, I. Fernández, B. García and J. R. Pedro, *J. Org. Chem.* 2004, **69**, 6821–6829).

3. Analytical data of the target compounds 3

4-(1,1-Difluoro-4,4-dimethylpent-1-en-2-yl)-1,1'-biphenyl (3aa). yield 93% (266.0 mg), yellow solid, Mp: 72–75 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.54 (m, 4H), 7.42–7.36 (m, 4H), 7.33–7.29 (m, 1H), 2.36 (t, J = 2.0 Hz, 2H), 0.83 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.6 (dd, ¹ $J_{CF} = 288.7$, 286.0 Hz), 140.6, 139.8, 134.6 (dd, ³ $J_{CF} = 4.7$, 2.9 Hz), 128.9, 128.8, 127.4, 127.0, 126.9, 90.9 (dd, ² $J_{CF} = 21.6$, 12.6 Hz), 41.1, 32.8 (t, ³ $J_{CF} = 2.5$ Hz), 29.9; ¹⁹F NMR (376 MHz, CDCl₃): δ –89.2 (d, J = 40.6 Hz, 1F), –91.8 (d, J = 40.2 Hz, 1F); HRMS (EI) calcd for C₁₉H₂₀F₂ [M]⁺ 286.1533, found 286.1534.

(1,1-Difluoro-4,4-dimethylpent-1-en-2-yl)benzene (3ba). yield 80% (168.0 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.33–7.22 (m, 5H), 2.34 (t, J = 2.4 Hz, 2H), 0.80 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.4 (dd, ¹ J_{CF} = 288.2, 285.5 Hz), 135.6 (dd, ³ J_{CF} = 4.7, 2.8 Hz), 128.5 (t, ⁴ J_{CF} = 2.8 Hz), 128.3, 127.0, 91.1 (dd, ² J_{CF} = 21.3, 12.9 Hz), 41.2, 32.7 (t, ³ J_{CF} = 2.5 Hz), 29.7; ¹⁹F NMR (376 MHz, CDCl₃) : δ –89.9 (d, J = 41.0 Hz, 1F), -92.5 (d, J = 41.0 Hz, 1F); HRMS (EI) calcd for C₁₃H₁₆F₂ [M]⁺ 210.1220, found 210.1219.

1-(1,1-Difluoro-4,4-dimethylpent-1-en-2-yl)-4-methoxybenzene (3ca). yield 92% (220.8 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.24–7.21 (m, 2H), 6.88–6.85 (m, 2H), 3.80 (s, 3H), 2.29 (t, *J* = 2.6 Hz, 2H), 0.80 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 158.5, 154.3 (dd, ¹*J*_{CF} = 287.1, 285.1 Hz), 129.5 (t, ⁴*J*_{CF} = 2.8 Hz), 127.7 (dd, ³*J*_{CF} = 4.6, 2.6 Hz), 113.7, 90.5 (dd, ²*J*_{CF} = 21.4, 13.2 Hz), 55.2, 41.2, 32.7 (t, ³*J*_{CF} = 2.5 Hz), 29.8; ¹⁹F NMR (376 MHz, CDCl₃) : δ –90.8 (d, *J* = 43.6 Hz, 1F), –93.3 (d, *J* = 43.6 Hz, 1F); HRMS (EI) calcd for C₁₄H₁₈F₂O [M]⁺ 240.1326, found 240.1327.

4-(1,1-Difluoro-4,4-dimethylpent-1-en-2-yl)-1,2-dimethoxybenzene (**3da**). yield 89% (240.4 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 6.88–6.84 (m, 2H), 6.82 (s, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 2.30 (t, J = 2.4 Hz, 2H), 0.81 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.3 (dd, ¹ $J_{CF} = 287.3$, 285.3 Hz), 148.6, 148.0, 128.0 (dd, ³ $J_{CF} =$ 4.6, 2.7 Hz), 120.9 (t, ⁴ $J_{CF} = 2.8$ Hz), 111.8 (t, ⁴ $J_{CF} = 3.0$ Hz), 110.9, 90.8 (dd, ² $J_{CF} = 21.5$, 12.9 Hz), 55.9, 55.8, 41.3, 32.7 (t, ³ $J_{CF} = 2.5$ Hz), 29.7; ¹⁹F NMR (376 MHz, CDCl₃): δ –90.5 (d, J = 43.2 Hz, 1F), –92.6 (d, J = 42.9 Hz, 1F); HRMS (EI) calcd for C₁₅H₂₀F₂O₂ [M]⁺ 270.1431, found 270.1430.

I-(Tert-butyl)-4-(1,1-difluoro-4,4-dimethylpent-1-en-2-yl)benzene (**3ea**). yield 91% (242.1 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, *J* = 8.4 Hz, 2H), 7.24–7.22 (m, 2H), 2.32 (t, *J* = 2.4 Hz, 2H), 1.31 (s, 9H), 0.80 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.4 (dd, ¹*J*_{CF} = 288.1, 285.2 Hz), 149.9, 132.4 (dd, ³*J*_{CF} = 4.6, 2.8 Hz), 128.0 (t, ⁴*J*_{CF} = 2.8 Hz), 125.1, 90.8 (dd, ²*J*_{CF} = 21.2, 12.8 Hz), 41.1, 34.5, 32.7 (t, ³*J*_{CF} = 2.5 Hz), 31.3, 29.8; ¹⁹F NMR (376 MHz, CDCl₃): δ –90.0 (d, *J* = 42.1 Hz, 1F), –92.6 (d, *J* = 42.1 Hz, 1F); HRMS (EI) calcd for C₁₇H₂₄F₂ [M]⁺ 266.1846, found 266.1847.

1-(1,1-Difluoro-4,4-dimethylpent-1-en-2-yl)naphthalene (**3fa**). yield 74% (192.5 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 8.8 Hz, 1H), 7.86–7.84 (m, 1H), 7.78 (dd, J = 7.2, 2.4 Hz, 1H), 7.54–7.41 (m, 4H), 2.53–2.44 (m, 2H), 0.82 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.0 (dd, ¹ J_{CF} = 287.6, 286.9 Hz), 133.9, 133.3 (dd, ³ J_{CF} = 4.6, 1.6 Hz), 131.2 (t, ⁴ J_{CF} = 1.7 Hz), 128.7, 128.1, 127.5 (dd, ⁴ J_{CF} = 3.4, 1.2 Hz), 126.2, 125.8, 125.4 (d, ⁴ J_{CF} = 1.5 Hz), 125.2, 88.9 (dd, ² J_{CF} = 21.6, 15.8 Hz), 43.5, 32.9 (t, ³ J_{CF} = 2.4 Hz), 29.7; ¹⁹F NMR (376 MHz, CDCl₃): δ –86.5 (d, J = 38.0 Hz, 1F), –89.9 (d, J = 38.0 Hz, 1F); HRMS (EI) calcd for C₁₇H₁₈F₂ [M]⁺ 260.1377, found 260.1378.

N-(3-(1,1-difluoro-4,4-dimethylpent-1-en-2-yl)phenyl)acetamide (**3ga**). yield 55% (147.0 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (s, 1H), 7.47–7.43 (m, 2H), 7.26 (t, *J* =7.8 Hz, 1H), 7.06 (d, *J* = 7.2 Hz, 1H), 2.31 (t, *J* = 2.4 Hz, 2H), 2.16 (s, 3H), 0.79 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 154.4 (dd, ¹*J*_{CF} = 288.7, 285.8 Hz), 138.0, 136.5 (dd, ³*J*_{CF} = 4.6, 2.6 Hz), 128.9, 124.4 (t, ⁴*J*_{CF} = 2.4 Hz), 119.8 (t, ⁴*J*_{CF} = 2.8 Hz), 118.5, 90.9 (dd, ²*J*_{CF} = 21.8, 12.7 Hz), 41.1, 32.7 (t, ³*J*_{CF} = 2.5 Hz), 29.7, 24.6; ¹⁹F NMR (376 MHz, CDCl₃): δ –89.3 (d, *J* = 40.2 Hz, 1F), –91.7 (d, *J* = 39.9 Hz, 1F); HRMS (EI) calcd for C₁₅H₁₉F₂NO [M]⁺ 267.1435, found 267.1434.

1-(3-(1,1-Difluoro-4,4-dimethylpent-1-en-2-yl)phenyl)ethanone (**3ha**). yield 72% (181.5 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.93–7.92 (m, 1H), 7.85–7.82 (m, 1H), 7.54–7.51(m, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 2.62 (s, 3H), 2.38 (t, *J* = 2.8 Hz, 2H), 0.80 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 197.9, 154.6 (dd, ¹*J*_{CF} = 289.0, 286.6 Hz), 137.2, 136.3 (dd, ${}^{3}J_{CF} = 4.9$, 2.8 Hz), 133.1 (t, ${}^{4}J_{CF} = 2.8$ Hz), 128.6, 128.1 (t, ${}^{4}J_{CF} = 2.8$ Hz), 127.1, 90.6 (dd, ${}^{2}J_{CF} = 22.2$, 12.6 Hz), 41.2, 32.8 (t, ${}^{3}J_{CF} = 2.4$ Hz), 29.7, 26.7; ¹⁹F NMR (376 MHz, CDCl₃): δ –88.7 (d, J = 38.7 Hz, 1F), –91.5 (d, J = 38.7 Hz, 1F); HRMS (EI) calcd for C₁₅H₁₈F₂O [M]⁺ 252.1326, found 252.1324.

Methyl 3-(1,1-difluoro-4,4-dimethylpent-1-en-2-yl)benzoate (3ia). yield 71% (190.4 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.02–8.00 (m, 2H), 7.41–7.38 (m, 2H), 3.91 (s, 3H), 2.36 (t, J = 2.8 Hz, 2H), 0.79 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 154.5 (dd, ¹ J_{CF} = 290.4, 287.1 Hz), 140.6, (dd, ³ J_{CF} = 4.9, 3.1 Hz), 129.6, 128.7, 128.4 (t, ⁴ J_{CF} = 3.0 Hz), 90.9 (dd, ² J_{CF} = 22.2, 12.2 Hz), 52.0, 40.9, 32.8 (t, ³ J_{CF} = 2.4 Hz), 29.6; ¹⁹F NMR (376 MHz, CDCl₃): δ –87.8 (d, J = 36.5 Hz, 1F), –90.5 (d, J = 36.1 Hz, 1F). HRMS (EI) calcd for C₁₅H₁₈F₂O₂ [M]⁺ 268.1275, found 268.1273.

1-Chloro-4-(1,1-difluoro-4,4-dimethylpent-1-en-2-yl)benzene (**3ja**). yield 82% (200.1 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.29 (m, 2H), 7.26–7.23 (m, 2H), 2.31 (t, J = 2.6 Hz, 2H), 0.80 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.4 (dd, ¹ J_{CF} = 288.8, 286.2 Hz), 134.1 (dd, ³ J_{CF} = 4.8, 2.8 Hz), 132.8, 129.7 (t, ⁴ J_{CF} = 2.9 Hz), 128.5, 90.3 (dd, ² J_{CF} = 22.2, 12.7 Hz), 41.1, 32.8 (t, ³ J_{CF} = 2.5 Hz), 29.7; ¹⁹F NMR (376 MHz, CDCl₃): δ –89.0 (d, J = 39.5 Hz, 1F), –91.7 (d, J = 39.5 Hz, 1F). HRMS (EI) calcd for C₁₃H₁₅ClF₂ [M]⁺ 244.0830, found 244.0828.

1-Bromo-4-(1,1-difluoro-4,4-dimethylpent-1-en-2-yl)benzene (**3ka**). yield 86% (249.4 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.54 (m, 2H), 7.42–7.36 (m, 2H), 2.36 (t, *J* = 2.0 Hz, 2H), 0.83 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.6 (dd, ¹*J*_{CF} = 288.7, 286.0 Hz), 134.6 (dd, ³*J*_{CF} = 4.7, 2.9 Hz), 128.9, 127.4 127.0, 90.9 (dd, ²*J*_{CF} = 21.6, 12.7 Hz), 41.1, 32.8 (t, ³*J*_{CF} = 2.5 Hz), 29.9; ¹⁹F NMR (376 MHz, CDCl₃): δ –89.2 (d, *J* = 40.2 Hz, 1F), –91.8 (d, *J* = 40.2 Hz, 1F); HRMS (EI) calcd for C₁₃H₁₅BrF₂ [M]⁺ 290.0305, found 290.0308.

3-(1,1-Difluoro-4,4-dimethylpent-1-en-2-yl)benzonitrile (**3la**). yield 90% (211.6 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (s, 1H), 7.50–7.44 (m, 2H), 7.39–7.35 (m, 1H), 2.26 (t, *J* = 2.6 Hz, 2H), 0.72 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 153.7 (dd, ¹*J*_{CF} = 290.2, 287.6 Hz), 136.1 (dd, ³*J*_{CF} = 5.2, 2.9 Hz), 131.8 (t, ⁴*J*_{CF} =

2.8 Hz), 130.9 (t, ${}^{4}J_{CF}$ = 3.0 Hz), 129.6, 128.2, 117.5, 111.7, 89.0 (dd, ${}^{2}J_{CF}$ = 23.0, 12.4 Hz), 39.9, 31.8 (t, ${}^{3}J_{CF}$ = 2.4 Hz), 28.6; ¹⁹F NMR (376 MHz, CDCl₃): δ –87.4 (d, *J* = 35.7 Hz, 1F), –90.5 (d, *J* = 35.7 Hz, 1F); HRMS (EI) calcd for C₁₄H₁₅F₂N [M]⁺ 235.1173, found 235.1174.

3-(1,1-difluoro-4,4-dimethylpent-1-en-2-yl)benzo[b]thiophene (**3ma**). yield 84% (223.4 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.86–7.83 (m, 1H), 7.72–7.70 (m, 1H), 7.43–7.33 (m, 2H), 7.28–7.22 (m, 1H), 2.41–2.40 (m, 2H), 0.81 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.2 (t, ¹*J*_{CF} = 288.2 Hz), 140.0, 137.5, 131.1 (dd, ³*J*_{CF} = 4.8, 1.8 Hz), 124.7 (dd, ³*J*_{CF} = 4.5, 1.2 Hz), 124.4, 124.3, 123.0, 122.9, 85.4 (dd, ²*J*_{CF} = 24.0, 15.1 Hz), 42.8, 32.7 (t, ³*J*_{CF} = 2.5 Hz), 29.5; ¹⁹F NMR (376 MHz, CDCl₃): δ –85.2 (d, *J* = 36.5Hz, 1F), -89.2 (d, *J* = 36.5 Hz, 1F); HRMS (EI) calcd for C₁₅H₁₆F₂S [M]⁺ 266.0941, found 266.0942.

((1E,3E)-4-fluoro-5,5-dimethyl-3-neopentylhexa-1,3-dien-1-yl)benzene (**3na**). yield 88% (241.1 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.18 (m, 6H), 6.49 (d, J = 16.4 Hz, 1H), 2.33 (d, J = 5.2 Hz, 2H), 1.34 (d, J = 2.0 Hz, 9H), 0.92 (d, J = 1.2 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.3 (t, ¹ $J_{CF} = 259.4$ Hz), 138.2, 128.7, 128.3 (d, ³ $J_{CF} = 10.0$ Hz), 127.0, 126.3 (d, ³ $J_{CF} = 8.9$ Hz), 126.0, 114.3 (d, ² $J_{CF} = 24.4$ Hz), 39.1 (t, ³ $J_{CF} = 7.3$ Hz), 36.8 (d, ² $J_{CF} = 26.9$ Hz), 32.6 (d, ⁴ $J_{CF} = 1.3$ Hz), 30.5 (d, ⁴ $J_{CF} = 1.7$ Hz), 29.9 (d, ⁴ $J_{CF} = 5.3$ Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –91.8 (s, 1F); HRMS (EI) calcd for C₁₉H₂₇F [M]⁺ 274.2097, found 274.2096.

1-(1,1-Difluoro-4,4-dimethylhex-1-en-2-yl)-4-methoxybenzene (**3cb**). yield 88% (223.6 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.21 (d, J = 7.6 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 2.28 (t, J = 2.4 Hz, 2H), 1.16 (q, J = 7.6 Hz, 2H), 0.74 (t, J = 7.6 Hz, 3H), 0.72 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 158.5, 154.3 (dd, ¹ J_{CF} = 286.6, 285.2 Hz), 129.6 (t, ³ J_{CF} = 2.8 Hz), 127.8 (dd, J_{CF} = 4.6, 2.6 Hz), 113.7, 90.4 (dd, ² J_{CF} = 21.4, 13.4 Hz), 55.2, 39.3, 35.2 (t, ³ J_{CF} = 2.4 Hz), 34.7, 26.6, 8.3; ¹⁹F NMR (376 MHz, CDCl₃): δ –90.7 (d, J = 44.0 Hz, 1F), -93.1 (d, J = 43.6 Hz, 1F); HRMS (EI) calcd for C₁₅H₂₀F₂O [M]⁺ 254.1482, found 254.1483.

N-(3-(1,1-difluoro-4,4-dimethylhex-1-en-2-yl)phenyl)acetamide (3gb). yield 45% (126.5 mg), yellow oil; ¹H

NMR (400 MHz, CDCl₃): δ 7.67 (s, 1H), 7.46–7.44 (m, 2H), 7.28–7.24 (m, 1H), 7.05 (d, J = 7.6 Hz, 1H), 2.30 (t, J = 2.2 Hz, 2H), 2.16 (s, 3H), 1.15 (q, J = 7.5 Hz, 2H), 0.73 (t, J = 7.6 Hz, 3H), 0.71 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 154.3 (dd, ¹ J_{CF} = 288.3, 285.9 Hz), 138.0, 136.6 (dd, ³ J_{CF} = 4.7, 2.6 Hz), 128.8, 124.5 (t, ⁴ J_{CF} = 2.3 Hz), 119.9 (t, ⁴ J_{CF} = 2.6 Hz), 118.5, 90.7 (dd, ² J_{CF} = 12.8, 21.6 Hz), 39.2, 35.2 (t, ³ J_{CF} = 2.4 Hz), 34.7, 26.5, 24.6, 8.3; ¹⁹F NMR(376 MHz, CDCl₃): δ –89.3 (d, J = 40.2 Hz, 1F), –91.5 (d, J = 39.9 Hz, 1F); HRMS (EI) calcd for C₁₆H₂₁F₂NO [M]⁺ 281.1591, found 281.1592.

1-Chloro-4-(1,1-difluoro-4,4-dimethylhex-1-en-2-yl)benzene (**3jb**). yield 75% (193.6 mg), light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.29 (m, 2H), 7.25–7.22 (m, 2H), 2.30 (t, J = 2.4 Hz, 2H), 1.15 (q, J = 7.5 Hz, 2H), 0.74 (t, J = 7.6 Hz, 3H), 0.72 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 154.3 (dd, ¹ J_{CF} = 288.4, 286.2 Hz), 134.2 (dd, ³ J_{CF} = 5.0, 2.7 Hz), 132.8, 129.8 (t, ⁴ J_{CF} = 2.8 Hz), 128.5, 90.2 (dd, ² J_{CF} = 22.1, 12.9 Hz), 39.2, 35.3 (t, ³ J_{CF} = 2.4 Hz), 34.7, 26.6, 8.3; ¹⁹F NMR (376 MHz, CDCl₃): δ –89.0 (d, J = 39.5 Hz, 1F), –91.5 (d, J = 39.9 Hz, 1F); HRMS (EI) calcd for C₁₄H₁₇ClF₂ [M]⁺ 258.0987, found 258.0989.

3-(1,1-Difluoro-4,4-dimethylhex-1-en-2-yl)benzonitrile (**3lb**). yield 84% (209.3 mg), yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.61–7.60 (m, 1H), 7.57–7.53 (m, 2H), 7.47–7.43 (m, 1H), 2.33 (t, J = 2.6 Hz, 2H), 1.16 (q, J = 7.6 Hz, 2H), 0.75 (t, J = 7.4 Hz, 3H), 0.72 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 154.6 (dd, ¹J _{CF}= 289.8, 287.6 Hz), 137.3 (dd, ³J_{CF} = 5.2, 2.8 Hz), 132.9 (t, ⁴J_{CF} = 2.8 Hz), 132.0 (t, ⁴J_{CF} = 3.0 Hz), 130.6, 129.2, 118.6, 112.7, 89.8 (dd, ²J_{CF} = 23.0, 12.4 Hz), 39.1, 35.4, 34.7, 26.5, 8.3; ¹⁹F NMR (376 MHz, CDCl₃): δ –87.4 (d, J = 36.5 Hz, 1F), –90.3 (d, J = 36.1 Hz, 1F); HRMS (EI) calcd for C₁₅H₁₇F₂N [M]⁺ 249.1329, found 249.1331.

4. ¹H, ¹³C, ¹⁹F NMR and HRMS (EI) spectra of the target compounds 3

¹H NMR spectrum of 3aa

89.122 89.230 91.774 91.881

¹³C NMR spectrum of 3ba

0.0

¹H NMR spectrum of 3ca

¹⁹F NMR spectrum of 3ca

¹H NMR spectrum of 3da

¹⁹F NMR spectrum of 3da

¹H NMR spectrum of 3ea

HRMS (EI) spectrum of 3ea

¹³C NMR spectrum of 3fa

¹⁹F NMR spectrum of 3fa

¹⁹F NMR spectrum of 3ga

89.288 289.395 291.640 291.746

-91.579

HRMS (EI) spectrum of 3ia

¹H NMR spectrum of 3ja

22 22 22 22 22 22 22 22 22 22 22 22 22	314
エエエエエエエエエ	NNN
	\checkmark

-0.796

¹³C NMR spectrum of 3ja

HRMS (EI) spectrum of 3ja

HRMS (EI) spectrum of 3ka

¹H NMR spectrum of 3ma

7233466688897272326000000000000000000000000000000000	14 00 14 00 14	20
0,0,0,0, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	4 4 4 4	œ.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0000	0



¹⁹F NMR spectrum of 3ma







#### ¹H NMR spectrum of 3na

473 473 473 473 473 473 473	333	340	923
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	$\langle 2^2$	$\nabla$	Ŷ

























¹³C NMR spectrum of 3gb





¹⁹F NMR spectrum of 3gb

-91.560









1233 1233 1233 1233 1233 1233 1233 1233	2.301 2.255 2.255	1.188 1.1164 1.127 0.762 0.743 0.715
	l	
21.0 × 01.2	2.00⊸	2.15 <del>1</del> 3.01 ≽ 5.98 ≽
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0	2.5 2.0	1.5 1.0 0.5 0.0
$= \frac{1}{2} \text{ (All is spectrum of 5)} $	/30.238 /35.301 /57.277	
	60 50 40	30 20 10 0 -10







#### HRMS (EI) spectrum of 3jb



1001 1551 1552 1555 1555 1555 1555 1555	$\left( 231 \atop 2231 \atop 2324 $	0.718 0.718 0.718 0.718 0.718
--------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------





#### ¹³C NMR spectrum of 3lb





#### HRMS (EI) spectrum of 3lb

