Supporting Information to

Highly Mono-selective *ortho*-Methylthiolation of Benzamides via Cobalt-catalyzed sp² C-H activation

Liang Hu,^{ab} Xiang Chen,^a Lin Yu,^a Yongqi Yu,^a Ze Tan^{a,*} Gangguo Zhu,^b and

Qingwen Gui c,*

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of

Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R.

China. E-mail: ztanze@gmail.com.

^b Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China. E-mail:gangguo@zjnu.cn

^c College of Science, Hunan Agricultural University, Changsha 410128, P. R. China.

E-mail: gqw1216@163.com

Table of Contents

1. General information

2. Typical procedure for the preparation of benzamides

3. Co-catalyzed methylthiolation of benzamides

3.1 Optimization of reaction conditions

3.2 General procedure for Co-catalyzed methylthiolation of benzamides

3.3 Deuterium-labeling experiments

3.4 Removal of directing group

4. Characterization data of products

1. General information

¹H NMR, ¹³C NMR and ¹⁹F NMR were recorded in CDCl₃ at room temperature on the Varian INOVA-400 spectrometer (400 MHz, ¹H). The ¹H NMR chemical-shifts scale is based on internal TMS. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; qui, quintet; sxt, sextet. The coupling constants, *J* are reported in Hertz (Hz). High-resolution mass spectral (HRMS) analyses were carried out using a TOF MS instrument with an ESI source.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Anhydrous $Co(acac)_3$ was purchased from Alfa Aesar. All solvents were purified and dried according to standard methods prior to use. Products were purified by flash column chromatography on 200-300 mesh silica gel, SiO₂.

2. Typical procedure for the preparation of benzamides

All benzamides were synthesized from the corresponding benzoic acids or benzoyl chlorides and 8-aminoquinoline. The deuterated amides were synthesized according to a literature method, spectral properties are consistent with literature values.¹ The following amides were synthesized according to literature procedures.²

3. Co-catalyzed methylthiolation of benzamides

3.1 Optimization of reaction conditions

Scheme S1 ineffective directing groups

Table S1. screaning of Co salts ^a

N Q	+S	Co salt, Ag ₂ CO ₃ Na ₂ CO ₃ , PhCOCI 150 °C, 24 h, N ₂	→
<u>1a</u>	2		3b
Entry		Co salts	yield ^b (%)
1		Co(OAc) ₂	27
2		Co(CO) ₃	<5
3		CoCl ₂	ND
4		CoBr ₂	ND
5		CoSO ₄	ND
6		Co(oxalate) ₂	trace
7		Co(NO ₃) ₂ .6H ₂ O	ND
8		Co(acac) ₂	13

^a Reaction conditions: amide **1a** (0.2 mmol), **2** (2 mL), Co salt (0.04 mmol), Ag_2CO_3 (0.4 mmol), Na_2CO_3 (0.4 mmol), PhCOCI (0.4 mmol), 150 °C, under N₂ for 24 h; ^b isolated yield.

Table S2	. screaning	of	different	purity	of	Co(acac) ₃	а
----------	-------------	----	-----------	--------	----	-----------------------	---

O=S_	Co(acac) ₃ , Ag ₂ CO ₃ Na ₂ CO ₃ , PhCOCI 150 °C, 24 h, N ₂	► N Q H SMe
2		3b
	purity/Co(acac) ₃	yield ^b (%)
	97%	76
	98%	78
	>98%	78
	0 S 2	Co(acac) ₃ , Ag ₂ CO ₃ Na ₂ CO ₃ , PhCOCl 150 °C, 24 h, N ₂ 2 purity/Co(acac) ₃ 97% 98% >98%

^a Reaction conditions: amide **1a** (0.2 mmol), **2** (2 mL), Co(acac)₃ 0.04 mmol), Ag₂CO₃ (0.4 mmol), Na₂CO₃ (0.4 mmol), PhCOCI (0.4 mmol), 150 °C, under N₂ for 24 h; ^b isolated yield.

Table S3. screaning of oxidant ^a

N ^Q +	O S S	Co(acac) ₃ , oxidant Na ₂ CO ₃ , PhCOCI 150 °C, 24 h, N ₂	O N H SMe
1a	2		3b
Entry		oxidant	yield ^b (%)
1		Mn(OAc) ₂	ND
2		NMO	ND
3		O ₂ (1 atm)	ND
4		Ag ₂ O	71
5		AgOAc	56
6		AgCF ₃ CO ₂	64

^a Reaction conditions: amide **1a** (0.2 mmol), **2** (2 mL), Co(acac)₃ (0.04 mmol), oxidant (0.4 mmol), Na₂CO₃ (0.4 mmol), PhCOCI (0.4 mmol), 150 ^oC, under N₂ for 24 h; ^b isolated yield.

Co(acac)₃, Ag₂CO₃ base, PhCOCI Qر N 150 °C, 24 h, N₂ SMe 2 3b 1a yield^b (%) Entry base 1 K_2CO_3 41 NaOPiv 2 43 3 KOAc 45 4 Cs_2CO_3 54 5 t-BuOK <5

 Table S4. screaning of base ^a

^a Reaction conditions: amide **1a** (0.2 mmol), **2** (2 mL), Co(acac)₃ (0.04 mmol), Ag₂CO₃ (0.4 mmol), base (0.4 mmol), PhCOCI (0.4 mmol), 150 $^{\circ}$ C, under N₂ for 24 h; ^b isolated yield.

Table S5. screaning of temperature ^a

N ^Q +	O=S	Co(acac) ₃ , Ag ₂ CO ₃ base, PhCOCI Temp., 24 h, N ₂	O N H SMe
1a	2		3b
Entry		Temp. (°C)	yield ^b (%)
1		R.T.	trace
2		60	<5
3		80	<5
4		100	<10
5		120	21
6		150	78

^a Reaction conditions: amide **1a** (0.2 mmol), **2** (2 mL), Co(acac)₃ (0.04 mmol), Ag₂CO₃ (0.4 mmol), Na₂CO₃ (0.4 mmol), PhCOCI (0.4 mmol), under N₂ for 24 h; ^b isolated yield.

3.2 General procedure for Co-catalyzed *ortho*-methylthiolation of Benzamides with DMSO:

Benzamide **1a** (0.2 mmol, 49.6 mg), anhydrous Co(acac)₃ (14 mg, 0.04 mmol), Ag₂CO₃ (110 mg, 0.4 mmol), Na₂CO₃ (42 mg, 0.4 mmol), PhCOCl (56 mg, 0.4 mmol) and anhydrous DMSO (2 mL) were added to a 25-mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. Then the flask was sealed under N₂ and stirred at 150 °C for 24 h. After the completion of the reaction, the solvent was evaporated under reduced pressure. The mixture was extracted with ethyl acetate, and the combined organic layer was dried over sodium sulfate. Concentration in vacuo followed by silica gel column purification with petroleum ether/ethyl acetate elutent (8/1 to 6/1) gave the desired product **3a** as a white solid (45.9 mg, 78% yield).

3.3 Deuterium-labeling experiments:

1a: 1a-d₅ = 1: 1 2

3a/3a-d₄

Intermolecular competition KIE Following general procedure: **1a** (50 mg, 0.2 mmol), **1a'**-*d*₅ (51 mg, 0.2 mmol), Co(acac)₃ (28 mg, 0.08 mmol), Ag₂CO₃ (220 mg, 0.8 mmol), Na₂CO₃ (84 mg, 0.8 mmol), PhCOCl (112 mg, 0.8 mmol) and anhydrous DMSO (4 mL) were added to a 25-mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. Then the flask was sealed under N₂ and stirred at 150 °C for 30 min. The product was separated by column chromatography to give the desired product less than 10 % yield. The KIE value was calculated as $k_H/k_D = 1.0$. Intermolecular parallel KIE Following general procedure: **1a** (50 mg, 0.2 mmol) or **1a'**-*d*₅ (51 mg, 0.2 mmol), Co(acac)₃ (14 mg, 0.04 mmol), Ag₂CO₃ (110 mg, 0.4 mmol), Na₂CO₃ (42 mg, 0.4 mmol), PhCOCl (56 mg, 0.4 mmol) and anhydrous DMSO (2 mL) were added to a 25-mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. Then the flask was sealed under N₂ and stirred at 150 °C for 30 min. The product was separated by column chromatography to give the desired product less than 12 % yield. The KIE value was calculated as $k_H/k_D = 1.2$.

3.4 Removal of the 8-aminoquinoline Auxiliary:

2-(methylthio)-N-(quinolin-8-yl)benzamide **3a** (294 mg, 1 mmol) was dissolved in anhydrous THF (10 mL) and the resulting solution was cooled to 0°C. To this solution, NaH (80 mg, 2 mmol) was added in portions over 10 min. The resulting solution was allowed to stir for 1.5 h. MeI (710 mg, 5 mmol) was added dropwise over 5 min, and reaction mixture was stirred for additional 3 hours at 0 °C and stirred overnight at rt. After the reaction was quenched by addition water, the mixture was extracted with Et₂O, and the organic layer was dried by anhydrous Na₂SO₄. After remove the solvent, the residue was purified by column chromatography to give intermediate **6** as a yellow solid (246 mg, 80%).Intermediate **6** (154 mg, 0.5 mmol) and NaOH (307 mg, 7.5 mmol) were dissolved in EtOH (5 ml). The resulting mixture was stirred at 130 °C for 48 hours. After that, reaction mixture was diluted with EtOAc (100 mL) and 1N HCl (30mL) was added. Organic layer was washed with 1N HCl (5 x 20 mL), dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under vacuum affording pure product as a faint yellow solid (56%). Its spectral properties are consistent with literature values.

4 Characterization data of products

2-(methylthio)-N-(quinolin-8-yl)benzamide (**3a**)

78% yield (45.9 mg); White solid, mp: 113–115 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.47 (s, 1H), 8.97 (d, *J* = 7.3 Hz, 1H), 8.79 (d, *J* = 7.2 Hz, 1H), 8.17 (d, *J* = 8.2 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.61–7.53 (m, 2H), 7.48–7.39 (m, 3H), 7.30–7.26

(m, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 148.2, 138.7, 138.7, 136.3, 135.3, 134.6, 130.9, 128.1, 128.0, 127.4, 126.9, 124.9, 121.8, 121.6, 116.8, 16.5; HRMS (ESI) calcd for C₁₇H₁₅N₂OS[M + H]⁺ 295.0905, Found 295.0888.

2-methyl-6-(methylthio)-N-(quinolin-8-yl)benzamide (3b)

73% yield (45.0 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 9.02 (d, J = 7.3 Hz, 1H), 8.75 (d, J = 3.1 Hz, 1H), 8.18 (d, J = 8.2 Hz, 1H), 7.63–7.56 (m, 2H), 7.46–7.42 (m, 1H), 7.33–7.30 (m, 1H), 7.26–7.24 (m, 1H), 7.12 (d, J = 7.4 Hz, 1H), 2.47 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 148.3, 138.5, 138.2, 136.3, 135.6, 135.6, 134.6, 129.5, 128.0, 127.8, 127.5, 125.6, 122.0, 121.6, 116.9, 19.5, 17.5; HRMS (ESI) calcd for C₁₈H₁₇N₂OS[M + H]⁺ 309.1062, Found 309.1033.

2-fluoro-6-(methylthio)-N-(quinolin-8-yl)benzamide (3c)

67% yield (41.8 mg); White solid, mp: 118–120 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 8.99 (d, J = 7.0 Hz, 1H), 8.79 (d, J = 1.6 Hz, 1H), 8.17 (d, J = 8.2 Hz, 1H), 7.62–7.55 (m, 2H), 7.47–7.37 (m, 2H), 7.14 (d, J = 8.0 Hz, 1H), 6.99 (t, J = 8.8 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 159.6 (d, J = 247.9 Hz), 148.3, 140.9 (d, J = 3.5 Hz), 138.5, 136.3, 134.3, 131.2 (d, J = 9.2 Hz), 130.1, 128.2 (d, J = 47.2 Hz), 127.4, 122.2, 122.1 (d, J = 3.0 Hz), 121.6, 117.1, 112.5 (d, J = 22.7 Hz), 16.6; ¹⁹F NMR (376 MHz, CDCl₃) δ - 114.0; HRMS (ESI) calcd for C₁₇H₁₄FN₂OS[M + H]⁺ 313.0811, Found

313.0803.

2-(methylthio)-N-(quinolin-8-yl)-6-(trifluoromethyl)benzamide (3d)

63% yield (45.6 mg); White solid, mp: 132–134 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 8.98 (d, J = 7.0 Hz, 1H), 8.75 (s, 1H), 8.18 (d, J = 8.2 Hz, 1H), 7.63–7.53 (m, 5H), 7.46–7.43 (m, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 148.3, 138.7, 138.5, 136.3, 135.5 (q, J = 1.8 Hz), 134.1, 131.1, 129.8, 128.1 (q, J = 31.7 Hz), 128.0, 127.4, 123.5 (q, J = 272.7 Hz), 123.2 (q, J = 4.7 Hz), 122.3, 121.7, 117.1, 17.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.08; HRMS (ESI) calcd for C₁₈H₁₄F₃N₂OS[M + H]⁺ 363.0779, Found 363.0757.

2,6-bis(methylthio)-N-(quinolin-8-yl)benzamide (3e)

SMe O A (41.5 mg); White solid, mp: 123–125 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 9.03 (d, J = 7.4 Hz, 1H), 8.75 (d, J = 3.2 Hz, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.63–7.54 (m, 2H), 7.43 (dd, J = 8.2, 4.1 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.26–7.21 (m, 2H), 2.47 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 148.2, 138.6, 137.8, 136.9, 136.3, 134.4, 129.9, 128.0, 127.5, 125.0, 122.0, 121.6, 117.1, 17.3; HRMS (ESI) calcd for C₁₈H₁₇N₂OS₂[M + H]⁺ 341.0782, Found 341.0764.

5-methyl-2-(methylthio)-N-(quinolin-8-yl)benzamide (3f)

77% yield (47.4 mg); White solid, mp: 130–132 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.48 (s, 1H),

5-chloro-2-(methylthio)-N-(quinolin-8-yl)benzamide (3g)

2-(methylthio)-N-(quinolin-8-yl)-5-(trifluoromethyl)benzamide (3h)

71% yield (51.4 mg); White solid, mp: 134–136 °C (from ethyl F_3C P_4 acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.46 (s, 1H), 8.93 (d, J = 6.9 Hz, 1H), 8.81 (d, J = 3.8 Hz, 1H), 8.18 (d, J = 8.2 Hz, 1H), 7.97 (s, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.63–7.54 (m, 2H), 7.48–7.43 (m, 2H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 148.4, 143.9, 138.6, 136.3, 135.0, 134.1, 127.9, 127.3, 127.3, 126.8 (q, J = 32.2 Hz), 125.9, 124.9 (q, J = 3.7 Hz), 123.8 (q, J = 270.2 Hz), 122.3, 121.7, 117.0, 15.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3; HRMS (ESI) calcd for C₁₈H₁₄F₃N₂OS[M + H]⁺ 363.0779, Found 363.0769.

5-methoxy-2-(methylthio)-N-(quinolin-8-yl)benzamide (3i)

4-methyl-2-(methylthio)-N-(quinolin-8-yl)benzamide (3j)

79% yield (48.7 mg); White solid, mp: 124–126 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.51 (s, 1H), 8.96 (d, *J* = 7.4 Hz, 1H), 8.80 (s, 1H), 8.17 (d, *J* = 8.2 Hz, 1H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.61–7.53 (m, 2H), 7.48–7.44 (m, 1H), 7.19 (s, 1H), 7.09 (d, *J* = 7.7 Hz, 1H), 2.50 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 148.2, 141.3, 138.7, 138.7, 136.3, 134.7, 132.2, 128.2, 128.0, 127.5, 127.3, 125.7, 121.7, 121.6, 116.7, 21.6, 16.5; HRMS (ESI) calcd for C₁₈H₁₇N₂OS[M + H]⁺ 309.1062, Found 309.1095.

4-ethyl-2-(methylthio)-N-(quinolin-8-yl)benzamide (3k)

7.12 (d, J = 7.7 Hz, 1H), 2.72 (q, J = 7.4 Hz, 2H), 2.51 (s, 3H), 1.29 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 148.2, 147.6, 138.7, 138.6, 136.3, 134.7, 132.5, 128.3, 128.0, 127.5, 126.4, 124.5, 121.7, 121.6, 116.7, 28.9, 16.6, 15.4; HRMS (ESI) calcd for C₁₉H₁₉N₂OS[M + H]⁺ 323.1218, Found 323.1205.

4-(tert-butyl)-2-(methylthio)-N-(quinolin-8-yl)benzamide (31)

74% yield (51.8 mg); White solid, mp: 135–137 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.54 (s, 1H), 8.98 (d, *J* = 7.4 Hz, 1H), 8.79 (d, *J* = 1.8 Hz, 1H), 8.17 (d, *J* = 8.2 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.61–7.53 (m, 2H), 7.46–7.44 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 1H), 2.52 (s, 3H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 154.3, 148.2, 138.7, 137.9, 136.3, 134.7, 132.6, 128.2, 128.0, 127.5, 124.5, 122.4, 121.7, 121.6, 116.7, 35.2, 31.1, 16.9; HRMS (ESI) calcd for C₂₁H₂₃N₂OS[M + H]⁺ 351.1531, Found 351.1504.

4-methoxy-2-(methylthio)-N-(quinolin-8-yl)benzamide (3m)

82% yield (53.1 mg); White solid, mp: 142–144 °C (from ethyl A acetate/petroleum ether = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), A acetate/petroleum ether = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 8.95 (d, *J* = 7.5 Hz, 1H), 8.80 (d, *J* = 4.0 Hz, 1H), 8.17 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 8.5 Hz, 1H), 7.60–7.51 (m, 2H), 7.45 (dd, *J* = 8.1, 4.1 Hz, 1H), 6.89 (s, 1H), 6.79 (d, *J* = 8.5 Hz, 1H), 3.89 (s, 3H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 161.6, 148.2, 141.6, 138.7, 136.3, 134.8, 130.0, 128.0, 127.5, 127.1, 121.5, 121.5, 116.6, 112.7, 109.2, 55.5, 16.4; HRMS (ESI) calcd for C₁₈H₁₇N₂O₂S[M + H]⁺ 325.1011, Found 325.0999. 4-fluoro-2-(methylthio)-N-(quinolin-8-yl)benzamide (3n)

$$\begin{array}{l} \text{(43.6 mg)}, \text{ white solid, mp: 131=133 C (from entryl acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $^{1}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $1^{2}\text{H} NMR (400 MHz, CDCl_3) δ 10.45 (s, 1H), \\ \textbf{acetate/petroleum ether = 12:1); $1^{2}\text{H} NMR (400 MHz, CDCl_3) δ -108.4; $HRMS (ESI) calcd for \\ \textbf{acetate/petroleum ether = 12:1); $1^{2}\text{H} N_2OS[M + H]^+ 313.0811; Found 313.0784. \\ \end{array}$$

11.1

4-chloro-2-(methylthio)-N-(quinolin-8-yl)benzamide (30)

70% yield (45.9 mg); White solid, mp: 132-134 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.46 (s, 1H), 8.93 (d, *J* = 7.0 Hz, 1H), 8.80 (d, *J* = 1.3 Hz, 1H), 8.19 (d, *J* = 8.2 Hz, 1H), 7.71 (d, *J* = 8.1 Hz, 1H), 7.61–7.55 (m, 2H), 7.48–7.46 (m, 1H), 7.32 (s, 1H), 7.25 (d, *J* = 8.8 Hz, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 148.3, 141.4, 138.6, 137.3, 136.4, 134.3, 132.8, 129.2, 127.9, 127.4, 125.9, 124.7, 122.0, 121.7, 116.8, 16.3; HRMS (ESI) calcd for C₁₇H₁₄ClN₂OS[M + H]⁺ 329.0515, Found 329.0499.

4-bromo-2-(methylthio)-N-(quinolin-8-yl)benzamide (3p)

63% yield (46.9 mg); White solid, mp: 136–138 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.46 (s, 1H), 8.93 (d, J = 7.0 Hz, 1H), 8.80 (d, J = 1.7 Hz, 1H), 8.19 (d, J = 8.1

Hz, 1H), 7.65–7.55 (m, 3H), 7.48–7.46 (m, 2H), 7.41 (d, J = 8.1 Hz, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 148.3, 138.6, 136.4, 134.3, 133.4, 129.4, 128.8, 128.0, 127.7, 127.4, 125.6, 124.7, 122.0, 121.7, 116.8, 16.3; HRMS (ESI) calcd for C₁₇H₁₄BrN₂OS[M + H]⁺ 373.0010, Found 372.9986.

2-(methylthio)-N-(quinolin-8-yl)-4-(trifluoromethyl)benzamide (3q)

 $67\% \text{ yield } (48.5 \text{ mg}); \text{ White solid, mp: } 141-143 \text{ °C } (from ethyl or ethyl or ethyl or ethyl or ethyl ether = 12:1); } P_{3}C_{3q}$ $F_{3}C_{3q} = 6.5 \text{ Hz}, 11\text{ H}, 8.82 \text{ (s, 1H)}, 8.19 \text{ (d, } J = 8.1 \text{ Hz}, 11\text{ H}, 7.97 \text{ (s, 1H)}, 7.69 \text{ (d, } J = 8.3 \text{ Hz}, 11\text{ H}), 7.64-7.55 \text{ (m, 2H)}, 7.49-7.44 \text{ (m, 2H)}, 2.53 \text{ (s, 3H)};$ $^{13}C \text{ NMR } (100 \text{ MHz}, \text{ CDCl}_3) \delta 165.1, 148.4, 143.9, 138.6, 136.4, 135.1, 134.2, 128.0, 127.4, 127.3, 126.9 \text{ (q, } J = 32.9 \text{ Hz}), 126.0, 124.9 \text{ (q, } J = 3.7 \text{ Hz}), 123.8 \text{ (q, } J = 270.2 \text{ Hz}), 122.3, 121.8, 117.0, 16.0; } P_{19} \text{ NMR } (376 \text{ MHz}, CDCl_3) \delta -62.3; \text{ HRMS } (ESI) \text{ calcd for } C_{18}H_{14}F_{3}N_{2}OS[M + H]^{+} 363.0779, Found 363.0757.$

3-(methylthio)-N-(quinolin-8-yl)-[1,1'-biphenyl]-4-carboxamide (3r)

72% yield (53.3 mg); White solid, mp: 143–145 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.58 (s, 1H), 8.99 (d, J = 7.3 Hz, 1H), 8.82 (d, J = 1.7 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.67–7.55 (m, 5H), 7.50–7.41 (m, 5H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 148.3, 144.0, 140.1, 139.4, 138.7, 136.4, 134.6, 133.7, 129.0, 128.7, 128.1, 128.0, 127.5, 127.3, 125.6, 123.8, 121.8, 121.6, 116.8, 16.6; HRMS (ESI) calcd for C₂₃H₁₉N₂OS[M + H]⁺

371.1218, Found 371.1207.

4,5-dichloro-2-(methylthio)-N-(quinolin-8-yl)benzamide (3s)

63% yield (45.6 mg); White solid, mp: 136–138 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.47 (s, 1H), 8.90 (d, J = 5.7 Hz, 1H), 8.82 (s, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.84 (s, 1H), 7.59–7.55 (m, 2H), 7.48 (dd, J = 7.3, 3.8 Hz, 1H), 7.41 (s, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 148.4, 139.0, 138.6, 136.4, 134.1, 130.8, 129.8, 129.6, 128.9, 128.0, 127.4, 127.4, 122.3, 121.8, 117.0, 16.6; HRMS (ESI) calcd for C₁₇H₁₃Cl₂N₂OS[M + H]⁺ 363.0126, Found 363.0121.

4-(methylthio)-N-(quinolin-8-yl)benzo[d][1,3]dioxole-5-carboxamide (3t)

SMe O

$$A$$
 yield (52.1 mg); White solid, mp: 147–149 °C (from ethyl
acetate/petroleum ether = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 10.64 (s,
3t
1H), 8.95 (d, J = 7.1 Hz, 1H), 8.80 (d, J = 3.6 Hz, 1H), 8.18 (d, J = 8.2 Hz,
1H), 7.62–7.53 (m, 2H), 7.46 (dd, J = 8.1, 4.1 Hz, 1H), 7.40 (d, J = 8.0 Hz,
1H), 6.85 (d, J = 8.0 Hz, 1H), 6.12 (s, 2H), 2.54 (s, 3H); ¹³C NMR (100
MHz, CDCl₃) δ 166.5, 154.9, 148.9, 148.2, 138.7, 136.3, 134.8, 134.3,
133.2, 128.0, 127.5, 123.5, 121.7, 121.6, 116.8, 107.5, 100.7, 18.2; HRMS
(ESI) calcd for C₁₈H₁₅N₂O₃S[M + H]⁺ 339.0803, Found 339.0691.

2-(methylthio)-N-(quinolin-8-yl)-1-naphthamide (**3u**)

Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.66 (t, J = 7.9 Hz, 1H), 7.60–7.57 (m, 2H), 7.50–7.47 (m, 2H), 7.41 (dd, J = 8.2, 4.1 Hz, 1H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 148.3, 138.5, 136.3, 135.4, 134.5, 132.9, 131.7, 130.5, 129.9, 128.0, 127.7, 127.5, 126.1, 126.1, 124.8, 122.1, 121.6, 117.0, 17.8; HRMS (ESI) calcd for C₂₁H₁₇N₂OS[M + H]⁺ 345.1062, Found 345.1050.

3-(methylthio)-N-(quinolin-8-yl)-2-naphthamide (3v)

3-(methylthio)-N-(quinolin-8-yl)thiophene-2-carboxamide (3w)

56% yield (33.6 mg); White solid, mp: 106–108 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 11.49 (s, 1H), 8.91 (d, *J* = 7.3 Hz, 1H), 8.85 (d, *J* = 3.8 Hz, 1H), 8.16 (d, *J* = 8.2 Hz, 1H), 7.60–7.50 (m, 3H), 7.45 (dd, *J* = 8.0, 4.1 Hz, 1H), 7.15 (d, *J* = 5.1 Hz, 1H), 2.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

160.2, 148.3, 139.0, 136.3, 136.2, 134.9, 134.7, 130.6, 129.3, 128.0, 127.4, 121.8, 121.5, 117.3, 18.9; HRMS (ESI) calcd for $C_{15}H_{13}N_2OS_2[M + H]^+$ 301.0469, Found 301.0442.

2-(ethylthio)-N-(quinolin-8-yl)benzamide (**3x**)

72% yield (44.4 mg); White solid, mp: 123–125 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.55 (s, 1H), 8.98 (d, J = 7.4 Hz, 1H), 8.78 (d, J = 3.6 Hz, 1H), 8.17 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.61–7.53 (m, 2H), 7.48–7.42 (m, 3H), 7.31 (t, J = 7.3 Hz, 1H), 2.99 (q, J = 7.3 Hz, 2H), 1.33 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 148.2, 138.7, 136.6, 136.4, 136.3, 134.7, 130.7, 129.2, 128.5, 128.0, 127.4, 125.6, 121.8, 121.6, 116.8, 27.9, 13.8; HRMS (ESI) calcd for C₁₈H₁₇N₂OS[M + H]⁺ 309.1062, Found 309.1041.

2-(ethylthio)-5-methyl-N-(quinolin-8-yl)benzamide (3y)

70% yield (45.1 mg); White solid, mp: 126–128 °C (from ethyl acetate/petroleum ether = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 10.60 (s, 1H), 8.98 (d, J = 7.4 Hz, 1H), 8.79 (d, J = 3.7 Hz, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.60–7.53 (m, 3H), 7.44 (dd, J = 8.2, 4.1 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 8.8 Hz, 1H), 2.95 (q, J = 7.3 Hz, 2H), 2.40 (s, 3H), 1.29 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 148.2, 138.7, 137.5, 136.3, 136.3, 134.8, 131.7, 131.5, 130.8, 129.4, 128.0, 127.4, 121.8, 121.6, 116.9, 28.7, 20.9, 14.0; HRMS

2-(ethylthio)-4-methoxy-N-(quinolin-8-yl)benzamide (3z)

74% yield (50.0 mg); White solid, mp: 132–134 °C (from ethyl acetate/petroleum ether = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 10.66 (s, 1H), 8.96 (d, *J* = 7.5 Hz, 1H), 8.80 (d, *J* = 3.5 Hz, 1H), 8.17 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 8.5 Hz, 1H), 7.61–7.52 (m, 2H), 7.45 (dd, *J* = 8.2, 4.1 Hz, 1H), 6.97 (s, 1H), 6.82 (d, *J* = 8.6 Hz, 1H), 3.88 (s, 3H), 2.98 (q, *J* = 7.4 Hz, 2H), 1.35 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 161.3, 148.2, 139.2, 138.8, 136.3, 134.9, 130.5, 129.2, 128.3, 128.0, 127.5, 121.5, 116.7, 114.7, 110.2, 55.5, 27.7, 13.6; HRMS (ESI) calcd for C₁₉H₁₉N₂O₂S[M + H]⁺ 339.1167, Found 339.1140.

2-(methylthio)-N-(quinolin-8-yl)cyclopent-1-enecarboxamide (5a)

77% yield (43.7 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 10.01
(s, 1H), 8.93 (d, $J = 7.5$ Hz, 1H), 8.79 (d, $J = 4.1$ Hz, 1H), 8.14 (d, $J = 8.2$ Hz, 1H), 7.56–7.41 (m, 3H), 2.99 (t, $J = 7.1$ Hz, 2H), 2.90 (t, $J = 7.0$ Hz, 2H), 2.40 (s, 3H), 2.19–2.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ
164.0, 154.4, 148.0, 136.3, 134.8, 127.9, 127.5, 125.9, 121.4, 121.0, 116.3, 100.0, 37.1, 33.0, 22.1, 15.2; HRMS (ESI) calcd for C₁₆H₁₇N₂OS[M + H]⁺285.1062, Found 285.1036.

2-(methylthio)-N-(quinolin-8-yl)cyclohex-1-enecarboxamide (5b)

63% yield (37.5 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 8.90 (d, J = 7.5 Hz, 1H), 8.82–8.80 (m, 1H), 8.16 (d, J =

Found 299.1210.

(Z)-2-methyl-3-(methylthio)-N-(quinolin-8-yl)pent-2-enamide (5c)

61% yield (34.9 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 10.07 (s, 1H), 8.87 (d, J = 7.2 Hz, 1H), 8.81 (s, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.58–7.50 (m, 2H), 7.45 (dd, J = 7.7, 4.0 Hz, 1H), 2.47 (q, J = 7.4 Hz, 2H), 2.27 (s, 3H), 2.15 (s, 3H), 1.20 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 148.1, 140.7, 138.6, 136.3, 134.7, 131.1, 128.0, 127.5, 121.5, 121.4, 116.5, 25.2, 17.0, 16.1, 12.7; HRMS (ESI) calcd for C₁₆H₁₉N₂OS[M + H]⁺287.1218, Found 287.1236.

(Z)-2-methyl-3-(methylthio)-N-(quinolin-8-yl)acrylamide (5d)

 $\begin{array}{c} 65\% \text{ yield } (33.5 \text{ mg}); \text{ colorless oil; } ^{1}\text{H} \text{ NMR } (400 \text{ MHz, CDCl}_3) \ \delta \\ 10.26 \ (\text{s}, 1\text{H}), 8.93 \ (\text{d}, J = 7.3 \text{ Hz}, 1\text{H}), 8.80 \ (\text{d}, J = 3.4 \text{ Hz}, 1\text{H}), 8.16-\\ \textbf{5d} \\ \textbf{5d} \\ 8.11 \ (\text{m}, 1\text{H}), 7.54-7.44 \ (\text{m}, 3\text{H}), 6.74 \ (\text{s}, 1\text{H}), 2.37 \ (\text{s}, 3\text{H}), 2.29 \ (\text{s}, 3\text{H}); ^{13}\text{C} \text{ NMR } (100 \text{ MHz, CDCl}_3) \ \delta 165.7, 148.1, 144.3, 138.7, 136.3, \\ 130.2, 128.5, 127.5, 122.3, 121.5, 121.3, 116.5, 19.9, 19.5; \text{HRMS } (\text{ESI}) \\ \text{calcd for } \text{C}_{14}\text{H}_{15}\text{N}_2\text{OS}[\text{M} + \text{H}]^+ 259.0905, \text{Found } 259.0893. \end{array}$

References

- 1. A. M. Suess, M. Z. Ertem, C. J. Cramer and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 9797.
- (a) L. D. Tran, I. Popov and O. Daugulis, J. Am. Chem. Soc., 2012, 134, 18237; (b) T. Truong,
 K. Klimovica and O. Daugulis, J. Am. Chem. Soc., 2013, 135, 9342; (c) L. D. Tran, J. Roane and
 O. Daugulis, Angew. Chem., Int. Ed., 2013, 52, 6043; (d) J. Roane and O. Daugulis, Org. Lett.,
 2013, 15, 5842; (e) M. Nishino, K. Hirano, T. Satoh and M. Miura, Angew. Chem., Int. Ed.,
 2013, 52, 4457.
- 3. A. Yokota, Y. Aihara and N. Chatani, J. Org. Chem., 2014, 79, 11922.

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

140 130 120 110 100 90 f1 (ppm))0 (

120 110 100 90 f1 (ppm))0 150 140 130 (

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

 (

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

10 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

--2.6068

140 130 120 110 100 90 fl (ppm) (

140 130 120 110 100 90 f1 (ppm))0 (

120 110 100 90 fl (ppm) (

110 100 fl (ppm) 140 130 120 (

