# **Supporting information**

# for

### Transition-metal-free, visible-light-induced oxidative cross-coupling

### for constructing $\beta$ -acetylamino acrylosulfones from sodium sulfinates

### and enamides

Deli Sun<sup>a</sup> and Ronghua Zhang\*ab

<sup>a</sup>School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
<sup>b</sup>Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China

Corresponding author. E-mail: rhzhang@tongji.edu.cn

## Table of contents

| General Information          | S2         |
|------------------------------|------------|
| Experimental section         | S2         |
| Characterization of Products | <b>S</b> 8 |
| Reference                    | S20        |
| Copies of NMR Spectra        | S21        |

#### **General Information**

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Anhydrous solvents (including MeCN, DCM, DMSO, Me<sub>2</sub>CO, THF and DMF) and CDCl<sub>3</sub> were purchased from Energy Chemical. Materials (used as received commercially available chemicals) were obtained from Bidepharmatech Ltd., Energy Chemical, Aladdin®, Meryer (Shanghai) Chemical Technology Co., Ltd, and used as received unless otherwise stated. <sup>1</sup>H, <sup>19</sup>F and <sup>13</sup>C NMR spectra were recorded on a 400 MHz Bruker spectrometer (<sup>1</sup>H 400 MHz, <sup>19</sup>F 376, <sup>13</sup>C 101 MHz). Chemical shifts (δ) for <sup>1</sup>H, <sup>19</sup>F and <sup>13</sup>C spectra are given in ppm relative to TMS. The residual solvent signals were used as references for <sup>1</sup>H and <sup>13</sup>C NMR spectra and the chemical shifts were converted to the TMS scale (CDCl<sub>3</sub>:  $\delta H =$ 7.26 ppm,  $\delta C = 77.16$  ppm; DMSO- $d_6$ ,  $\delta H = 2.50$ ppm,  $\delta C = 39.52$  ppm). The following abbreviations were used to indicate multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet, coupling constant in Herts (Hz) and integration. HRMS (ESI) spectra was recorded on ThermoFisher MicroTOF II. TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm. Silica gel (200-300 mesh) and silica gel GF254 (10-40 µm) were used for column chromatography and preparative thin layer chromatography (PTLC), respectively. For irradiation with green light was performed using High Power 530 nm 5W® TaoYuan LED (5W,  $\lambda = 530 \pm 10$  nm, 700mA).

#### **Experimental section**

#### Substrate synthesis

1a-1n were synthesized using reported methods.<sup>[1]</sup>

The sodium salts of alkyl and aryl sulfonates **2** were synthesized following the reported methods.<sup>[2]</sup>

#### **Optimization of reaction conditions**



<sup>*a*</sup> Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), photocatalyst (2.5 mol %), oxidant, solvent (2 mL), 5 W green LEDs, rt, air, 17 h. <sup>*b*</sup> Isolated yield of the product **3a**. <sup>*c*</sup> Without light irradiation. <sup>*d*</sup> Under N<sub>2</sub>. <sup>*e*</sup> Under air. <sup>*f*</sup> Without oxidant under N<sub>2</sub>. <sup>*s*</sup> 5 W blue LEDs, rt, air.

#### General Procedure for the Synthesis of 3:

A mixture of 1 (0.2 mmol), 2 (0.6 mmol), nitrobenzene (49 mg, 0.4 mmol) and RB (2.5 mol%) in DMF/H<sub>2</sub>O (2.0 mL, v/v=3:1) was illuminated with a commercially available green LEDs (5 W LED light bulbs 8 cm away from the vial) and stirred under an air atmosphere at room temperature for 17 h. After the reaction was completed (monitored by TLC), water was added and the mixture was extracted with ethyl acetate (20 mL x 4). The combined organic layer was washed with water (10 mL x 4), brine (10 mL x 3), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by PTLC to afford **3a -3x**.

#### **Gram-scale experiments**

To a clear-colored glass round bottom flask equipped with a stir bar was added **2a** (2.95g, 18 mmol), RB (2.5 mol%) and DMF/H<sub>2</sub>O (60 mL), followed by **1a** (1.123 g, 6 mmol) and nitrobenzene (1.476 g, 12 mmol). The reaction mixture was then illuminated with green LEDs (2 x 5 W LED light bulbs 8 cm away from the flask) and stirred at room temperature under air atmosphere. The reaction was observed by TLC. After the reaction was completed, water (30 mL) was added and the mixture was extracted with ethyl acetate (60 mL x 4). The combined organic layer was washed with water (40 mL x 4), brine (40 mL x 4), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel (PE/EA= 5:1 to 1:1) to afford the desired product **3a** (1.691 g, 86%).

#### Hydrolyzation

To a clear glass equipped with a stir bar was added **3a** (65 mg, 0.2 mmol), dioxane (1 mL) and HCl solution (1 mL, 5 M in H<sub>2</sub>O). The mixture was stirred at 80 °C. After the reaction was completed (monitored by TLC), water (10 mL) was added and the mixture was extracted with ethyl acetate (10 mL x 3). The combined organic layer was washed with water (10 mL x 3), brine (10 mL x 2), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by PTLC to afford the desired product **4a** (43 mg, 75%).

#### Oxidation

To a clear glass equipped with a stir bar was added **3a** (65 mg, 0.2 mmol), toluene (3 mL) and DDQ (227 mg, 1 mmol). The mixture was stirred at reflux. After the reaction was completed (monitored by TLC), water (10 mL) was added and the mixture was extracted with ethyl acetate (10 mL x 3). The combined organic layer was washed with water (10 mL x 3), brine (10 mL x 2), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by PTLC to afford the desired product **5a** (46 mg, 71%).

#### **Control Experiment**

#### **Reaction condition 1:**

A mixture of 1a (0.2 mmol), 2a (38 mg, 0.6 mmol), nitrobenzene (50 mg, 0.4 mmol)

and RB (2.5 mol%) and DMF/H<sub>2</sub>O (2.0 mL) was added in Schlenk tube. The Schlenk tube was deaerated by vacuum until the bubble was disappear, then cooled by liquid nitrogen and exchanged adequately by N<sub>2</sub> (about 10 times), irradiation with a commercially available green LEDs (5 W LED light bulbs 8 cm away from the tube) and stirred at room temperature for 18 h. After the reaction was completed (monitored by TLC), water was added and the mixture was extracted with ethyl acetate (20 mL x 4). The combined organic layer was washed with water (10 mL x 4), brine (10 mL x 3), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by PTLC to afford the desired product **3a** in 87% yield. Nitrobenzene (19 mg, 38%) and azoxybenzen<sup>[3]</sup> (11 mg, 28%) were obtained.

#### **Reaction condition 2:**

A mixture of **1a** (0.2 mmol), **2a** (38 mg, 0.6 mmol), nitrobenzene (50 mg, 0.4mmol) and RB (2.5 mol%) in DMF/H<sub>2</sub>O (2.0 mL) was illuminated with a commercially available green LEDs (5 W LED light bulbs 8 cm away from the vial) and stirred under an air atmosphere at room temperature for 17 h. After the reaction was completed (monitored by TLC), water was added and the mixture was extracted with ethyl acetate (20 mL x 4). The combined organic layer was washed with water (10 mL x 4), brine (10 mL x 3), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by PTLC to afford the desired product **3a** in 89% yield and nitrobenzene 91% recovered.

#### **TEMPO** as radical scavenger

To a clear-colored glass vial equipped with a stir bar was added the **2a** (98 mg, 0.6 mmol), RB (2.5 mol%). DMF/H<sub>2</sub>O (2 mL) was then added, followed by **1a** (38 mg, 0.2 mmol), nitrobenzene (49 mg, 0.4 mmol) and TEMPO (63 mg, 0.4 mmol). The reaction was then illuminated with green LEDs (5 W LED light bulbs 8 cm away from the vial) and stirred at room temperature for 17 h. Then, water was added and the mixture was extracted with ethyl acetate (20 mL x 4). The combined organic layer was washed with water (10 mL x 4), brine (10 mL x 3), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by PTLC to recover the substrate **1a** (33 mg, 87%).

#### Light/Dark Experiments<sup>[4]</sup>

A mixture of **1a** (76 mg, 0.4 mmol), **2a** (196 mg, 1.2 mmol), nitrobenzene (99 mg, 0.8 mol) and RB (2.5 mol%) in DMF/H<sub>2</sub>O (4.0 mL) was illuminated with a commercially available green LEDs (5 W LED light bulbs 8 cm away from the vial) and stirred under an air atmosphere at room temperature for 17 h. The lights were removed and the reaction vial was completely covered in aluminum foil during the following time increments: 2-14 h. Aliquots of 0.2 mL were taken at each of the times listed in the table below, water was added and the mixture was extracted with ethyl acetate (10 mL x 3). The combined organic layer was washed with water (10 mL x 4), brine (10 mL x 2), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residues were diluted with DMSO- $d_6$  and analyzed by <sup>1</sup>H-NMR spectroscopy based on 1-bromo-4-methylbenzene as an internal standard.





**Characterization of Products** 



N-(2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.51 (s, 1H), 7.98 – 7.91 (m, 2H), 7.71 (t, J = 7.3 Hz, 1H), 7.63 (t, J = 7.6 Hz, 2H), 7.31 (td, J = 7.1, 1.9 Hz, 1H), 7.30 – 7.16 (m, 3H), 2.73 (t, J = 7.7 Hz, 2H), 2.59 (t, J = 7.8 Hz, 2H), 2.01 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  169.02, 140.81, 140.22, 136.66, 133.62, 130.91, 130.59, 130.23, 129.30, 127.59, 127.17, 126.64, 125.38, 26.85, 23.37, 22.77. HRMS (ESI) *m*/*z* [M+Na]<sup>+</sup> calculated for C<sub>18</sub>H<sub>17</sub>NNaO<sub>3</sub>S 350.0824, found 350.0821.



N-(7-bromo-2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.54 (s, 1H), 7.94 (d, J = 7.7 Hz, 2H), 7.72 (t, J = 7.4 Hz, 1H), 7.64 (t, J = 7.6 Hz, 2H), 7.50 (dd, J = 8.0, 2.1 Hz, 1H), 7.33 (d, J = 2.1 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 2.70 (t, J = 7.6 Hz, 2H), 2.59 (t, J = 7.8 Hz, 2H), 2.02 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.24, 140.44, 138.75, 135.94, 133.81, 133.25, 132.69, 132.37, 129.81, 129.38, 127.46, 127.24, 119.51, 26.25, 23.22, 22.77. HRMS (ESI) *m*/*z* [M+Na]<sup>+</sup> calculated for C<sub>18</sub>H<sub>16</sub>BrNNaO<sub>3</sub>S 427.9919, found 427.9926.



N,N'-(2-(phenylsulfonyl)-3,4-dihydronaphthalene-1,7-diyl)diacetamide <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 9.96 (s, 1H), 9.55 (s, 1H), 7.93 (d, *J* = 7.6 Hz, 2H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.63 (t, *J* = 7.2 Hz, 3H), 7.46 (d, *J* = 2.3 Hz, 1H), 7.11 (d, *J* = 8.2 Hz, 1H), 2.66 (t, *J* = 7.5 Hz, 2H), 2.56 (t, *J* = 7.6 Hz, 2H), 2.00 (d, *J* = 2.8 Hz, 6H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  168.91, 168.23, 140.79, 140.29, 138.06, 133.63, 131.21, 131.06, 130.91, 129.30, 127.72, 127.16, 120.61, 116.06, 26.25, 23.95, 23.59, 22.74. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>20</sub>H<sub>20</sub>N<sub>2</sub>NaO<sub>4</sub>S 407.1033, found 407.1036.



N-(7-methoxy-2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.49 (s, 1H), 7.97 – 7.90 (m, 2H), 7.74 – 7.67 (m, 1H), 7.63 (dd, J = 8.3, 6.8 Hz, 2H), 7.12 (d, J = 8.2 Hz, 1H), 6.90 (dd, J = 8.2, 2.6 Hz, 1H), 6.78 (d, J = 2.6 Hz, 1H), 3.70 (s, 3H), 2.65 (t, J = 7.6 Hz, 2H), 2.55 (t, J = 7.7 Hz, 2H), 2.02 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.27, 158.10, 140.82, 140.12, 133.77, 132.16, 131.44, 129.42, 128.73, 128.64, 127.28, 115.08, 111.52, 55.28, 26.06, 23.96, 22.82. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>19</sub>NNaO<sub>4</sub>S 380.0929, found 380.0927.



N-(6-methoxy-2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.46 (s, 1H), 7.94 (d, J = 7.6 Hz, 2H), 7.67 (dt, J = 31.5, 7.6 Hz, 3H), 7.21 (d, J = 8.4 Hz, 1H), 6.80 (d, J = 8.6 Hz, 2H), 3.77 (s, 3H), 2.71 (t, J = 7.6 Hz, 2H), 2.02 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  168.95, 160.89, 141.16, 140.39, 138.91, 133.44, 129.25, 127.39, 127.23, 127.05, 123.64, 113.17, 111.98, 55.33, 27.28, 23.39, 22.83. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>19</sub>NNaO<sub>4</sub>S 380.0930, found 380.0927.



N-(5-methoxy-2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.48 (s, 1H), 7.94 (d, J = 7.7 Hz, 2H), 7.70 (t, J = 7.3 Hz, 1H), 7.62 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 8.1 Hz, 1H), 7.03 (d, J = 8.2 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 3.77 (s, 3H), 2.68 (t, J = 7.8 Hz, 2H), 2.56 (d, J = 7.9 Hz, 1H), 1.99 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.04, 155.50, 140.79, 140.11, 133.62, 132.03, 130.85, 129.29, 127.18, 126.99, 124.22, 117.77, 113.11, 55.68, 22.91, 22.73, 19.54. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>19</sub>NNaO<sub>4</sub>S 380.0928, found 380.0927.



N-(6-(benzyloxy)-2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 9.44 (s, 1H), 7.99 – 7.88 (m, 2H), 7.74 – 7.66 (m, 1H), 7.66 – 7.56 (m, 2H), 7.47 – 7.28 (m, 5H), 7.20 (d, *J* = 8.5 Hz, 1H), 6.92 – 6.83 (m, 2H), 5.12 (s, 2H), 2.69 (t, *J* = 7.7 Hz, 2H), 2.55 (t, *J* = 7.8 Hz, 2H), 2.01 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 169.04, 159.99, 141.16, 140.36, 138.94, 136.72,

133.49, 129.29, 128.49, 127.95, 127.69, 127.43, 127.08, 125.60, 123.85, 114.12, 112.73, 69.33, 27.29, 23.42, 22.87. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>25</sub>H<sub>23</sub>NNaO<sub>4</sub>S 456.1261, found 456.1240.



N-(7-phenyl-2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 9.55 (s, 1H), 8.00 – 7.93 (m, 2H), 7.76 – 7.69 (m, 1H), 7.69 – 7.58 (m, 3H), 7.55 (d, J = 7.2 Hz, 2H), 7.50 – 7.43 (m, 3H), 7.37 (t, J = 7.3 Hz, 1H), 7.32 (d, J = 7.8 Hz, 1H), 2.78 (t, J = 7.7 Hz, 2H), 2.63 (t, J = 7.9 Hz, 2H), 2.04 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.17, 140.75, 140.00, 139.64, 138.69, 135.95, 133.69, 131.45, 131.07, 129.34, 129.05, 128.56, 128.33, 127.55, 127.20, 126.48, 123.35, 26.53, 23.46, 22.8. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>24</sub>H<sub>21</sub>NNaO<sub>3</sub>S 426.1145, found 426.1134.



N-(4-phenyl-2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.55 (s, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.45 – 7.25 (m, 7H), 7.19 – 7.05 (m, 5H), 7.04 – 6.97 (m, 1H), 4.23 (t, J = 5.7 Hz, 1H), 2.98 (qd, J = 16.9, 5.7 Hz, 2H), 2.02 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.08, 142.03, 140.87, 139.75, 138.67, 133.36, 131.17, 130.67, 129.01, 128.22, 128.13, 127.81, 127.12, 126.89, 126.52, 125.74, 41.49, 31.54, 22.82. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>24</sub>H<sub>21</sub>NNaO<sub>3</sub>S 426.1149, found 426.1134.



N-(4-(3,4-dichlorophenyl)-2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.74 (s, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.38 (dp, J = 23.9, 7.7, 7.2 Hz, 7H), 7.24 (d, J = 8.3 Hz, 1H), 7.16 (d, J = 10.1 Hz, 2H), 7.01 (d, J = 8.3 Hz, 1H), 4.29 (d, J = 6.3 Hz, 1H), 3.08 (dd, J = 17.1, 6.6 Hz, 1H), 2.81 (d, J = 17.0 Hz, 1H), 2.12 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.11, 142.75, 140.97, 138.89, 137.24, 133.15, 131.19, 130.83, 129.99, 129.92, 129.19, 128.74, 128.35, 128.22, 127.56, 126.69, 125.95, 39.94, 31.51, 22.79. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>24</sub>H<sub>19</sub>Cl<sub>2</sub>NNaO<sub>3</sub>S 494.0348, found 494.0355.



4-acetamido-3-(phenylsulfonyl)-1,2-dihydronaphthalen-1-yl acetate

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.63 (s, 1H), 7.96 – 7.86 (m, 2H), 7.80 – 7.71 (m, 1H), 7.65 (dd, J = 8.4, 6.8 Hz, 2H), 7.42 (td, J = 8.7, 7.1, 3.7 Hz, 4H), 5.76 (t, J = 3.5 Hz, 1H), 2.92 (s, 2H), 2.06 (s, 3H), 1.70 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.34, 169.26, 140.02, 139.37, 133.77, 132.83, 130.98, 130.66, 129.34, 128.91, 127.30, 125.97, 66.73, 29.24, 22.87, 20.70. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>20</sub>H<sub>19</sub>NNaO<sub>5</sub>S 408.0872, found 408.0876.



N-(3-(phenylsulfonyl)-2H-chromen-4-yl)acetamide

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.71 (s, 1H), 8.08 – 7.92 (m, 2H), 7.75 (t, *J* = 7.3 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 2H), 7.36 (td, *J* = 7.8, 1.7 Hz, 1H), 7.28 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 8.1 Hz, 1H), 4.97 (s, 2H), 2.07 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  169.11, 155.48, 140.40, 138.90, 134.05, 132.86, 129.49, 127.29, 126.41, 122.10, 122.02, 120.18, 116.42, 63.64, 22.80. HRMS (ESI) *m/z* [M+Na]<sup>+</sup> calculated for C<sub>17</sub>H<sub>15</sub>NNaO<sub>4</sub>S 352.0615, found 352.0614.



(Z)-N-(1-phenyl-2-(phenylsulfonyl)prop-1-en-1-yl)acetamide

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.61 (s, 1H), 7.99 – 7.91 (m, 2H), 7.72 (t, *J* = 7.3 Hz, 1H), 7.65 (dd, *J* = 8.4, 6.7 Hz, 2H), 7.36 (p, *J* = 4.4, 3.5 Hz, 3H), 7.32 – 7.22 (m, 2H), 1.92 (s, 3H), 1.80 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  168.02, 143.53, 140.52, 136.12, 133.53, 129.23, 128.96, 128.55, 128.07, 127.12, 125.68, 23.00, 15.29. HRMS (ESI) *m/z* [M+Na]<sup>+</sup> calculated for C<sub>17</sub>H<sub>17</sub>NNaO<sub>3</sub>S 338.0819, found 338.0821.



(E)-N-(1-phenyl-2-(phenylsulfonyl)prop-1-en-1-yl)acetamide

3m

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.71 (s, 1H), 7.64 – 7.56 (m, 1H), 7.55 – 7.44 (m, 4H), 7.40 – 7.32 (m, 1H), 7.32 – 7.25 (m, 2H), 7.22 – 7.13 (m, 2H), 1.94 (s, 3H), 1.87 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  166.91, 143.68, 141.00, 135.87, 132.91, 129.95, 129.15, 128.93, 128.32, 127.38, 126.90, 23.16, 17.05. HRMS (ESI) *m/z* [M+Na]<sup>+</sup> calculated for C<sub>17</sub>H<sub>17</sub>NNaO<sub>3</sub>S 338.0818, found 338.0821.



(Z)-N-(1-phenyl-2-(phenylsulfonyl)vinyl)acetamide

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  9.73 (s, 1H), 8.02 – 7.87 (m, 2H), 7.70 – 7.59 (m, 1H), 7.57 (dd, J = 8.4, 6.8 Hz, 2H), 7.47 – 7.33 (m, 1H), 7.39 – 7.27 (m, 4H), 5.66 (s, 1H), 2.19 (s, 3H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.20, 150.45, 141.69, 134.85, 133.83, 130.54, 129.60, 128.51, 127.16, 126.90, 110.53, 24.78. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>15</sub>NNaO<sub>3</sub>S 324.0670, found 324.0665.



(E)-N-(1-phenyl-2-(phenylsulfonyl)vinyl)acetamide

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.84 (s, 1H), 7.53 – 7.39 (m, 4H), 7.34 (td, J = 7.7, 2.6 Hz, 4H), 7.21 (s, 2H), 6.97 (s, 1H), 2.05 (s, 3H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  169.28, 147.13, 142.81, 133.45, 132.66, 130.21, 128.88, 128.79, 128.50, 127.31, 115.66, 25.01. HRMS (ESI) *m/z* [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>15</sub>NNaO<sub>3</sub>S 324.0667, found 324.0665.



N-(2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)propionamide

1H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.40 (s, 1H), 7.97 – 7.90 (m, 2H), 7.76 – 7.58 (m, 3H), 7.35 – 7.17 (m, 4H), 2.73 (t, J = 7.8 Hz, 2H), 2.57 (t, J = 7.9 Hz, 2H), 2.33 (q, J = 8.1, 7.5 Hz, 2H), 1.03 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  172.52, 140.82, 140.23, 136.64, 133.56, 130.94, 130.18, 129.28, 127.55, 127.07, 126.61, 125.29, 28.49, 26.85, 23.39, 9.30. HRMS (ESI) *m*/*z* [M+Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>19</sub>NNaO<sub>3</sub>S 364.0984, found 364.0978.



benzyl (2-(phenylsulfonyl)-3,4-dihydronaphthalen-1-yl)carbamate

1H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.77 (s, 1H), 7.87 – 7.80 (m, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.44 – 7.32 (m, 8H), 7.29 (td, J = 7.5, 1.5 Hz, 1H), 7.22 (td, J = 7.6, 1.4 Hz, 1H), 7.12 (d, J = 7.3 Hz, 1H), 5.13 (s, 2H), 2.75 – 2.66 (m, 2H), 2.66 – 2.57 (m, 2H). 13C NMR (101 MHz, Chloroform-d)  $\delta$  153.24, 141.56, 141.04, 137.18,135.87, 133.55, 130.53, 129.58, 129.35, 128.63, 128.38, 127.60, 127.04, 126.48, 126.44, 123.77, 67.53, 27.77, 23.62. HRMS (ESI) *m/z* [M+Na]<sup>+</sup> calculated for C<sub>24</sub>H<sub>21</sub>NNaO<sub>4</sub>S 442.1076, found 442.1083.



N-(2-tosyl-3,4-dihydronaphthalen-1-yl)acetamide

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.48 (s, 1H), 7.83 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.34 – 7.15 (m, 4H), 2.71 (t, J = 7.7 Hz, 2H), 2.55 (t, J = 7.9 Hz, 2H), 2.39 (s, 3H), 2.04 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.23, 144.29, 139.91, 138.01, 136.68, 131.03, 130.68, 130.25, 129.86, 127.64, 127.34, 126.71, 125.46, 26.97, 23.55, 22.91, 21.19. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>19</sub>NNaO<sub>3</sub>S 364.0982, found 364.0978.

![](_page_14_Figure_3.jpeg)

N-(2-((4-methoxyphenyl)sulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.49 (s, 1H), 7.90 (d, J = 8.5 Hz, 2H), 7.35 – 7.13 (m, 6H), 3.86 (s, 3H), 2.73 (t, J = 7.7 Hz, 2H), 2.57 (t, J = 7.8 Hz, 2H), 2.07 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.08, 163.15, 139.33, 136.55, 132.30, 131.05, 130.07, 129.63, 127.55, 126.62, 125.34, 114.53, 55.78, 26.93, 23.48, 22.87. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>19</sub>NNaO<sub>4</sub>S 380.0934, found 380.0927.

![](_page_14_Figure_5.jpeg)

N-(2-((4-(tert-butyl)phenyl)sulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.48 (s, 1H), 7.86 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.34 – 7.16 (m, 4H), 2.73 (t, J = 7.7 Hz, 2H), 2.57 (t, J = 7.8 Hz, 2H), 2.02 (s, 3H), 1.29 (s, 9H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  168.99, 156.71, 139.79, 137.90, 136.58, 130.96, 130.56, 130.14, 127.55, 127.15, 126.60, 126.15, 125.37, 34.96, 30.72, 26.86, 23.38, 22.80. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>22</sub>H<sub>25</sub>NNaO<sub>3</sub>S 406.1453 , found 406.1447.

![](_page_15_Figure_0.jpeg)

N-(2-((4-fluorophenyl)sulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.51 (s, 1H), 8.02 (dd, J = 8.7, 5.2 Hz, 2H), 7.48 (t, J = 8.8 Hz, 2H), 7.36 – 7.16 (m, 4H), 2.76 (t, J = 7.7 Hz, 2H), 2.61 (t, J = 7.8 Hz, 2H), 2.02 (s, 3H). 19F NMR (376 MHz, DMSO- $d_6$ ):  $\delta$  -104.95. <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.09, 164.87 (d, J = 252.5 Hz) 140.28, 137.18 (d, J = 3 Hz), 136.72, 130.92, 130.48 (d, J = 10 Hz), 130.32, 127.62, 126.68, 125.34, 116.53(d, J = 23 Hz), 26.86, 23.31, 22.75. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>18</sub>H<sub>16</sub>FNNaO<sub>3</sub>S 368.0729, found 368.0727.

![](_page_15_Figure_2.jpeg)

N-(2-((4-chlorophenyl)sulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.53 (s, 1H), 7.96 (d, J = 8.3 Hz, 2H), 7.71 (d, J = 8.3 Hz, 2H), 7.35 – 7.16 (m, 4H), 2.76 (t, J = 7.7 Hz, 2H), 2.61 (t, J = 7.8 Hz, 2H), 2.02 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.10, 140.60, 139.70, 138.62, 136.77, 130.87, 130.70, 130.39, 129.46, 129.20, 127.64, 126.69, 125.37, 26.86, 23.30, 22.75. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>18</sub>H<sub>16</sub>ClNNaO<sub>3</sub>S 384.0429, found 384.0432.

![](_page_15_Picture_4.jpeg)

N-(2-((4-(trifluoromethyl)phenyl)sulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 9.57 (s, 1H), 8.16 (d, *J* = 8.1 Hz, 2H), 8.02 (d, *J* = 8.2 Hz, 2H), 7.38 – 7.16 (m, 4H), 2.79 (t, *J* = 7.5 Hz, 2H), 2.66 (t, *J* = 7.9 Hz, 2H), 1.98 (s, 3H). 19F NMR (376 MHz, DMSO-*d*<sub>6</sub>): δ -104.95. <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 169.08, 144.75, 141.26, 136.89, 133.09 (q, *J* = 32.4 Hz), 130.63 (d, *J* = 30.9 Hz), 130.55, 128.23, 127.69, 126.72, 126.50 (d, J = 4.2 Hz), 125.40, 123.41 (d, J = 273.2 Hz), 26.82, 23.21, 22.68. HRMS (ESI) m/z[M+Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>16</sub>F<sub>3</sub>NNaO<sub>3</sub>S 418.0700, found 418.0695.

![](_page_16_Figure_1.jpeg)

N-(2-(naphthalen-2-ylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.55 (s, 1H), 8.64 (s, 1H), 8.18 (dd, *J* = 23.4, 8.3 Hz, 2H), 8.06 (d, *J* = 7.8 Hz, 1H), 7.93 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.77 – 7.64 (m, 2H), 7.34 – 7.13 (m, 4H), 2.85 – 2.59 (m, 4H), 2.01 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO *d*<sub>6</sub>)  $\delta$  169.00, 140.43, 137.81, 136.71, 134.69, 131.62, 130.93, 130.74, 130.24, 129.50, 129.43, 129.25, 128.57, 127.91, 127.73, 127.59, 126.63, 125.37, 122.36, 26.90, 23.43, 22.78. HRMS (ESI) *m*/*z* [M+Na]<sup>+</sup> calculated for C<sub>22</sub>H<sub>19</sub>NNaO<sub>3</sub>S 400.0979, found 400.0978.

![](_page_16_Picture_3.jpeg)

N-(2-(thiophen-2-ylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.53 (s, 1H), 8.08 (dd, J = 4.9, 1.4 Hz, 1H), 7.83 (dd, J = 3.9, 1.4 Hz, 1H), 7.36 – 7.17 (m, 5H), 2.74 (t, J = 7.6 Hz, 2H), 2.65 (dd, J =9.6, 6.4 Hz, 2H), 2.09 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.09, 141.63, 139.91, 136.74, 135.32, 134.03, 130.93, 130.60, 130.37, 128.33, 127.65, 126.71, 125.61, 27.05, 23.56, 23.00. HRMS (ESI) m/z [M+Na]<sup>+</sup>calculated for C<sub>16</sub>H<sub>15</sub>NNaO<sub>3</sub>S<sub>2</sub>

356.0393, found 356.0386

![](_page_16_Picture_6.jpeg)

N-(2-(ethylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.50 (s, 1H), 7.30 (ddd, J = 20.1, 7.8, 5.1 Hz, 4H), 3.22 (q, J = 7.4 Hz, 2H), 2.84 (t, J = 7.8 Hz, 2H), 2.65 (t, J = 7.8 Hz, 2H), 2.06 (s, 3H), 1.19 (t, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.29, 140.49, 137.01, 131.03, 130.13, 129.15, 127.61, 126.62, 125.37, 47.50, 26.86, 23.64, 22.92, 6.47. HRMS (ESI) m/z [M+Na]<sup>+</sup> calculated for C<sub>14</sub>H<sub>17</sub>NNaO<sub>3</sub>S 302.0823, found 302.0821.

![](_page_17_Figure_1.jpeg)

N-(2-(methylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.50 (s, 1H), 7.40 – 7.32 (m, 2H), 7.31 – 7.23 (m, 2H), 3.10 (s, 3H), 2.86 (t, *J* = 7.8 Hz, 2H), 2.70 (t, *J* = 7.7 Hz, 2H), 2.06 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.30, 138.62, 136.96, 131.24, 131.14, 130.14, 127.61, 126.68, 125.28, 40.96, 26.92, 23.28, 22.99. HRMS (ESI) *m*/*z* [M+Na]<sup>+</sup> calculated for C<sub>13</sub>H<sub>15</sub>NNaO<sub>3</sub>S 288.0671, found 288.0665.

![](_page_17_Figure_4.jpeg)

N-(2-(phenethylsulfonyl)-3,4-dihydronaphthalen-1-yl)acetamide

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.57 (s, 1H), 7.32 (d, *J* = 25.5 Hz, 9H), 3.54 (t, *J* = 8.1 Hz, 2H), 3.09 – 2.59 (m, 6H), 2.08 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  169.41, 140.59, 138.08, 137.07, 131.07, 130.20, 129.81, 128.50, 128.47, 127.62, 126.63, 126.52, 125.37, 53.93, 27.58, 26.86, 23.53, 22.93. HRMS (ESI) *m/z* [M+Na]<sup>+</sup> calculated for C<sub>20</sub>H<sub>21</sub>NNaO<sub>3</sub>S 378.1133, found 378.1134.

![](_page_17_Figure_7.jpeg)

2-(phenylsulfonyl)-3,4-dihydronaphthalen-1(2H)-one

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.98 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.95 – 7.88 (m, 2H), 7.71 – 7.62 (m, 1H), 7.57 (t, *J* = 7.7 Hz, 2H), 7.51 (td, *J* = 7.5, 1.5 Hz, 1H), 7.35 – 7.23 (m, 2H), 4.12 (t, *J* = 5.8 Hz, 1H), 3.50 (ddd, *J* = 16.9, 9.6, 4.7 Hz, 1H), 2.99 (dt,

J = 17.0, 5.5 Hz, 1H), 2.85 (dq, J = 17.3, 5.9 Hz, 1H), 2.66 (ddt, J = 14.6, 10.0, 5.1 Hz, 1H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  188.65, 143.58, 138.99, 134.55, 134.03, 131.76, 129.13, 129.04, 128.98, 127.97, 127.09, 69.67, 26.62, 23.67. HRMS (ESI) *m/z* [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>14</sub>NaO<sub>3</sub>S 309.055, found 309.0556.

![](_page_18_Figure_1.jpeg)

N-(2-(phenylsulfonyl)naphthalen-1-yl)acetamide

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.51 (s, 1H), 8.22 (d, *J* = 8.8 Hz, 1H), 7.98 – 7.84 (m, 5H), 7.68 – 7.47 (m, 5H), 2.20 (s, 3H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.56, 140.70, 136.66, 134.75, 133.70, 131.54, 129.72, 129.35, 129.26, 128.32, 128.07, 127.53, 127.00, 125.88, 123.50, 23.80. HRMS (ESI) *m/z* [M+Na]<sup>+</sup> calculated for C<sub>18</sub>H<sub>15</sub>NaO<sub>3</sub>S 348.0659, found 348.0665.

![](_page_18_Figure_4.jpeg)

Azoxybenzene<sup>[3] 1</sup>H NMR (400 MHz, Chloroform-d)  $\delta$  8.36 – 8.21 (m, 2H), 8.17 (dd, J = 8.0, 1.6 Hz, 2H), 7.61 – 7.45 (m, 5H), 7.45 – 7.35 (m, 1H). <sup>13</sup>C NMR (101 MHz, Chloroform-d)  $\delta$  148.49, 144.14, 131.72, 129.74, 128.93, 128.83, 125.65, 122.48. HRMS (ESI) *m*/*z* [M+Na]<sup>+</sup> calculated for C<sub>12</sub>H<sub>10</sub>N<sub>2</sub>NaO 221.0695, found 221.0685.

#### References

- [1] (a) Z. H. Guan, Z. Y. Zhang, Z. H. Ren, Y. Y. Wang, and X. M. Zhang, J. Org. Chem., 2011, 76, 339; (b) C. X. Sun, S. M. Weinreb, Synthesis, 2006, 21, 3585.
- [2] (a) J. Liu, X. Zhou, H. Rao, F. Xiao, C. J. Li, and G. J. Deng, *Chem. Eur. J.*, 2011, **17**, 7996;
  (b) A. U. Meyer, K. Straková, T. Slanina, B. König, *Chem. Eur. J.*, 2016, **22**, 8694; (c) A. U. Meyer, S. Jäger, D. P. Hari and B. König, *Adv. Synth. Catal.*, 2015, **357**, 2050.
- [3] (a) E. Voutyritsa, A. Theodorou, M. G. Kokotou, C. G. Kokotos, *Green Chem.*, 2017, 19, 1291; Z. Long, Z. G. Wang, D. N. Zhou, D. Y. Wan, and J. S. You, *Org. Lett.*, 2017, 19, 2777.
- [4] C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner and C. R. J. Stephenson, J. Am. Chem. Soc., 2012, 134, 8875.

**Copies of NMR spectra** 

![](_page_20_Figure_0.jpeg)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

![](_page_23_Figure_0.jpeg)

-169.27 -158.10 -158.10 140.82 133.12 133.12 133.14 133.16 133.16 123.42 123.42 -115.08 -115.08 -115.08 -55.28 (40.15 DMSO (599.4 DMSO (599.4 DMSO (599.31 DMSO (199.31 DMSO (199.31 DMSO (199.31 DMSO (199.31 DMSO (199.31 DMSO (199.32 DMSO (199.32 DMSO (199.32 DMSO) (199.32 D

![](_page_23_Figure_3.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

![](_page_27_Figure_0.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_0.jpeg)

<sup>210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10</sup> f1 (ppm)

![](_page_32_Figure_0.jpeg)

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_35_Figure_1.jpeg)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

![](_page_36_Figure_0.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

- 169.10 140.60 138.77 138.77 138.77 138.77 130.87 130.87 130.39 122.69 122.69

![](_page_43_Figure_4.jpeg)

![](_page_43_Figure_5.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_44_Figure_1.jpeg)

![](_page_44_Figure_2.jpeg)

![](_page_44_Figure_3.jpeg)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

![](_page_45_Figure_0.jpeg)

![](_page_45_Figure_1.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_49_Figure_1.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)