Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting information

Stereospecific C-H activation as a key step for asymmetric synthesis of various biologically active cyclopropanes

Soufyan JERHAOUI, ^[a] Pauline POUTREL, ^[a] Jean-Pierre DJUKIC, ^[b] Dr. Joanna WENCEL-DELORD*, ^[a] Pr. Françoise COLOBERT * ^[a]
^[a] SynCat, Laboratoire de Chimie Moléculaire (UMR CNRS 7509), Université de Strasbourg, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
^[b] LCSOM, Institut de Chimie de Strasbourg (UMR 7177), Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg Cedex, France

E-mail: wenceldelord@unistra.fr, francoise.colobert@unistra.fr

Table of contents

General considerations	S1
Chiral auxiliary and cyclopropane substrates syntheses	S2
Optimization of the Heck-type reaction conditions	S5
Optimization of the selective mild deprotection amide vs ester	S8
Hoshinolactame synthesis	S10
Grenadamide and cascarillic acid key intermediates synthesis	S14
NMR Spectra	S16
Chiral HPLC Data	S50
X-Ray Data	\$54

General considerations

Anhydrous conditions term denotes reactions conducted under argon in dry glassware using dry solvents. Tetrahydrofuran was distilled over Na/benzophenone. Anhydrous dichloromethane, diethyl ether, tetrahydrofuran and acetonitrile were purchased from Aldrich (Sure/Seal packaging, kept over 3Å molecular sieves). Molecular sieves were activated by heating at 250 °C under vacuum overnight. Palladium(II) acetate and silver(I) acetate were kept in a desiccator prior to use.

Purification on column chromatography either refers to manual column chromatography loaded with silica 60 (40-63 μ m) or to flash chromatography using Armen Flash Instrument and Biotage SNAP Cartridge KP-Silica 60 μ m.

NMR experiments were recorded on a Brucker 400 MHz, FID treated with NMR Notebook. The chemical shift δ is given relatively to the residual solvent. Broad = br s, singulet = s, doublet = d, triplet = t, quadruplet = q, multiplet = m.

Melting points were taken on a Buchi M-560 apparatus, with three measures per compound.

Infrared experiments were done on a PerkinElmer UATR Two FT-IR C92778 spectrometer, neat or in solution in dichloromethane. Broad = br s, weak = w, medium = m, strong = s.

Optical rotations were measured with an Anton Paar Polarimeter MCP 200.

Chiral HPLC measurements were performed on a Shimadzu system with a quaternary low-pressure LC-20AD pump, an automatic SIL-20A HT injector, a CTO-10 AS oven and a SPD-M20 A diode array detector (DAD). The injection volume was 1 μ L, the temperature of the oven set to 35 °C and the concentration of the sample around 1 g/L.

HMRS measurements were performed by the Service de Spectrométrie de Masse de l'Institut de Chimie at the University of Strasbourg.

X-Ray crystallographic measurements were performed by the Crystallography Service of the University of Strasbourg.

Chiral auxiliary and cyclopropane substrates syntheses

(S)-2-(p-tolylsulfinyl)aniline APS

The title compound was prepared according to the literature procedure.¹

¹H NMR (400 MHz, CDCl₃): 7.40-7.48 (3H, m), 7.19-7.28 (3H, m), 6.76 (1H, t, J=7.4 Hz), 6.59 (1H, d, J=8 Hz), 4.91 (1H, br s, NH₂), 2.37 (1H, s, PhCH₃); ¹³C NMR (100 MHz, CDCl₃): 147.54, 140.70, 140.09, 132.84, 129.66, 128.32, 124.79, 123.87, 117.59, 117.26, 21.35; $[\alpha]_D^{20} + 40.3^{\circ}$ (c = 1.0, $CHCl_3$); Rt (min, IC, Hex/IPA 80/20, 0.5 mL/min): 64.58 (99%), 79.57 (1%); other data match the described ones.

General procedure for the preparation of trans-cyclopropanecarboxylic acids²

Sodium hydride (2 equiv.) and trimethylsulfoxonium iodide (2.2 equiv.) in anhydrous DMSO were stirred at room temperature for 2 h. Then, appropriate crotonate (1 equiv.) was added and the mixture was stirred overnight at room temperature. A 10M NaOH sol. was added and the mixture was stirred for 6 h at room temperature. Diethyl ether (50 mL) was added. The aqueous layer was extracted and acidified with conc. HCl (few drops). Diethyl ether (100 mL) was added. The organic layer was extracted, washed with water (3x 50 mL), brine (50 mL), dried (Na₂SO₄), filtered off and evaporated under reduced pressure to afford the desired cyclopropane.

trans 2-propylcyclopropane-1-carboxylic acid 5³

General procedure for the preparation of trans-cyclopropanecarboxylic acids was applied using ethyl (*E*)-hex-2-enoate (7.7 mL, 50.6 mmol, 1 equiv.) as substrate. The title compound (3.15 g, 49%) was isolated as an orange oil.

¹H NMR (400 MHz, CDCl₃): 1.37-1.46 (2H, m), 1.32-1.36 (1H, m), 1.18-1.31 (3H, m), 0.92 (3H, t, J=7.2 Hz), 0.83-0.88 (1H, m), 0.77 (1H, dd, J=8.3, 6.0, 4.1 Hz); ¹³C NMR (100 MHz, CDCl₃): 181.08, 35.10, 23.78, 22.22, 20.04, 16.31, 13.78; other

data match the reported ones.

trans-2-propyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide 4

5 (1.72 g, 13.4 mmol, 2 equiv.) and **APS** (1.55 g, 6.7 mmol, 1 equiv.) were dissolved in 5 mL of anhydrous DMF, followed by addition of pyridine (3.2 mL, 40.2 mmol, 6 equiv.) and propylphosphonic anhydride (8.7 mL, 14.74 mmol, 2.2 equiv., 50% weight solution in DMF). The resulting mixture was stirred 18h at room temperature. Brine (50 mL) and diethyl ether (50 mL) were added to the mixture and the phases were separated. The organic layer was washed with brine (2x 20 mL), sat. NaHCO₃ sol. (3x 30 mL), 1M HCl sol. (3x 30 mL), brine (2x 10 mL), dried (Na₂SO₄), filtered off and evaporated under reduced pressure to give the title compound (2.17 g, 95%) as a brownish oil as an approximate 1:1 mixture of diastereomers.

¹ Jerhaoui S., Djukic J.-P., Wencel-Delord J., Colobert F., **2017**, *submitted*.

² Adapted from Merschaert et al., Org. Process Res. & Dev., 2007, 11, 1104-1111

³ Jerhaoui S., Chadoura F., Rose C., Djukic J.-P., Wencel-Delord J., Colobert F., Chem. Eur. J., **2016**, 22, 17393-17406

¹H NMR (400 MHz, CDCl₃): 10.36 (1H, m, N*H*), 8.38 and 8.32 (1H, d, J=8.8 Hz), 7.51 (1H, dd, J=7.6, 1.2 Hz), 7.38- 7.48 (3H, m), 7.24 (2H, dd, J=8.4, 3.4 Hz), 7.12 (1H, t, J=7.4 Hz), 2.36 (3H, s, PhC H_3), 1.01- 1.50 (7H,m), 0.93 (3H, t, J=7.2 Hz, CH₂CH₂CH₃), 0.62- 0.73 (1H, m); ¹³C NMR (100 MHz, CDCl₃): 171.98 and 171.95 (1C), 141.32 and 141.27 (1C), 140.54 and 140.45 (1C), 139.67 and 139.60 (1C), 132.96 and 132.90 (1C), 129.94, 127.66 and

127.59 (1C), 124.42 and 124.37 (1C), 122.99 and 122.89 (1C), 122.76 and 122.62 (1C), 117.81 and 117.63 (1C), 35.29 and 35.18 (1C), 23.61 and 23.48 (1C), 22.48 and 22.37 (1C), 22.35 and 22.31 (1C), 21.30, 15.49 and 15.13 (1C), 13.95 and 13.88 (1C); other data match the reported ones.

trans-2-heptyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide 8

General procedure for the preparation of *trans*-cyclopropanecarboxylic acids was applied using ethyl (*E*)-dec-2-enoate (1 mL, 4.3 mmol, 1 equiv.) as substrate. The title compound (779 mg) was obtained as an orange oil and used as such without purification.

A solution of acid (779 mg, 4.23 mmol, 1.2 equiv.) and **APS** (800 mg, 3.46 mmol, 1 equiv.) were dissolved in 3 mL of anhydrous DMF, followed by addition of pyridine (750 μ L, 9.32 mmol, 2.7 equiv.) and propylphosphonic anhydride (2.8 mL, 4.74 mmol, 1.4 equiv., 50% weight solution in DMF). The resulting mixture was stirred 18 h at room temperature. Brine (20 mL) and diethyl ether (20 mL) were added to the mixture and the phases were separated. The organic layer was washed with brine (2x 10 mL), sat. NaHCO₃ sol. (3x 10 mL), 1M HCl sol. (3x 10 mL), brine (2x 10 mL), dried (Na₂SO₄), filtered off and evaporated under reduced pressure to give the title compound (1.35 g, 98%) as a brownish oil as an approximate 1:1 mixture of diastereomers.

¹H NMR (400 MHz, CDCl₃): 10.22-10.46 (1H, m, N*H*), 8.35 and 8.29 (1H, d, J=8.4 Hz), 7.47-7.54 (1H, m), 7.37-7.46 (3H, m), 7.21 (2H, d, J=8.3 Hz), 7.07-7.13 (1H, m), 2.34 (3H, s, PhC*H*₃), 0.97-1.38 (15H, m), 0.82-0.92 (3H, m), 0.59-0.71 (1H, m); ¹³C NMR (100 MHz, CDCl₃): 172.21 and 172.19 (1C), 141.52 and 141.49 (1C), 140.73 and 140.71 (1C), 140.63 and 140.61 (1C), 139.82 and 139.77 (1C), 133.13 and 133.10 (1C), 130.14, 127.80 and 127.79

(1C), 124.57, 123.24 and 123.10 (1C), 122.99 and 122.84 (1C), 33.47 and 33.32 (1C), 32.10 and 32.05 (1C), 29.63 and 29.54 (1C), 29.48, 29.41 and 29.39 (1C), 23.81 and 23.71 (1C), 22.94 and 22.92 (1C), 22.88 and 22.76 (1C), 21.50, 15.79 and 15.44 (1C), 14.32; FT-IR (cm⁻¹): 1691 (m, C=O), 1020 (m, S=O); HRMS (ESI-TOF): m/z calcd for $C_{24}H_{32}NO_2S^+$: 398.2148, found: 398.2131.

trans-2-hexyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide 11

General procedure for the preparation of *trans*-cyclopropanecarboxylic acids was applied using methyl (*E*)-non-2-enoate (1 mL, 5.1 mmol, 1 equiv.) as substrate. The title compound (644 mg, 74%) was obtained as a yellow thick oil and used as such without purification.

A solution of acid (644 mg, 3.78 mmol, 1.2 equiv.) and **APS** (729 mg, 3.15 mmol, 1 equiv.) were dissolved in 3 mL of anhydrous DMF, followed by addition of pyridine (700 μ L, 8.66 mmol, 2.7 equiv.) and propylphosphonic anhydride (2.6 mL, 4.32 mmol, 1.4 equiv., 50% weight solution in DMF). The resulting mixture was stirred 18 h at room temperature. Brine (20 mL) and diethyl ether (20 mL) were added to the mixture and the phases were separated. The organic layer was washed with brine (2x 10

mL), sat. NaHCO3 sol. (3x 10 mL), 1M HCl sol. (3x 10 mL), brine (2x 10 mL), dried (Na₂SO₄), filtered off and evaporated under reduced pressure to give the title compound (1.2 g, 99%, mixed with around 5% of impurity coming from the cyclopropane) as a yellowish oil as an approximate 1:1 mixture of diastereomers.

¹H NMR (400 MHz, CDCl₃): 10.20-10.45 (1H, m, N*H*), 8.35 and 8.29 (1H, d, J=8.4 Hz), 7.47-7.52 (1H, m), 7.36-7.45 (3H, m), 7.22 (2H, d, J=8.4 Hz), 7.08-7.13 (1H, m), 2.34 (3H, s, PhC*H*₃), 0.98-1.39 (13H, m), 0.82-0.92 (3H, m), 0.58-0.70 (1H, m); ¹³C NMR (100 MHz, CDCl₃): 172.18 and 172.15 (1C), 141.49 and 141.45 (1C), 140.73 and 140.62 (1C), 139.81 and 139.76 (1C), 133.11 and 133.08 (1C), 130.13, 127.78, 124.55, 123.21 and 123.07 (1C),

122.95 and 122.80 (1C), 33.45 and 33.30 (1C), 32.07 and 32.00 (1C), 29.35 and 29.33 (1C), 29.31 and 29.22 (1C), 23.80 and 23.70 (1C), 22.91 and 22.87 (1C), 22.83 and 22.73 (1C), 21.48, 15.76 and 15.41 (1C), 14.32 and 14.29 (1C); FT-IR (cm⁻¹): 1694 (s, C=O), 1025 (m, S=O); HRMS (ESI-TOF): m/z calcd for $C_{23}H_{30}NO_2S^+$: 384.1992, found: 384.1979.

Optimization of the Heck-type reaction conditions

A reactor was charged with *trans-4* (20 mg, 0.059 mmol, 1 equiv.), base (1 to 4 equiv.), additive (0.1 to 1 equiv.), coupling partner (3 to 6 equiv.) and palladium(II) acetate (1.32 mg, 0.0059 mmol, 10 mol%). To the solids was added 500 μ L of solvent. The vial was capped and the mixture was stirred at the appropriate temperature during 24h. After cooling down to room temperature, the mixture was filtered through PTFE 45 μ m filter, washed with dichloromethane and evaporated under reduced pressure. Conversion was determined by crude ¹H NMR analysis, as shown below.

Entry	Base (equiv.)	Additive (equiv.)	R (x equiv.)	Solvant	Conversion (%)
1	AgOAc (4)	NaTFA (0.5)	CO₂Me (6)	HFIP/H ₂ O (4:1)	90
2	AgOAc (3)	NaTFA (0.5)	CO ₂ Me (3)	HFIP	60
3	AgOAc (3)	NaTFA (0.5)	CO₂Me (3)	HFIP/H ₂ O (4:1)	70
4	AgOAc (2.5)	NaTFA (0.5)	CO ₂ Me (2.5)	HFIP/H ₂ O (4:1)	60
5	AgOAc (4)	NaTFA (0.5)	CO ₂ ^t Bu (5)	HFIP/H ₂ O (4:1)	0
64	AgOAc (4)	NaTFA (0.5)	CO₂Me (6)	HFIP/H ₂ O (4:1)	88
7	AgOAc (4)	NaTFA (0.5)	CO2Et (5)	HFIP/H ₂ O (4:1)	80
8	AgOAc (4)	NaTFA (0.5)	CO2Et (4)	HFIP/H ₂ O (4:1)	80

⁴ Reaction was performed on a 1.5 mmol scale.

9 ⁵	AgOAc (2)	NaTFA (0.5)	CO ₂ Et (4)	HFIP/H ₂ O (4:1)	75
10 ⁵	Cu(OAc) ₂ (1)	NaTFA (0.5)	CO ₂ Et (4)	HFIP/H ₂ O (4:1)	10
11 ⁵	-	NaTFA (0.5)	CO ₂ Et (4)	HFIP/H ₂ O (4:1)	10
12 ⁵	AgOAc (1)	NaTFA (0.5)	CO2Et (4)	HFIP/H ₂ O (4:1)	50
13 ⁵	1,4-BQ (1)	NaTFA (0.5)	CO2Et (4)	HFIP/H ₂ O (4:1)	0
14 ⁵ , ⁶	AgOAc (2)	NaTFA (0.5)	CO2Et (4)	HFIP/H ₂ O (4:1)	85
15 ^{5,6,7}	AgOAc (2)	NaTFA (0.5)	CO ₂ Et (4)	HFIP/H ₂ O (4:1)	90
16	AgOAc (2)	NaTFA (0.5)	CN (4)	HFIP/H ₂ O (4:1)	0

methyl (E)-2-propyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate 3

trans-4 (500 mg, 1.5 mmol, 1 equiv.), methyl acrylate (750 μ L, 8.3 mmol, 5.6 equiv.), silver acetate (489 mg, 2.9 mmol, 2 equiv.), palladium(II) acetate (33 mg, 0.15 mmol, 10 mol%) and sodium trifluoroacetate (100 mg, 0.73 mmol, 50 mol%) were dissolved in 10 mL of HFIP/H₂O (4:1). The resulting mixture was flushed with oxygen and then stirred 24 h at 80 °C under oxygen atmosphere. After cooling down to room temperature, the mixture was diluted with DCM, filtered over celite and evaporated under reduced pressure. The crude was purified by column chromatography on silica gel with CyHex/EtOAc (95:5 to 85:5) to afford the two diastereoisomers **3** (262 mg, 42%) as a clear oil and **dia-3** (300 mg, 48%) as a yellow solid, which afforded suitable mono crystals for X-Ray diffraction analysis in chloroform/benzene/pentane.

¹H NMR (400 MHz, CDCl₃): 10.56 (1H, s, N*H*), 8.28 (1H, d, J=8.4 Hz), 7.42-7.52 (2H, m), 7.37 (2H, d, J=8.4 Hz), 7.18 (2H,d, J=8.4 Hz), 7.13 (1H, td, J=7.6, 0.8 Hz), 6.82 (1H, dd, J=15.6, 9 Hz, C*H*=CH-CO₂Me), 5.90 (1H, d, J=15.6 Hz, CH=C*H*-CO₂Me), 3.64 (3H, s, C(O)OC*H*₃), 2.30 (3H, s, PhC*H*₃), 1.78-1.89 (3H, m), 1.23-1.53 (4H, m), 0.92 (3H, t, J=7.2 Hz, CH₂CH₂C*H*₃); ¹³C NMR (100 MHz, CDCl₃): 167.97, 166.49, 146.77, 141.66, 140.28,

139.35, 133.01, 130.16, 127.95, 127.61, 124.36, 123.34, 123.09, 120.98, 51.41, 34.60, 32.44, 31.64, 29.00, 22.10, 21.29, 13.90; HRMS (ESI-TOF): m/z calcd for $C_{24}H_{27}NNaO_4S^+$: 448.1553, found: 448.1495; $[\alpha]_D^{20} - 16.5^\circ$ (c = 0.7, $CHCl_3$); Rt (min, IC, Hex/IPA 80/20, 0.5 mL/min): 49.21 (99%), 63.37 (1%).

⁵ Reaction was performed under oxygen atmosphere.

⁶ Reaction was premixed during 20 min at room temperature before being heated at 80 °C.

⁷ Reaction was heated during 30 h at 80 °C. On large scale, ie 6.4 mmol, same conversion was obtained while using 5 mol% $Pd(OAc)_2$ during 30 h. When using 5 mol% $Pd(OAc)_2$ on a smaller scale, only 30% conversion was observed.

¹H NMR (400 MHz, CDCl₃): 10.46 (1H, s, N*H*), 8.39 (1H, d, J=8.8 Hz), 7.42-7.53 (2H, m), 7.39 (2H, d, J=8 Hz), 7.23 (2H, d, J=8.4 Hz), 7.13 (1H, td, J=7.6, 1.2 Hz), 7.06 (1H, dd, J=16, 8.2 Hz, CH=CH-CO₂Me), 5.95 (1H, d, J=16 Hz, CH=CH-CO₂Me), 3.69 (3H, s, C(O)OCH₃), 2.36 (3H, s, PhCH₃), 1.66-1.90 (3H, m), 1.22-1.46 (4H, m), 0.91 (3H, t, J=7 Hz, CH₂CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): 168.08, 166.75, 146.70, 141.52, 140.34, 139.88, 133.10, 130.11, 127.75, 127.53, 124.51, 123.23, 123.11, 121.21, 51.47, 34.66, 32.65,

31.91, 29.04, 22.08, 21.41, 13.93; mp: 76 °C $[\alpha]_D^{20}$ + 23.3° (c = 0.8, $CHCl_3$); Rt (min, IA, Hex/IPA 80/20, 0.5 mL/min): 16.02 (99%), 31.72 (1%).

Optimization of the selective mild deprotection amide vs ester

In a tube and at 0 °C were added **Boc-3** (20 mg, 0.038 mmol, 1 equiv.) and lithium hydroxide monohydrate (4.89 mg, 0.114 mmol, 3 equiv.) in 500 μ L of a 4:1 mixture of THF and H₂O. H₂O₂ (1 to 5 equiv., 30% in water) was then added and the mixture was stirred at 0°C during the appropriate time. The mixture was then acidified with 1M HCl sol. (5 mL). Diethyl ether (5 mL) was added and phases were separated. The organic layer was evaporated under reduced pressure. Conversion was determined by crude ¹H NMR analysis of the aromatic region, as shown below.⁸

⁸ Other deprotection methods, not involving prior Boc-protection, were tested without success. Usually the diacid was obtained.

Entry	H ₂ O ₂ (x equiv.)	Т°С	Time (h)	Conversion (%)	Ratio 7a/7b	Ratio Boc-APS/Boc- APSO
1	5	25	1,5	100	40/60	10/90
2	0	25	2	80	25/75	100/0
3	5	0	1,2	100	100/0	0/100
4	0	0	4,5	50	20/80	100/0
5 ⁹	0	0	1,5	85	80/20	70/30
6 ¹⁰	5	0	1,5	100	95/5	20/80
7 ^{10,11}	0	0	1,5	90	>95/5	100/0

Particularly, the crude ¹H NMR for entry 7 showed clearly no **Boc-APSO** and almost full conversion to the desired mono-acid product 6:

 ⁹ In this case, commercially available lithium peroxide was used as deprotecting agent.
¹⁰ In this case, ethyl acrylate ester derivative was used as substrate.

¹¹ In this case, only 2 equiv. of LiOH.H₂O was used.

Hoshinolactame synthesis¹²

ethyl (E)-3-(2-propyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate 3'

trans-4 (1 g, 2.9 mmol, 1 equiv.), ethyl acrylate (1 mL, 9.2 mmol, 3.1 equiv.), silver acetate (1 g, 6.0 mmol, 2 equiv.), palladium(II) acetate (35 mg, 0.16 mmol, 5 mol%) and sodium trifluoroacetate (200 mg, 1.47 mmol, 50 mol%) were dissolved in 20 mL of HFIP/H₂O (4:1). The resulting mixture was flushed with oxygen and then stirred 24 h at 80 °C under oxygen atmosphere. After cooling down to room temperature, the mixture was diluted with DCM, filtered over celite and evaporated under reduced pressure. The crude was purified by column chromatography on silica gel with CyHex/EtOAc (95:5 to 85:5) to afford the two diastereoisomers **3'** (564 mg, 44%) and **dia-3'** (597 mg, 46%) as yellow oils.

¹H NMR (400 MHz, CDCl₃): 10.53 (1H, br s, N*H*), 8.28 (1H, d, J=8.4 Hz), 7.41-7.50 (2H, m), 7.36 (2H, d, J=8.2 Hz), 7.17 (2H, d, J=8.4 Hz), 7.11 (1H, td, J=7.6, 0.8 Hz), 6.80 (1H, dd, J=15.6, 9.4 Hz), 5.88 (1H, d, J=15.6 Hz), 4.03-4.16 (2H, m, C(O)OCH₂CH₃), 2.29 (3H, s, PhCH₃), 1.74-1.86 (3H, m), 1.29-1.49 (4H, m), 1.21 (3H, t, J=7.2 Hz, C(O)OCH₂CH₃), 0.91 (3H, t, J=7.1 Hz, CH₂CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): 168.07, 166.21, 146.51, 141.75, 140.37, 139.47, 133.09, 130.25, 127.99,

127.69, 124.48, 123.40, 123.15, 121.50, 60.26, 34.71, 32.54, 31.75, 29.07, 22.18, 21.40, 14.50, 13.98; FT-IR (cm⁻¹): 1716 (s, C=O ester), 1689 (s, C=O amide), 1021 (s, S=O); HRMS (ESI-TOF): m/z calcd for C₂₅H₃₀NO₄S⁺: 440.1890, found: 440.1871; $[\alpha]_D^{20} - 18.6^\circ$ (c = 0.9, $CHCl_3$).

¹H NMR (400 MHz, CDCl₃): 10.43 (1H, br s, N*H*), 8.37 (1H, d, J=8.4 Hz), 7.48 (1H, dd, J=7.8, 1.1 Hz), 7.44 (1H, ddd, J=8.6, 7.3, 1.8 Hz), 7.37 (2H, d, J=8.2 Hz), 7.21 (2H, d, J=8.3 Hz), 7.12 (1H, td, J=7.5, 0.7 Hz), 7.04 (1H, dd, J=15.6, 10.2 Hz), 5.93 (1H, d, J=15.6 Hz), 4.07-4.19 (2H, m, C(O)OCH₂CH₃), 2.34 (3H, s, PhCH₃), 1.83 (1H, ddd, J=10.2, 8.3, 6.3 Hz), 1.72-1.79 (1H, m), 1.68 (1H, dd, J=8.2, 5.6 Hz), 1.27-1.39 (4H, m), 1.24 (3H, t, J=7.2 Hz, C(O)OCH₂CH₃), 0.89 (3H, t, J=7.1 Hz, CH₂CH₂CH₃); ¹³C

NMR (100 MHz, CDCl₃): 168.17, 166.47, 146.46, 141.59, 140.43, 139.92, 133.21, 130.19, 127.85, 127.59, 124.58, 123.30, 123.21, 121.73, 60.30, 34.75, 32.69, 32.02, 29.05, 22.17, 21.50, 14.52, 14.02; FT-IR (cm⁻¹): 1711 (s, C=O ester), 1687 (s, C=O amide), 1025 (s, S=O); $[\alpha]_D^{20} + 36.5$ (c = 1.1, $CHCl_3$).

tert-butyl (2-((*S*)-*p*-tolylsulfinyl)phenyl)carbamate Boc-APS and (1*S*,2*R*,3*R*)-2-((*E*)-3-ethoxy-3-oxoprop-1-en-1-yl)-3-propylcyclopropane-1-carboxylic acid 7a'

To a stirred solution of **3'** (500 mg, 1.14 mmol, 1 equiv.) in 1 mL of anhydrous THF was added 4- (dimethylamino)-pyridine (12.5 mg, 0.102 mmol, 10 mol%), followed by di-tert-butyl dicarbonate (248 mg, 1.14 mmol, 1 equiv.). The resulting orange mixture was stirred 10 min at room temperature. The previous mixture was cooled to 0 °C with an ice-bath, followed by slow addition of a solution of lithium hydroxide monohydrate (100 mg, 2.391 mmol, 2.1 equiv.) in 1 mL of water. The resulting yellow mixture was stirred at 0 °C during 2 h.

¹² Ogawa, H., Iwasaki, A., Sumimoto, S., Iwatsuki, M., Ishiyama, A., Hokari, R., Otoguro, K., Omura, S., Suenaga, K., *Org. Lett.*, **2017**, 19(4), pp. 890-893.

1M HCl sol. (10 mL) was added to reach pH 1-2, followed by diethyl ether (10 mL). The organic layer was extracted and washed with 1M HCl sol. (10 mL). Then, sat. NaHCO₃ solution (10 mL) was added to the organic layer, which was stirred 5 min at room temperature. It was extracted twice with sat. NaHCO₃ solution (5 mL). The organic layer was washed with water, dried (Na₂SO₄), filtered off and evaporated under reduced pressure to afford *tert*-butyl (2-((*S*)-*p*-tolylsulfinyl)phenyl)carbamate (345 mg, 92 %) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): 9.11 (1H, br s, N*H*), 8.02 (1H, d, J=8.4 Hz), 7.51 (1H, dd, J=7.6, 1.6 Hz), 7.37-7.44 (3H, m), 7.22 (2H, d, J=8.3 Hz), 7.06 (1H, td, J=7.6, 1.2 Hz), 2.34 (3H, s, PhC*H*₃), 1.42 (9H, s, NH*Boc*); ¹³C NMR (100 MHz, CDCl₃): 152.76, 141.31, 140.66, 139.80, 133.05, 129.99, 128.92, 127.87, 124.65, 122.49, 122.09, 80.71, 28.50, 21.50; FT-IR (cm⁻¹): 1033 (m, S=O); HRMS (ESI-TOF): m/z calcd for $C_{18}H_{22}NO_3S^+$: 332.1315, found: 332.1312; $[\alpha]_D^{20} + 74.2^\circ$ (c = 1.0, $CHCl_3$); Rt (min,

IA, Hex/iPrOH 98/2, 0.5 mL/min): 35.84 (99%), 38.34 (1%).

The combined aqueous layers were carefully acidified with 1M HCl sol. to pH *ca.* 1. Diethyl ether (20 mL) was added. The organic layer was extracted, and the aqueous layer back-extracted with diethyl ether (2 x 10mL). The combined organic layers were washed with water (10 mL) and brine (10 mL), dried (Na₂SO₄), filtered off and evaporated under reduced pressure to get the crude carboxylic acid (255 mg) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): 9.10 (1H, br s, COO*H*), 6.95 (1H, dd, J=15.5, 9.9 Hz), 5.96 (1H, d, J=15.6 Hz), 4.15 (2H, qd, J=7.1, 0.6 Hz, C(O)OCH₂CH₃), 1.72-1.93 (3H, m), 1.31-1.48 (4H, m), 1.25 (3H, t, J=7.1 Hz, C(O)OCH₂CH₃), 0.90 (3H, t, J=7.1 Hz, CH₂CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): 177.58, 166.40, 145.78, 122.32, 60.47, 34.67, 32.13, 30.70, 29.02, 22.06, 14.46, 13.88; FT-IR (cm⁻¹): 3143 (br w, OH acid), 1694 (s, C=O); HRMS (ESI-TOF): m/z calcd for

 $C_{12}H_{19}O_4^+$: 227.1278, found: 227.1274; $[\alpha]_D^{20} + 41.0^\circ (c = 0.9, CHCl_3)$.¹³

ethyl (E)-3-((1S,2S)-2-propylcyclopropyl)acrylate 2

Under dark, 2-mercaptopyridine-N-oxide (144 mg, 1.14 mmol, 1 equiv.) and DCC (234 mg, 1.14 mmol, 1 equiv.) were added to a solution of the crude acid **6'** (255 mg, 1.14 mmol, 1 equiv.) in 20 mL of anhydrous DCM. The resulting mixture was stirred under argon atmosphere at room temperature during 3 h. The previous mixture was then evaporated under reduced pressure under dark and then redissolved in 20 mL of benzene. 2-methyl-2-propanethiol (205 mg, 0.256 mL, 2.27 mmol, 2 equiv.) was added and the solution was degassed under dark, before being lightened with two sun lamps (distance around 20 - 30 cm) during 3 h.

The mixture was evaporated *in vacuo*. Diethyl ether (20 mL) and 1M HCl sol. (10 mL) were added. The organic layer was extracted, washed with 1M HCl sol. (2x 5 mL), sat. NaHCO₃ sol. (2x 5 mL), brine (10 mL), dried (Na₂SO₄), filtered off and evaporated under reduced pressure. The crude was purified by a short column chromatography on silica gel with CyHex/EtOAc (95:5) to afford the title compound (174 mg, 84% over four steps) as a clear oil.

¹³ For the other enantiomer, $[\alpha]_D^{20} - 40.8^{\circ}$ (*c* = 1.0, *CHCl*₃).

¹H NMR (400 MHz, CDCl₃): 6.45 (1H, dd, J=15.4, 10.1 Hz), 5.80 (1H, d, J=15.4 Hz), 4.14 (2H, q, J=7.2 Hz), 1.32-1.43 (2H, m), 1.21-1.30 (5H, m), 0.93-1.02 (1H, m), 0.89 (3H, t, J=7.3 Hz), 0.79 (1H, ddd, J=8.3, 4.6, 4.6 Hz), 0.73 (1H, ddd, J=8.1, 6.1, 4.6 Hz); ¹³C NMR (100 MHz, CDCl₃): 167.13, 154.03, 117.68, 60.20, 35.87, 23.31, 22.57, 22.33, 16.19, 14.56, 14.08; $[\alpha]_D^{25} + 65.9^\circ$ (c = 1.0, $CHCl_3$);¹⁴ other data match the reported ones.

(3R,4R,5S)-4-hydroxy-5-isobutyl-3-methylpyrrolidin-2-one

This compound was synthesized according to the literature procedure.¹²

¹H NMR (400 MHz, MeOD): 3.50 (1H, dd, J=7.9, 6.1 Hz), 3.37 (1H, ddd, J=8.4, 6.1, 5.2 Hz), 2.30 (1H, dq, J=7.4, 7.3 Hz), 1.74-1.85 (1H, m), 1.50 (1H, ddd, J=13.7, 8.5, 5.1 Hz), 1.38 (1H, ddd, J=13.6, 8.3, 6.0 Hz), 1.19 (3H, d, J=7.2 Hz), 0.97 (3H, d, J=6.7 Hz), 0.95 (3H, d, J=6.6 Hz); ¹³C NMR (100 MHz, MeOD): 179.68, 82.04, 59.89, 46.80, 45.19, 26.30, 23.88, 22.60, 13.88; $[\alpha]_D^{25} - 21.0^\circ (c = 0.9, CHCl_3)$;¹⁵ other data

match the reported ones.

(2S,3R,4R)-2-isobutyl-4-methyl-5-oxopyrrolidin-3-yl (E)-3-((1S,2S)-2-propylcyclopropyl)acrylate 1

2 (10 mg, 54.9 µmol, 1 equiv.) was dissolved in 1 mL of a 1:1 mixture of 1,4-dioxane/H₂O. Lithium hydroxide monohydrate (10 mg, 238 µmol, 4.3 equiv.) was added and the mixture was stirred 3 h at 90 °C. After cooling to room temperature, the mixture was carefully acidified with 1M HCl sol. to reach pH ca 1-2. Ethyl acetate (10 mL) was added. The organic layer was extracted, washed with brine (2x 10 mL), dried (Na₂SO₄), filtered off and evaporated under reduced pressure.

The crude acid (8.4 mg, 54 µmol, 1 equiv.), (3R,4R,5S)-4-hydroxy-5-isobutyl-3-methylpyrrolidin-2-one (10 mg, 58.4 µmol, 1.1 equiv.) and 2-methyl-6-nitrobenzoic anhydride (60 mg, 174 µmol, 3.2 equiv.) were dissolved in 1 mL of anhydrous DCM. Triethylamine (50 µL, 360 µmol, 6.5 equiv.) and 4-(dimethylamino)-pyridine (1 mg, 8.2 µmol, 15 mol%) were added and the mixture was stirred 2 h at room temperature. Sat. NaHCO₃ sol. (5 mL) was added. The organic layer was extracted, washed with brine (5 mL), dried (Na₂SO₄), filtered off and evaporated under reduced pressure. The crude was purified by preparative thin layer chromatography with CyHex/EtOAc (1:1) to afford the title compound (11 mg, 67% over two steps) as a clear oil.

¹H NMR (500 MHz, C₆D₆): 6.60 (1H, dd, J=15.5, 10.2 Hz), 6.04 (1H, br s, NH), 5.88 (1H, d, J=15.5 Hz), 4.92 (1H, dd, J=5.3, 4.5 Hz), 3.34 (1H, ddd, J=9.3, 4.6, 4.5 Hz), 2.48 (1H, dq, J=7.5, 5.2 Hz), 1.39-1.45 (1H, m), 1.32 (3H, d, J=7.5 Hz), 1.25-1.42 (2H, m), 1.16-1.21 (2H, m), 0.93-1.01 (2H, m), 0.89-0.92 (1H, m), 0.78 (3H, t, J=J=7.3 Hz), 0.71 (3H, d, J= 6.3 Hz), 0.65 (3H, d, J=6.2 Hz), 0.55-0.61 (1H, m), 0.41 (1H, ddd, J=8.8, 4.4, 4.4 Hz), 0.35 (1H, ddd, J=8.5, 6.2, 4.4 Hz); ¹³C NMR (125 MHz, C₆D₆): 176.07, 166.02, 155.11, 117.41,

¹⁴ Litt. $[\alpha]_D^{29.6} + 64^\circ$ ($c = 1.0, CHCl_3$). ¹⁵ Litt. $[\alpha]_D^{27.9} - 21^\circ$ ($c = 1.0, CHCl_3$).

80.79, 56.66, 44.43, 43.78, 35.68, 25.12, 23.22, 23.18, 22.58, 22.41, 21.71, 16.14, 14.94, 14.00; $[\alpha]_D^{25}$ + 63.7° (c = 0.4, $CHCl_3$);¹⁶ other data match the reported ones.

Unit	Position	$\delta_{\rm C}$ (Litt.) ¹⁷	δ _C (Exp.) ¹⁷	$\delta_{\rm H}$ (Litt.), couplings ¹⁷	δ_{H} (Exp.), couplings ¹⁷
	1	177.8	176.1		
	2	44.1	43.8	2.51, dq (5.2, 7.6)	2.48, dq (5.2, 7.5)
	3	80.8	80.8	4.94, dd (4.6, 5.2)	4.92, dd (4.5, 5.3)
	4	57.3	56.7	3.49, ddd (4.6, 4.7, 9.4)	3.34, ddd (4.5, 4.6, 9.3)
	5a	116		1.21, m	1.24 m
HIMP	5b	44.0	44.4	1.36, m	1.54, 111
	6	25.0	25.1	1.61, m	1.41, m
	7	21.7	21.7	0.74, d (6.2)	0.65 <i>,</i> d (6.2)
	8	23.2	23.2	0.76, d 6.3)	0.71, d (6.3)
	9	15.0	14.9	1.33, d (7.6)	1.32, d (7.5)
	NH			7.65, s	6.04, s ¹⁸
	1	166.0	166.0		
	2	117.4	117.4	5.88, d (15.5)	5.88, d (15.5)
	3	155.0	155.1	6.59, dd (10.3, 15.5)	6.60, dd (15.5, 10.2)
	4	22.4	22.4	0.91, m	0.90 <i>,</i> m
	5	23.3	23.2	0.59 <i>,</i> m	0.59 <i>,</i> m
PCPA	6	35.7	35.7	0.96, m	0.96 <i>,</i> m
	7	22.5	22.6	1.20, tq (7.1, 7.3)	1.19 <i>,</i> m
	8	14.0	14.0	0.78, t (7.3)	0.78, t (7.3)
	9a	16.1	16.1	0.35, ddd (4.5, 6.0, 8.2)	0.35, ddd (8.5, 6.2, 4.4)
	9b	10.1	10.1	0.42, ddd (4.5, 4.5, 8.8)	0.41, ddd (8.8, 4.4, 4.4)

¹⁶ Litt. $[\alpha]_D^{27.5} + 66^\circ (c = 0.25, CHCl_3)$

¹⁷ Proton NMRs were recorded at 500 MHz, carbon NMRs at 125 MHz, in benzene-*d6*. The comparison is done with extracted hoshinolactame, recorded at 400 MHz for proton and 100 MHz for carbon.

¹⁸ Water contained in benzene-*d6* may have affected NH shift and others.

Grenadamide and cascarillic acid key intermediates synthesis

ethyl (E)-3-(2-heptyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate 9

trans-8 (100 mg, 0.25 mmol, 1 equiv.), ethyl acrylate (100 μ L, 0.92 mmol, 3.6 equiv.), silver acetate (85 mg, 0.51 mmol, 2 equiv.), palladium(II) acetate (5.6 mg, 0.03 mmol, 10 mol%) and sodium trifluoroacetate (17 mg, 0.13 mmol, 50 mol%) were dissolved in 1 mL of HFIP/H₂O (4:1). The resulting mixture was flushed with oxygen and then stirred 24 h at 80 °C under oxygen atmosphere. After cooling down to room temperature, the mixture was diluted with DCM, filtered over celite and evaporated under reduced pressure. The crude was purified by column chromatography on silica gel with CyHex/EtOAc (95:5 to 9:1) to afford **9** (57 mg, 46%) and the key diastereomer **dia-9** (52 mg, 43%) as clear oils.

¹H NMR (400 MHz, CDCl₃): 10.52 (1H, br s, N*H*), 8.27 (1H, d, J=8.3 Hz), 7.40-7.49 (2H, m), 7.36 (2H, d, J=8.3 Hz), 7.16 (2H, d, J=8.2 Hz), 7.10 (1H, td, J=7.6, 1.0 Hz), 6.79 (1H, dd, J=15.6, 9.1 Hz), 5.88 (1H, d, J=15.6 Hz), 3.99-4.19 (2H, m, C(O)OC*H*₂CH₃), 2.28 (3H, s, PhC*H*₃), 1.76-1.87 (3H, m), 1.15-1.50 (15H, m), 0.85 (3H, t, J=6.9 Hz); ¹³C NMR (100 MHz, CDCl₃): 168.06, 166.20, 146.53, 147.74, 140.34, 139.44, 133.08, 130.22, 128.01, 127.68, 124.46, 123.39, 123.16, 121.46, 60.24, 32.69,

32.59, 31.95, 31.78, 29.39, 29.37, 29.31, 28.96, 22.83, 21.38, 14.49, 14.28; FT-IR (cm⁻¹): 1722 (s, C=O ester), 1687 (s, C=O amide), 1027 (m, S=O); $[\alpha]_D^{20} - 5.4^\circ$ (c = 0.5, $CHCl_3$).

¹H NMR (400 MHz, CDCl₃): 10.45 (1H, br s, N*H*), 8.34 (1H, d, J=8.4 Hz), 7.46 (1H, dd, J=7.6, 1.3 Hz), 7.35-7.43 (3H, m), 7.20 (2H, d, J=8.1 Hz), 7.10 (1H, td, J=7.6, 1.1 Hz), 7.03 (1H, dd, J=15.6, 10.1 Hz), 5.92 (1H, d, J=15.6 Hz), 4.06-4.18 (2H, m, C(O)OCH₂CH₃), 2.33 (3H, s, PhCH₃), 1.83 (1H, ddd, J=8.3, 6.2, 2.4 Hz), 1.72-1.78 (1H, m), 1.65-1.71 (1H, m), 1.14-1.41 (14H, m), 0.85 (3H, t, J=6.9 Hz); ¹³C NMR (100 MHz, CDCl₃): 168.13, 166.41, 146.45, 141.55, 140.39, 139.86, 133.12, 130.15,

127.71, 127.62, 124.54, 123.27, 123.14, 121.66, 60.25, 32.75, 32.68, 32.07, 31.97, 29.42, 29.41, 29.25, 28.93, 2.85, 21.47, 14.50, 14.27; FT-IR (cm⁻¹): 1717 (s, C=O ester), 1687 (m, C=O amide), 1021 (m, S=O); $[\alpha]_D^{20} + 51.5^{\circ}$ ($c = 1.0, CHCl_3$).

ethyl 3-((15,25,3R)-2-heptyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)propanoate 10

trans-9 (54 mg, 0.11 mmol, 1 equiv.) was dissolved in 5 mL of EtOH. The solution was flushed with argon and vacuum few times, before addition of Pd/C (10 wt. % loading, matrix activated carbon support, 20 mg). The resulting mixture was flushed with argon and vacuum before being put under hydrogen atmosphere and stirred 24 h at room temperature. The mixture was carefully filtered over celite, washed with EtOH and evaporated under reduced pressure to yield the title compound (54%, 99%) as a clear oil.

¹H NMR (400 MHz, CDCl₃): 10.35 (1H, br s, N*H*), 8.31 (1H, d, J=8.5 Hz), 7.51 (1H, dd, J=7.6, 1.6 Hz), 7.37-7.46 (3H, m), 7.26 (2H, d, J=8.2 Hz), 7.10 (1H, td, J=7.6, 1.1 Hz), 4.09 (2H, q, J=7.1 Hz), 2.34 (3H, s), 2.03-2.19 (2H, m), 1.50-1.72 (2H, m), 1.19-1.39 (17H, m), 1.03-1.13 (1H, m), 0.86 (3H, t, J=6.9 Hz); ¹³C NMR (100 MHz, CDCl₃): 173.43, 170.15, 141.60, 140.62, 139.77, 133.18, 130.22, 127.96, 127.81, 124.52,

123.00, 122.83, 60.39, 34.25, 33.29, 32.02, 29.53, 29.46, 29.29, 29.17, 28.75, 27.46, 22.86, 22.07, 21.43, 14.51, 14.31; FT-IR (cm⁻¹): 1732 (C=O ester), 1690 (C=O amide), 1022 (S=O); HRMS (ESI-TOF): m/z calcd for C₂₉H₃₉NNaO₄S⁺: 520.2492, found: 520.2510; $[\alpha]_D^{20} + 8.5^\circ$ (c = 0.5, CHCl₃).

ethyl 2-(2-hexyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acetate 12

trans-11 (200 mg, 0.52 mmol, 1 equiv.), ethyl iodoacetate (186 μ L, 1.6 mmol, 3 equiv.), silver acetate (180 mg, 1.1 mmol, 2 equiv.), palladium(II) acetate (12 mg, 0.05 mmol, 10 mol%) and sodium trifluoroacetate (35 mg, 0.26 mmol, 50 mol%) were dissolved in 2 mL of HFIP/H₂O (4:1). The resulting mixture was stirred 24 h at 80 °C. After cooling down to room temperature, the mixture was diluted with DCM, filtered over celite and evaporated under reduced pressure. The crude was purified by column chromatography on silica gel with CyHex/EtOAc (95:5 to 90:10) to afford **12** (116 mg, 47%) as a yellow oil and the key intermediate diastereoisomer **dia-12** (107 mg, 44%) as a clear oil.

¹H NMR (400 MHz, CDCl₃): 10.36 (1H, br s, N*H*), 8.27 (1H, d, J=8.5 Hz), 7.50 (1H, dd, J=7.7, 1.6 Hz), 7.37-7.45 (3H, m), 7.25 (2H, d, J=7.2 Hz), 7.11 (1H, td, J=7.6, 0.8 Hz), 4.04 (2H, qq, J=10.8, 7.2 Hz, C(O)OC*H*₂CH₃), 2.38 (1H, dd, J=16.5, 8.2 Hz), 2.33 (3H, s, PhC*H*₃), 2.15 (1H, dd, J=16.8, 5.1 Hz), 1.20-1.42 (13H, m), 1.16 (3H, t, J=7.2 Hz, C(O)OCH₂CH₃), 0.85 (3H, t, J=6.9 Hz); ¹³C NMR (100 MHz, CDCl₃): 173.13, 170.04, 141.57,

140.43, 139.94, 133.10, 130.22, 130.17, 127.89, 124.69, 123.22, 123.07, 60.39, 33.12, 32.02, 31.99, 29.23, 29.02, 27.95, 27.56, 24.53, 22.83, 21.43, 14.42, 14.30; FT-IR (cm⁻¹): 1736 (s, C=O ester), 1688 (m, C=O amide), 1023 (m, S=O); $[\alpha]_D^{20} - 1.8^\circ$ (c = 0.7, $CHCl_3$).

¹H NMR (400 MHz, CDCl₃): 10.32 (1H, br s, N*H*), 8.26 (1H, d, J=8.6 Hz), 7.45 (1H, dd, J=7.5, 1.3 Hz), 7.31-7.40 (3H, m), 7.17 (2H, d, J=8.1 Hz), 7.06 (1H, td, J=7.6, 1.1 Hz), 4.02 (2H, q, J=7.1 Hz, C(O)OC*H*₂CH₃), 2.51-2.70 (2H, m), 2.23-2.36 (4H, m), 1.16-1.37 (12H, m), 1.12 (3H, t, J=7.2 Hz, C(O)OCH₂C*H*₃), 0.83 (3H, t, J=7.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 172.93, 169.84, 141.27, 140.35, 139.65, 132.88, 129.94, 127.68,

127.63, 124.34, 122.87, 122.80, 60.34, 32.95, 31.92, 31.86, 29.07, 28.81, 27.98, 27.08, 24.91, 22.66, 21.30, 14.20, 14.13; FT-IR (cm⁻¹): 1736 (s, C=O ester), 1688 (m, C=O amide), 1023 (m, S=O); HRMS (ESI-TOF): m/z calcd for C₂₇H₃₆NO₄S⁺: 470.2360, found: 470.2338; $[\alpha]_D^{20} + 35.0^\circ$ (c = 0.6, $CHCl_3$).

NMR Spectra (S)-2-(p-tolylsulfinyl)aniline APS

trans-2-heptyl-*N*-(2-((*S*)-*p*-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide 8

trans-2-hexyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide 11

10,557 5,217 5,143 7,143 7,141 7,122 6,842 6,842 6,842 6,842 6,842 6,843 6,842 6,843 6,842 6,843 6,842 6,843 6,842 6,780 1,840 1,823 1,816 0,936 3,640 -2,293 1,457 1,444 1,427 mqq <u>8</u>-0 0 `0´ `N´ H 0^{--\$.} 8-8-6-ଟ-001 001 001 001 9 9 00 9 2,9 2,9]ð »e ____ '''| 11 0 10,5 10 9,5 7,5 5,5 2,5 0,5 6,5 4,5 3,5 1,5 9 8,5 6 8 -2

methyl (E)-3-((1R,2R,3S)-2-propyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate 3

methyl (E)-3-((15,25,3R)-2-propyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate dia-3

ethyl (E)-3-((1R,2R,3S)-2-propyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate 3'

ethyl (E)-3-((15,25,3R)-2-propyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate dia-3'

(1*S*,2*R*,3*R*)-2-((*E*)-3-ethoxy-3-oxoprop-1-en-1-yl)-3-propylcyclopropane-1-carboxylic acid 7a'

tert-butyl (2-((*S*)-*p*-tolylsulfinyl)phenyl)carbamate Boc-APS

ethyl (E)-3-((15,25)-2-propylcyclopropyl)acrylate 2

(3R,4R,5S)-4-hydroxy-5-isobutyl-3-methylpyrrolidin-2-one

(2S,3R,4R)-2-isobutyl-4-methyl-5-oxopyrrolidin-3-yl (E)-3-((1S,2S)-2-propylcyclopropyl)acrylate 1

ethyl (E)-3-((1R,2R,3S)-2-heptyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate 9

ethyl (E)-3-((15,25,3R)-2-heptyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate dia-9

ethyl 3-((1*S*,2*S*,3*R*)-2-heptyl-3-((2-((*S*)-*p*-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)propanoate 10

ethyl 2-((1R,2R,3S)-2-hexyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acetate 12

ethyl 2-((1*S*,2*S*,3*R*)-2-hexyl-3-((2-((*S*)-*p*-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acetate dia-12

Chiral HPLC Data

(S)-2-(p-tolylsulfinyl)aniline APS

<Sample Information>

Sample Name : PP002-F1-rac Method Filename : Hex_IPA_8020_0-5ml.lcm Vial # : 1-4 Injection Volume : 1 uL Date Acquired : 14/02/2017 10:40:56 Date Processed : 14/02/2017 12:29:21 Conditions : IC Hex/IPA 80/20 0.5ml/min	Sample Name Method Filename Vial # Injection Volume Date Acquired Date Processed Conditions	: SJE603-en_01 : Hex_IPA_8020_0-5ml.lcm : 1-1 : 1 uL : 13/04/2017 20:29:42 : 18/04/2017 07:37:22 : IC Hex/IPA 80/20 0.5ml/min
---	---	---

<Chromatogram> mAU

mAU

<Peak Table>

PDA Ch1 210nm					
Peak#	Ret. Time	Area	Conc.		
1	64,670	24064482	50,003		
2	79,716	24061181	49,997		
Total		48125663			

PDA C	PDA Ch1 260nm				
Peak#	Ret. Time	Area	Conc.		
1	64,584	3626988	99,356		
2	79,569	23512	0,644		
Total		3650500			

<Sample Information>

<Chromatogram>

<Peak Table>

PDA Ch1 210nm					
Peak#	Ret. Time	Area	Conc.		
1	49,066	3757563	50,143		
2	63,190	3736132	49,857		
Total		7493695			

PDA C	h1 210nm		
Peak#	Ret. Time	Area	Conc.
1	49,210	9917506	98,561
2	63,374	144844	1,439
Total		10062350	

<Sample Information>

Sample Name Method Filename	: PP038-2-rac_01 : Hex_IPA_8020_0-5ml.lcm	Sample Name Method Filename	: SJE629-2_en_01 : Hex_IPA_8020_0-5ml.lcm
Vial #	: 1-2	Vial #	: 1-2
Injection Volume	: 1 uL	Injection Volume	:1uL
Date Acquired	: 20/04/2017 19:15:05	Date Acquired	: 11/05/2017 21:28:53
Date Processed	: 21/04/2017 09:28:29	Date Processed	: 12/05/2017 07:10:37
Conditions	: IA Hex/IPA 80/20 .5ml/min	Conditions	: IA Hex/IPA 80/20 0.5ml/min

<Chromatogram>

<Peak Table>

PDA Ch1 206nm					
Peak#	Ret. Time	Area	Conc.		
1	16,191	8821617	49,730		
2	32,135	8917337	50,270		
Total		17738954			

PDA Ch1 206nm					
Peak#	Ret. Time	Area	Conc.		
1	16,018	15576097	98,495		
2	31,715	237972	1,505		
Total		15814069			

<Sample Information>

Sample Name Method Filename	: SJE650-rac_13 : Hex_IPA_9802_0-5ml.lcm : 1-2	Sample Name Method Filename Vial #	: SJE650-en_02 : Hex_IPA_9802_0-5ml.lcm : 1-1
Injection Volume	: 1 uL	Injection Volume	: 1 uL
Date Acquired Date Processed	: 10/07/2017 12:36:58	Date Acquired Date Processed	: 10/07/2017 11:06:29
Conditions	: IA Hex/IPA 98/2 0.5ml/min	Conditions	: IA Hex/IPA 98/2 0.5ml/min

<Chromatogram>

<Peak Table>

PDA Ch1 210nm					
Peak#	Ret. Time	Area	Conc.		
1	35,840	14914817	98,666		
2	38,335	201715	1,334		
Total		15116533			

PDA Ch1 210nm						
Peak#	Ret. Time	Area	Conc.			
1	35,840	14914817	98,666			
2	38,335	201715	1,334			
Total		15116533				

X-Ray Data

methyl (E)-3-((15,25,3R)-2-propyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate dia-3

General data

Formula	C ₂₄ H ₂₇ NO ₄ S		
Space group	P 21		
Cell lengths	a 22.1340(6) b 4.95080(10) c 24.5460(6)		
Cell angles	α 90 β 115.741(2) γ 90		
Cell volume	2422.86		
Ζ, Ζ'	Z : 4 Z ': 0		
Symmetry cell setting	Monoclinic		
R ₁	5.79		

Atomic coordinates

Label	х	У	z	Label	х	У	Z
C1	0.6077	0.0167	0.4440	C28	0.7418	0.3211	0.1459
C2	0.6020	0.2237	0.4794	C29	0.7838	0.1243	0.1400
H2	0.6395	0.2723	0.5158	H29	0.7841	0.0963	0.1018
C3	0.5417	0.3605	0.4619	C30	0.8248	-0.0301	0.1889
H3	0.5382	0.5009	0.4868	H30	0.8532	-0.1624	0.1841
C4	0.4872	0.2949	0.4091	C31	0.6955	0.4839	0.0920
C5	0.4930	0.0902	0.3729	H31A	0.6802	0.3723	0.0555
H5	0.4554	0.0454	0.3362	H31B	0.7195	0.6421	0.0874
C6	0.5533	-0.0515	0.3897	H31C	0.6567	0.5434	0.0982
H6	0.5571	-0.1904	0.3646	C32	0.9335	0.0451	0.3514
C7	0.4209	0.4401	0.3913	C33	0.9284	0.1433	0.4015

H7A	0.4007	0.3821	0.4179	H33	0.8944	0.0775	0.4118
H7B	0.3906	0.3963	0.3493	C34	0.9727	0.3378	0.4371
H7C	0.4287	0.6355	0.3953	H34	0.9685	0.4080	0.4713
C8	0.7374	0.0739	0.4671	C35	1.0238	0.4319	0.4228
C9	0.7841	0.1799	0.5216	H35	1.0545	0.5646	0.4475
H9	0.7873	0.1105	0.5588	C36	1.0295	0.3315	0.3729
C10	0.8260	0.3876	0.5213	H36	1.0639	0.3962	0.3629
H10	0.8569	0.4648	0.5584	C37	0.9845	0.1336	0.3368
C11	0.8229	0.4835	0.4668	C38	0.9964	0.1850	0.2423
H11	0.8517	0.6257	0.4667	C39	1.0080	0.0274	0.1961
C12	0.7772	0.3695	0.4120	H39	1.0165	-0.1701	0.2045
H12	0.7754	0.4323	0.3748	C40	1.0461	0.1598	0.1656
C13	0.7347	0.1648	0.4124	H40	1.0584	0.3530	0.1768
C14	0.6477	0.1982	0.3082	C41	0.9724	0.1068	0.1288
C15	0.6065	0.0275	0.2539	H41	0.9628	-0.0499	0.1005
H15	0.6192	-0.1676	0.2568	C42	0.9237	0.3243	0.1052
C16	0.5821	0.1519	0.1921	H42	0.9272	0.4722	0.1311
H16	0.5929	0.3479	0.1920	C43	0.8750	0.3267	0.0500
C17	0.5320	0.0895	0.2171	H43	0.8722	0.1816	0.0236
H17	0.5038	-0.0736	0.1988	C44	0.8256	0.5410	0.0274
C18	0.4961	0.3086	0.2303	C45	0.7280	0.7020	-0.0544
H18	0.5211	0.4569	0.2539	H45A	0.7488	0.8812	-0.0432
C19	0.4297	0.3084	0.2103	H45B	0.6945	0.6803	-0.0387
H19	0.4050	0.1579	0.1875	H45C	0.7063	0.6852	-0.0986
C20	0.3941	0.5257	0.2219	C46	1.0968	-0.0038	0.1531
C21	0.2870	0.7010	0.2013	H46A	1.0753	-0.1700	0.1306
H21A	0.2800	0.6651	0.2374	H46B	1.1345	-0.0575	0.1917
H21B	0.2436	0.7073	0.1657	C47	1.1239	0.1700	0.1149
H21C	0.3101	0.8743	0.2059	H47A	1.1396	0.3478	0.1343
C22	0.5825	-0.0075	0.1400	H47B	1.1619	0.0765	0.1119
H22A	0.5700	-0.1970	0.1431	C48	1.0653	0.2060	0.0515
H22B	0.6285	-0.0079	0.1429	H48A	1.0528	0.0294	0.0315
C23	0.5344	0.1060	0.0787	H48B	1.0791	0.3262	0.0273
H23A	0.5462	0.2973	0.0768	H48C	1.0267	0.2839	0.0554
H23B	0.5415	0.0069	0.0469	N2	0.9906	0.0275	0.2856
C24	0.4626	0.0920	0.0646	05	0.8327	-0.2603	0.3400
H24A	0.4513	-0.0928	0.0714	O6	0.9952	0.4331	0.2436
H24B	0.4356	0.1415	0.0222	07	0.8247	0.7425	0.0545
H24C	0.4530	0.2168	0.0909	08	0.7799	0.4927	-0.0285
N1	0.6883	0.0493	0.3570	S2	0.8742	-0.2066	0.3069
01	0.7029	-0.2353	0.5357	H2N	0.9890	-0.1370	0.2800
02	0.6455	0.4452	0.3082	H46C	0.0908	0.8028	0.1598
03	0.4176	0.7198	0.2526	H46D	0.1424	0.0491	0.1827
04	0.3274	0.4885	0.1938	C47B	0.0921	0.0290	0.0885
S1	0.6818	-0.1838	0.4697	H47C	0.1255	0.9094	0.0841
H1N	0.6870	-0.1440	0.3520	H47D	0.0470	0.9706	0.0586
C25	0.8250	0.0055	0.2449	C48B	0.1038	0.3130	0.0743
C26	0.7841	0.2013	0.2518	H48D	0.0676	0.4292	0.0735
H26	0.7845	0.2297	0.2903	H48E	0.1047	0.3177	0.0347

C27	0.7424	0.3563	0.2023
H27	0.7139	0.4880	0.2072

Bond lengths

Atom1	Atom2	Length	Atom1	Atom2	Length
C1	C2	1.384(8)	C25	C26	1.386(9)
C1	C6	1.395(6)	C25	C30	1.38(1)
C1	S1	1.782(6)	C25	S2	1.779(5)
C2	H2	0.949	C26	H26	0.952
C2	C3	1.388(9)	C26	C27	1.394(8)
C3	H3	0.951	C27	H27	0.950
C3	C4	1.372(7)	C27	C28	1.39(1)
C4	C5	1.39(1)	C28	C29	1.40(1)
C4	C7	1.52(1)	C28	C31	1.507(8)
C5	H5	0.950	C29	H29	0.951
C5	C6	1.402(9)	C29	C30	1.379(8)
C6	H6	0.951	C30	H30	0.950
C7	H7A	0.981	C31	H31A	0.979
C7	H7B	0.979	C31	H31B	0.980
C7	H7C	0.980	C31	H31C	0.98
C8	C9	1.390(6)	C32	C33	1.372(8)
C8	C13	1.393(8)	C32	C37	1.395(9)
C8	S1	1.792(6)	C32	S2	1.795(5)
C9	H9	0.949	C33	H33	0.950
C9	C10	1.387(9)	C33	C34	1.381(7)
C10	H10	0.950	C34	H34	0.950
C10	C11	1.39(1)	C34	C35	1.40(1)
C11	H11	0.950	C35	H35	0.950
C11	C12	1.403(8)	C35	C36	1.38(1)
C12	H12	0.949	C36	H36	0.951
C12	C13	1.386(8)	C36	C37	1.404(6)
C13	N1	1.420(5)	C37	N2	1.422(8)
C14	C15	1.505(7)	C38	C39	1.49(1)
C14	N1	1.361(6)	C38	N2	1.368(9)
C14	02	1.224(7)	C38	O6	1.229(7)
C15	H15	1.000	C39	H39	1.000
C15	C16	1.503(7)	C39	C40	1.50(1)
C15	C17	1.528(8)	C39	C41	1.541(8)
C16	H16	1.000	C40	H40	1.000
C16	C17	1.51(1)	C40	C41	1.505(8)
C16	C22	1.51(1)	C40	C46	1.52(1)
C17	H17	1.000	C41	H41	1.001
C17	C18	1.46(1)	C41	C42	1.454(9)
C18	H18	0.950	C42	H42	0.951
C18	C19	1.332(9)	C42	C43	1.315(8)
C19	H19	0.949	C43	H43	0.951
C19	C20	1.43(1)	C43	C44	1.45(1)
C20	03	1.192(9)	C44	07	1.20(1)

C20	04	1.343(8)	C44	08	1.326(7)
C21	H21A	0.98	C45	H45A	0.98
C21	H21B	0.98	C45	H45B	0.98
C21	H21C	0.98	C45	H45C	0.981
C21	04	1.44(2)	C45	08	1.47(1)
C22	H22A	0.990	C46	H46A	0.990
C22	H22B	0.989	C46	H46B	0.989
C22	C23	1.524(9)	C46	C47	1.57(2)
C23	H23A	0.99	C47	H47A	0.99
C23	H23B	0.991	C47	H47B	0.99
C23	C24	1.47(1)	C47	C48	1.54(2)
C24	H24A	0.98	C48	H48A	0.98
C24	H24B	0.980	C48	H48B	0.98
C24	H24C	0.98	C48	H48C	0.98
N1	H1N	0.96(7)	N2	H2N	0.82(7)
01	S1	1.502(4)	05	S2	1.490(5)

Bond angles

Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C1	C6	120.2(5)	C26	C25	C30	119.3(5)
C1	S1	120.7(4)	C26	C25	S2	119.8(4)
C1	S1	118.9(4)	C30	C25	S2	120.8(5)
C2	H2	119.8	C25	C26	H26	120.0
C2	C3	120.3(5)	C25	C26	C27	119.9(6)
C2	C3	119.9	H26	C26	C27	120.1
C3	H3	119.6	C26	C27	H27	119.5
C3	C4	120.6(6)	C26	C27	C28	121.0(6)
C3	C4	119.8	H27	C27	C28	119.5
C4	C5	119.3(6)	C27	C28	C29	118.2(6)
C4	C7	120.2(6)	C27	C28	C31	121.1(6)
C4	C7	120.5(6)	C29	C28	C31	120.7(6)
C5	H5	119.4	C28	C29	H29	119.6
C5	C6	121.1(6)	C28	C29	C30	120.8(6)
C5	C6	119.5	H29	C29	C30	119.6
C6	C5	118.4(6)	C25	C30	C29	120.7(6)
C6	H6	120.8	C25	C30	H30	119.6
C6	H6	120.8	C29	C30	H30	119.7
C7	H7A	109.4	C28	C31	H31A	109.5
C7	H7B	109.4	C28	C31	H31B	109.4
C7	H7C	109.4	C28	C31	H31C	109.4
C7	H7B	109.5	H31A	C31	H31B	109.6
C7	H7C	109.5	H31A	C31	H31C	109.5
C7	H7C	109.5	H31B	C31	H31C	109.4
C8	C13	120.6(5)	C33	C32	C37	120.6(5)
C8	S1	118.0(4)	C33	C32	S2	117.9(4)
C8	S1	121.4(4)	C37	C32	S2	121.4(4)
C9	H9	120.2	C32	C33	H33	120.0
C9	C10	119.6(6)	C32	C33	C34	120.1(5)
						S57
	Atom2 C1 C1 C2 C2 C2 C3 C3 C4 C4 C4 C4 C4 C5 C5 C5 C5 C5 C6 C6 C6 C6 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	Atom2Atom3C1C6C1S1C1S1C2H2C2C3C2C3C3H3C3C4C3C4C4C5C4C7C4C7C5H5C5C6C6C5C6H6C7H7AC7H7BC7H7BC7H7BC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC7H7CC9H9C9C10	Atom2Atom3AngleC1C6 $120.2(5)$ C1S1 $120.7(4)$ C1S1 $118.9(4)$ C2H2 119.8 C2C3 $120.3(5)$ C2C3 119.9 C3H3 119.6 C3C4 $120.6(6)$ C3C4 119.8 C4C5 $119.3(6)$ C4C7 $120.2(6)$ C4C7 $120.5(6)$ C5H5 119.4 C5C6 $121.1(6)$ C5C6 119.5 C6C5 $118.4(6)$ C6H6 120.8 C7H7A 109.4 C7H7B 109.4 C7H7B 109.5 C7H7C 109.5 C7H7C 109.5 C8C13 $120.6(5)$ C8S1 $118.0(4)$ C8S1 $121.4(4)$ C9H9 120.2 C9C10 $119.6(6)$	Atom2Atom3AngleAtom1C1C6 $120.2(5)$ C26C1S1 $120.7(4)$ C26C1S1 $118.9(4)$ C30C2H2 119.8 C25C2C3 $120.3(5)$ C25C2C3 119.9 H26C3H3 119.6 C26C3C4 $120.6(6)$ C26C3C4 $120.6(6)$ C27C4C5 $119.3(6)$ C27C4C7 $120.2(6)$ C27C4C7 $120.5(6)$ C29C5H5 119.4 C28C5C6 $121.1(6)$ C28C5C6 120.8 C25C6H6 120.8 C29C7H7A 109.4 C28C7H7B 109.5 H31AC7H7C 109.5 H31AC7H7C 109.5 H31BC8C13 $120.6(5)$ C33C8S1 $121.4(4)$ C37C9H9 120.2 C32	Atom2Atom3AngleAtom1Atom2C1C6120.2(5)C26C25C1S1120.7(4)C26C25C1S1118.9(4)C30C25C2H2119.8C25C26C2C3120.3(5)C25C26C2C3119.9H26C26C3H3119.6C26C27C3C4120.6(6)C26C27C3C4119.8H27C27C4C5119.3(6)C27C28C4C7120.2(6)C27C28C4C7120.5(6)C29C28C5H5119.4C28C29C5C6121.1(6)C28C29C5C6119.5H29C29C6C5118.4(6)C25C30C6H6120.8C29C30C7H7A109.4C28C31C7H7C109.5H31AC31C7H7C109.5H31AC31C7H7C109.5H31AC31C7H7C109.5H31BC31C7H7C109.5H31AC31C7H7C109.5H31AC31C7H7C109.5H31AC31C7H7C109.5H31AC31C7H7C109.5H31AC31C7H7C109.5H3	Atom2Atom3AngleAtom1Atom2Atom3C1C6120.2(5)C26C25C30C1S1120.7(4)C26C25S2C1S1118.9(4)C30C25S2C2H2119.8C25C26C27C2C3120.3(5)C25C26C27C3H3119.9H26C26C27C3C4120.6(6)C26C27C28C3C4120.6(6)C26C27C28C4C5119.3(6)C27C28C31C4C7120.2(6)C27C28C31C4C7120.5(6)C29C28C31C4C7120.5(6)C29C29C30C5C6119.5H29C29C30C5C6119.5H29C29C30C6C5118.4(6)C28C31H31AC7H7A109.4C28C31H31AC7H7B109.4C28C31H31AC7H7B109.5H31AC31H31BC7H7C109.5H31AC31H31BC7H7C109.5H31AC31H31CC7H7C109.5H31AC31H31CC7H7C109.5H31AC31H31CC7H7C109.5H31AC31H31CC7H7C<

H9	C9	C10	120.2	H33	C33	C34	119.8
C9	C10	H10	119.9	C33	C34	H34	119.9
C9	C10	C11	120.2(6)	C33	C34	C35	120.1(6)
H10	C10	C11	119.9	H34	C34	C35	119.9
C10	C11	H11	120.1	C34	C35	H35	120.1
C10	C11	C12	119.9(6)	C34	C35	C36	119.9(6)
H11	C11	C12	120.0	H35	C35	C36	120.0
C11	C12	H12	120.1	C35	C36	H36	120.0
C11	C12	C13	119.8(6)	C35	C36	C37	120.0(5)
H12	C12	C13	120.1	H36	C36	C37	120.0
C8	C13	C12	119.9(5)	C32	C37	C36	119.2(5)
C8	C13	N1	120.2(5)	C32	C37	N2	120.6(4)
C12	C13	N1	119.9(5)	C36	C37	N2	120.1(4)
C15	C14	N1	113.0(5)	C39	C38	N2	113.5(5)
C15	C14	02	123.5(5)	C39	C38	06	123.9(6)
N1	C14	02	123.5(5)	N2	C38	06	122.6(6)
C14	C15	H15	115.8	C38	C39	H39	115.8
C14	C15	C16	118.5(5)	C38	C39	C40	118.2(5)
C14	C15	C17	119.6(5)	C38	C39	C41	120.4(5)
H15	C15	C16	115.7	H39	C39	C40	115.7
H15	C15	C17	115.7	H39	C39	C41	115.7
C16	C15	C17	59.9(4)	C40	C39	C41	59.3(4)
C15	C16	H16	114.7	C39	C40	H40	115.2
C15	C16	C17	60.9(4)	C39	C40	C41	61.7(4)
C15	C16	C22	120.7(6)	C39	C40	C46	119.5(6)
H16	C16	C17	114.6	H40	C40	C41	115.2
H16	C16	C22	114.6	H40	C40	C46	115.4
C17	C16	C22	120.8(6)	C41	C40	C46	119.3(6)
C15	C17	C16	59.2(4)	C39	C41	C40	59.0(4)
C15	C17	H17	114.0	C39	C41	H41	113.7
C15	C17	C18	124.7(5)	C39	C41	C42	124.2(6)
C16	C17	H17	114.0	C40	C41	H41	113.6
C16	C17	C18	120.2(5)	C40	C41	C42	122.2(6)
H17	C17	C18	113.9	H41	C41	C42	113.6
C17	C18	H18	118.7	C41	C42	H42	118.2
C17	C18	C19	122.5(6)	C41	C42	C43	123.5(7)
H18	C18	C19	118.9	H42	C42	C43	118.3
C18	C19	H19	118.6	C42	C43	H43	118.5
C18	C19	C20	122.7(7)	C42	C43	C44	123.0(7)
H19	C19	C20	118.7	H43	C43	C44	118.5
C19	C20	03	127.2(7)	C43	C44	07	125.8(7)
C19	C20	04	111.8(7)	C43	C44	08	111.9(6)
03	C20	04	121.0(7)	07	C44	08	122.2(7)
H21A	C21	H21B	109	H45A	C45	H45B	109
H21A	C21	H21C	110	H45A	C45	H45C	109
H21A	C21	04	109	H45A	C45	08	109
H21B	C21	H21C	110	H45B	C45	H45C	110
H21B	C21	04	109	H45B	C45	08	110
H21C	C21	04	109	H45C	C45	08	109

C16	C22	H220	109.0	C40	C46	H46A	109 7
C16	C22	H22A	109.0	C40	C46	H46R	100.7
C16	C22	(22	103.0	C40	C40	C47	109.9
	C22	U23	107.9		C40		109.0(8)
	C22	6220	107.8		C40	C47	100.2
HZZA	022	023	109.1	H46A	C46	C47	109.7
H22B	C22	C23	109.1	H46B	C46	C47	109.7
C22	C23	H23A	108.3	C46	C47	H47A	110
C22	C23	H23B	108.3	C46	C47	H47B	110
C22	C23	C24	115.7(8)	C46	C47	C48	107(1)
H23A	C23	H23B	107.6	H47A	C47	H47B	109
H23A	C23	C24	108.3	H47A	C47	C48	110
H23B	C23	C24	108.4	H47B	C47	C48	110
C23	C24	H24A	109	C47	C48	H48A	109
C23	C24	H24B	110	C47	C48	H48B	110
C23	C24	H24C	110	C47	C48	H48C	109
H24A	C24	H24B	109	H48A	C48	H48B	109
H24A	C24	H24C	109	H48A	C48	H48C	109
H24B	C24	H24C	110	H48B	C48	H48C	110
C13	N1	C14	123.5(5)	C37	N2	C38	123.6(5)
C13	N1	H1N	119(4)	C37	N2	H2N	120(4)
C14	N1	H1N	117(4)	C38	N2	H2N	116(4)
C20	04	C21	116.0(8)	C44	08	C45	115.0(7)
C1	S1	C8	97.6(3)	C25	S2	C32	97.2(3)
C1	S1	01	106.4(3)	C25	S2	05	106.2(3)
C8	S1	01	105.2(3)	C32	S2	05	104.7(3)