Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

Sai Ruan, Xiaobin Lin, Lihua Xie, Lili Lin, Xiaoming Feng and Xiaohua Liu*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

E-mail: liuxh@scu.edu.cn

Table of Contents

1.	General information	S2
2.	Typical procedure for guanidines preparation	S2
3.	Optimization of the reaction conditions	S3
4.	Substrate scope of the products	S5
5.	Typical procedure for the cascade reaction	S6
6.	The analytical and spectral characterization data of the products	S6
7.	NMR spectra	S24
8.	X-ray crystal structure of the product 3aa	S51
9.	Copies of the CD spectra of the products	S53
10.	References	

1. General information

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26), ((CD₃)₂SO, δ = 2.5), (MeOD, δ = 2.64), ((CD₃)₂CO, δ = 2.05), Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. ¹³CNMR spectra were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0), ((CD₃)₂SO, δ = 39.5), (MeOD, δ = 49.0), ((CD₃)₂CO, δ = 206.3, δ = 29.8). Enantiomeric excesses (*ee*) were determined by UPC2 analysis using the corresponding commercial chiralpak column as stated in the experimental procedures at 35 °C. Optical rotations were reported as follows: [α]_D¹⁸ (*c*: g/100 mL, in solvent). HRMS was recorded on a commercial apparatus (ESI Source). All catalytic reactions were run in dried glassware. THF, toluene and diethyl ether (Et₂O) were distilled from sodium benzophenone ketyl. Ethyl acetate, CH₂Cl₂ was distilled over CaH₂.

2. Typical procedure for guanidines preparation

A solution of sulfonyl chloride **B** (10 mmol) was slowly added to a stirred solution of diamine **A** (10 mmol), NEt₃ (11 mmol) in dichloromethane (25 mL). The resulting mixture was stirred for another 2 hours, washed twice with water (25 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* to give a white solid **C**. To a solution of **D** in CH₂Cl₂ (40 mL) was added NEt₃ (11 mmol), isobutyl carbonochloridate (11 mmol) at 0 °C under stirring. After 10 min, **C** was added. The reaction was allowed to warm to room temperature for another 2 hours. The mixture was washed with 1 N KHSO₄ solution, saturated NaHCO₃ solution, and brine, dried over anhydrous Na₂SO₄ and concentrated to get a white solid **E**. Then, TFA (10 mL) was added to the CH₂Cl₂ (10 mL) solution of **E**, and stirred until the reaction finished (1 h). The *p*H value of the mixture was brought into the range of 10–12 by the addition of 2 N NaOH solution. The aqueous phase was extracted with CH₂Cl₂ (3 × 30 mL).

combined organic phase was washed with brine, dried over anhydrous Na_2SO_4 and concentrated and purified through flash chromatograph as a white solid **F** (70% yield).

*n*BuLi (2.4 M in *n*-hexane, 3.3 eq., 16.5 mmol) was injected into a solution of **F** (5.0 mmol) in THF (30 mL) dropwise over 10 mins under nitrogen atmosphere at -20 °C with well stirring. After additional 10 mins, a solution of N,N-dicyclohexylcarbodiimide (1.2 eq., 6.0 mmol) in 10 mL of THF was added dropwise within 10 mins. The reaction was allowed to warm to room temperature and detected by TLC. After 12 h, the mixture was evaporated under reduced pressure to get rid of THF, and the pH value of the mixture was brought into the range of 0-1 by the addition of 3 M HCl. The aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phase was washed with 3M HCl in brine, dried over anhydrous Na_2SO_4 and evaporated in vacuum, and purified through flash chromatograph on silica gel to produce guanidinium salt G. The purified guanidinium salt G can be given through recrystallization in CH_2Cl_2 and ethyl acetate. Then, guanidinium salt G in CH_2Cl_2 (20 mL) was added 5 M NaOH (20 mL) and stirred until the basification finished (10 mins). The pH value of the mixture was kept in the range of 11–12. The aqueous phase was extracted with CH_2Cl_2 (5 × 20 mL). The combined organic phase was washed with 5 M NaOH, dried over anhydrous Na₂SO₄ and evaporated in vacuum. Finally, a white solid was obtained. Then it was dissolved in CH_2Cl_2 and filtration through Celite to remove the silicone gel, concentrate to get a kind of white foam (22% yield). For other catalysts, the synthesis method could be found in the literature.¹

3. Optimization of the reaction conditions

 O_2N NO₂ NHCOPh G (10 mol%)Bn -30 °C, ethyl acetate OH $\hat{}$ 1a 2a 3aa Ph Ph Ph NHTs ŃHTs ŃН C۱ Cy NH Cy^{_ŃH} **G-4:** Ar = 4-MeC₆H₄ **G-5:** Ar = $2,6-F_2C_6H_3$ **G-6**: Ar = 4-MeOC₆H₄ **G-7**: Ar = 4-CF₃C₆H₄ G-1: n = 0 G-3 **G-9**: Ar = 4-BrC₆H₄ G-8: Ar = 4-t-BuC₆H₄ G-2: n = 1 **G-10**: Ar = 2,6-Cl₂C₆H₃ G-11: Ar = C₆H₅ (Cy = Cyclohexyl) CHPh₂ CHPh₂ CHPh₂ Су Cy Су Су Ή H **G-15:** R¹ = Ph₂CH G-12 G-13 G-14 **G-16:** $R^1 = Ph_3C$ **G-17:** R¹ = Ph

Table 1: Screening of guanidines^[a]

entry	cat	yield (%) ^[b]	dr ^[c]	ee (%) ^[d]
1	G-1	98	>19:1	47
2	G-2	94	>19:1	52
3	G-3	97	>19:1	41
4	G-4	95	>19:1	74
5	G-5	99	>19:1	85
6	G-6	99	>19:1	76
7	G-7	99	>19:1	75
8	G-8	99	>19:1	80
9	G-9	99	>19:1	82
10	G-10	99	>19:1	74
11	G-11	99	>20:1	79
12	G-12	81	8:1	36
13	G-13	84	12:1	17
14	G-14	77	5:1	13
15	G-15	88	14:1	58
16	G-16	81	5:1	50
17	G-17	85	6:1	46
18	BG-1	86	2.5:1	24/14
19	BG-1•HBAr ^F 4	75	2:1	23/11

[a] Unless otherwise noted, the reactions were carried out with the catalyst (10 mol%), **1a** (0.10 mmol) and **2a** (0.12 mmol) in ethyl acetate (1.0 mL) at -30 °C for 24 h. [b] Isolated yield. [c] Determined by NMR analysis. [d] Determined by UPC2 analysis.

Table 2: Screening of the solvents^[a]

	NO ₂ Bn O OH + N Pr	G-5 (10 mol%) -30 ^o C , solver	O ₂ N nt	HCOPh Bn O
entry	solvent	yield (%) ^[b]	dr	ee (%) ^[c]
1	Toluene	72	>19:1	54
2	THF	99	>19:1	88
3	CH_2Cl_2	94	>19:1	79
4	Et ₂ O	80	>19:1	77
5	CH ₃ CN	86	>19:1	65
6	Ethyl acetate	99	>19:1	85

[a] Unless otherwise noted, the reactions were carried out with **G-5** (10 mol%), **1a** (0.10 mmol) and **2a** (0.12 mmol) in solvent (1.0 mL) at -30 °C for 24 h. [b] Isolated yield. [c] Determined by NMR analysis. [d] Determined by UPC2 analysis.

	NO ₂ OH 1a	Bn,O N,O 2a Ph	G-5 (10 mol%) ► THF, T		COPh n
entry	T (°C)	t (h)	yield (%) ^[b]	dr ^[c]	ee (%) ^[d]
1	-30	24	99	>19:1	88
2	-40	24	99	>19:1	91
3	-50	72	99	>19:1	93
4	-60	72	99	>19:1	95
5[e]	-60	72	99	>19:1	93
6	-70	96	99	>19:1	96
7	-78	96	trace	—	—

Table 3: Screening of the temperature^[a]

[a] Unless otherwise noted, the reactions were carried out **G-5** (10 mol%), **1a** (0.10 mmol) and **2a** (0.12 mmol) in solvent (1.0 mL) at the indicated temperature. [b] Isolated yield. [c] Determined by NMR analysis. [d] Determined by UPC2 analysis. [e] **G-5** (5 mol%).

4. Substrate scope

Table 4: Substrate scope of (*E*)-2-(2-nitrovinyl) phenols 1^[a]

		0		0 ₂ N	
R	NO ₂ U	Bn	G-5 (10 mol%) -60 °C, THF	► R ¹	NHCOPh Bn O
	1	2 Ph		3	
entry	1: R ¹	t (h)	yield (%) ^[b]	dr ^[c]	ee (%) ^[d]
1	1a : H	72	99 (3aa)	>19:1	95
2	1b : 4- F	72	99 (3ba)	>19:1	95
3	1c: 4-Cl	72	90 (3ca)	>19:1	95
4	1d: 4-Br	72	84 (3da)	>19:1	96
5	1e: 5-Me	72	80 (3ea)	>19:1	92
6	1f: 5-Cl	72	85 (3fa)	>19:1	92
7	1g: 5-OH, 6-Me	72	80 (3ga)	>19:1	96
8	1h : 6- F	72	83 (3ha)	>19:1	94
9	1i: 6-Cl	72	82 (3ia)	>19:1	91
10	1j : 6-Br	72	80 (3ja)	>19:1	91
11	1k: 6-Me	72	92 (3ka)	>19:1	95

12	11: 6-MeO	72	99 (3la)	>19:1	92
13	1m: 6-EtO	72	95 (3ma)	>19:1	93
14	1n : 6- <i>t</i> -Bu	72	99 (3na)	>19:1	95

[a] Unless otherwise noted, the reactions were carried out **G-5** (10 mol%), **1a** (0.10 mmol) and **2a** (0.12 mmol) in solvent (1.0 mL) at the indicated temperature. [b] Isolated yield. [c] Determined by NMR analysis. [d] Determined by UPC2 analysis.

Table 5: Substrate scope of azlactones 2^[a]

	$ \begin{array}{c} & NO_2 \\ & & R^3 \\ & & & N \\ & & & N \\ & & & N \\ & & & R^2 \end{array} $	G-5 (10 mol % -60 °C,THF	$\xrightarrow{O_2N}$	IHCOR ² 'R ³ O		
entry	2 : R^2/R^3	t (h)	yield (%) ^[b]	dr ^[c]	ee (%) ^[d]	
15	$4-ClC_6H_4/Bn$	48	87 (3ab)	>19:1	95	
16	$4\text{-BrC}_6\text{H}_4/\text{Bn}$	48	87 (3ac)	>19:1	96	
17	$4-MeC_6H_4/Bn$	48	99 (3ad)	>19:1	95	
18	$4-MeOC_6H_4/Bn$	48	99 (3ae)	>19:1	95	
19	$4-EtC_6H_4/Bn$	48	99 (3af)	>19:1	98	
20	$4-NCC_6H_4/Bn$	72	63 (3ag)	>19:1	93	
21	$Ph \ / \ 4\text{-}ClC_6H_4CH_2$	48	99 (3ah)	>19:1	96	
22	Ph / Me	24	94 (3ai)	>19:1	98	
23	Ph / <i>i</i> -Bu	72	97 (3aj)	>19:1	97	
24	$Ph / CH_2 CH_2 Ph$	72	97 (3ak)	>19:1	98	
25	Ph / 3-Indolylmethyl	72	99 (3al)	>19:1	99	

[a] Unless otherwise noted, the reactions were carried out **G-5** (10 mol%), **1a** (0.10 mmol) and **2a** (0.12 mmol) in solvent (1.0 mL) at the indicated temperature. [b] Isolated yield. [c] Determined by NMR analysis. [d] Determined by UPC2 analysis.

5. Typical procedure for the cascade Michael reaction

2-nitrovinylphenol **1** (0.10 mmol), azlactone **2** (1.2-2 equiv) and the catalyst **G-5** (7.5 mg, 10 mol%) were added into the test tube, followed by the addition of THF (1.0 mL). Then the mixture was stirred at -60 °C. After completion, the reaction mixture was purified by silica gel column chromatography (ethyl acetate/petroleum ether 1/4-1/2) to afford the desired products. Then the product was directed for UPC2 analysis.

6. The analytical and spectral characterization data of the product *N*-((*3R*,4*R*)-3-benzyl-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3aa)

(dd, J = 13.2, 9.6 Hz, 1H), 3.21 (d, J = 14.4 Hz, 1H), 3.03 (d, J = 14.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 165.9, 150.1, 133.3, 132.7, 132.3, 130.1, 130.1, 129.1, 128.8, 128.3, 127.0, 126.4, 125.5, 121.4, 116.9, 74.3, 60.5, 40.5, 35.6. HRMS (ESI-TOF) caled for C₂₄H₂₀N₂O₅Na⁺ (M+Na)⁺, m/z: 439.1270, observed: 439.1271.

	Retention Time	Area	% Area
1	3.559	6850779	97.50
2	4.493	175929	2.50

N-((3*R*,4*R*)-3-benzyl-6-fluoro-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3ba)

White solid, $[\alpha]^{18} = +44.5$ (*c*: 0.27, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂//PrOH = 80/20, 2 mL/min, $\lambda = 232.0$ nm, t (major) = 5.01 min, t (minor) = 6.16 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.51 – 7.44 (m, 1H), 7.40 – 7.33 (m, 2H), 7.31 – 7.25 (m, 3H), 7.10 – 6.99 (m, 4H), 6.85 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.46 (s, 1H), 5.17 (dd, *J* = 13.6, 3.2 Hz, 1H), 5.08 (d, *J* = 8.8 Hz, 1H), 6.46 (s, 1H), 5.17 (dd, *J* = 13.6, 3.2 Hz, 1H), 5.08 (d, *J* = 8.8 Hz, 1H), 5.08 (d, J = 8.8 Hz, 1H), 5.08 (d, J = 8.8 Hz, 1H), 5.08 (d, J = 8.8 Hz, 1H

1H), 4.84 (dd, J = 13.2, 9.2 Hz, 1H), 3.22 (d, J = 14.4 Hz, 1H), 3.04 (d, J = 14.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 165.5, 160.7, 158.2, 146.1, 133.0, 132.5, 132.2, 130.0, 129.2, 128.8, 128.4, 127.0, 123.2(J = 7.5 Hz, 1C), 118.4(J = 8.5 Hz, 1C), 118.3, 116.6(J = 23.2 Hz, 1C), 113.5(J = 25.3 Hz, 1C), 74.0, 60.3, 40.1, 36.1. HRMS (ESI-TOF) caled for C₂₄H₁₉FN₂O₅Na⁺ (M+Na)⁺, m/z: 457.1176, observed: 457.1179.

	Retention Time	Area	% Area
1	5.015	10606801	50.32
2	6.098	10472280	49.68

14.4 Hz, 1H), 2.97 (d, J = 14.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 165.3, 148.6, 132.9, 132.5, 132.2, 130.6, 130.1, 130.0, 129.2, 128.8, 128.5, 127.0, 126.4, 123.2, 118.3, 73.9, 60.1, 40.0, 36.1. HRMS (ESI-TOF) caled for C₂₄H₁₉ClN₂O₅Na⁺ (M+Na)⁺, m/z: 473.0880, 475.0851; observed: 473.0879, 475.0874.

	Retention Time	Area	% Area
1	4.231	7930074	97.46
2	4.802	206699	2.54

N-((3R,4R)-3-benzyl-6-bromo-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3da)

White solid, $[\alpha]^{18} = +56.9$ (*c*: 0.58, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/^{*i*}PrOH = 90/10, 2 mL/min, $\lambda = 224.0$ nm, t (major) = 25.68 min, t (minor) = 28.83 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.42 (m, 4H), 7.41 – 7.27 (m, 5H), 7.22 (d, *J* = 1.2 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.99 (d, *J* = 8.8 Hz, 1H), 6.38 (s, 1H), 5.16 (dd, *J* = 13.6, 3.2 Hz, 1H), 5.03 (d, *J* = 7.6 Hz, 1H), 4.84 (dd, *J* = 13.6, 9.6 Hz, 1H), 3.27(d, *J* = 14.4 Hz, 1H),

3.05(d, *J* =14.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 165.3, 149.1, 133.0, 132.9, 132.5, 132.2, 130.0, 129.2, 129.2, 128.8, 128.4, 127.1, 123.6, 118.6, 118.0, 73.9, 60.2, 39.9, 36.3. HRMS

(ESI-TOF) calcd for [M+Na]⁺ C₂₄H₁₉BrN₂O₅Na⁺, m/z: 517.0375, 519.0355; observed: 517.0374, 519.0358.

	Retention Time	Area	% Area
1	25.684	42702976	98.05
2	28.830	849785	1.95

N-((3R,4R)-3-benzyl-7-methyl-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3ea)

White solid, $[\alpha]^{18} = -44.8$ (*c*: 0.21, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 218$ nm, t (major) = 3.39 min, t (minor) = 4.43 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.37 (m, 3H), 7.32 – 7.20 (m, 5H), 7.10 – 6.97 (m, 2H), 6.90 (t, *J* = 8.4 Hz, 3H), 6.30 (s, 1H), 5.14 (dd, *J* = 12.4, 2.4 Hz, 1H), 4.90 – 4.67 (m, 2H), 3.22 (d, *J* = 14.4 Hz, 1H), 3.05 (d, *J* = 14.4 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

168.0, 166.2, 150.0, 140.7, 133.4, 132.8, 132.3, 130.1, 129.1, 128.8, 128.2, 127.0, 126.1, 118.2, 117.4, 74.5, 60.6, 40.4, 35.3, 21.2. HRMS (ESI-TOF) caled for $C_{25}H_{22}N_2O_5Na^+$ (M+Na)⁺, m/z: 453.1426, observed: 453.1428.

	Retention Time	Area	% Area
1	3.352	3876064	49.97
2	4.360	3880195	50.03

	Retention Time	Area	% Area
1	3.387	23319041	95.80
2	4.433	1023041	4.20

N-((3R,4R)-3-benzyl-7-chloro-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3fa)

White solid, $[\alpha]^{18} = -25.7$ (*c*: 0.68, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm, t (major) = 4.87 min, t (minor) = 5.75 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 2H), 7.46 (t, J = 7.2 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.29 – 7.22 (m, 4H), 7.16 – 6.95 (m, 5H), 6.47 (s, 1H), 5.14 (dd, J = 13.6, 2.8 Hz, 1H), 5.00 (d, J = 8.8 Hz, 1H), 4.82 (dd, J = 13.2,

10.0 Hz, 1H), 3.24 (d, J = 14.4 Hz, 1H), 3.03 (d, J = 14.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 165.3, 150.5, 135.5, 132.9, 132.5, 132.3, 130.1, 129.2, 128.8, 128.4, 127.4, 127.0, 125.5, 120.0, 117.4, 74.2, 60.3, 39.9, 36.2. HRMS (ESI-TOF) caled for C₂₄H₁₉ClN₂O₅Na⁺ (M+Na)⁺, m/z: 473.0880, 475.0851; observed: 473.0882, 475.0875.

N-((3*R*,4*R*)-3-benzyl-7-(nitromethyl)-2-

yl)benzamide (3ga)

	Retention Time	Area	% Area
1	4.866	3199646	96.08
2	5.750	130506	3.92

hydroxy-8-methyl-4oxochroman-3-

W692telsolid05ahlm=C622C162;

Determined by HPLC analysis [Daicel Chiralpak IA, *n*-hexane/ ^{*i*}PrOH = 80/20, 1.5 mL/min, λ = 254 nm, t (major) = 11.99 min, t (minor) = 16.59 min]; ¹H NMR(400 MHz, MeOD) & 7.46 (dd, *J* = 16.0, 7.6 Hz, 3H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.28 – 7.18 (m, 5H), 6.72 (d, *J* = 8.4Hz, 1H), 6.51 (d, *J* = 8.4 Hz, 1H), 5.28 (dd, *J* = 12.8, 3.2 Hz, 1H), 4.67 (t, *J* = 11.2 Hz, 1H), 4.37 (s, 1H), 3.59 (d, *J* = 14.4 Hz,

1H), 3.15 (d, J = 14.4 Hz, 1H), 2.02 (s, 3H). ¹³C NMR (100 MHz, MeOD) δ 170.3, 168.3, 158.0, 151.1,

406858

135.8, 135.0 133.0, 131.7, 129.5, 129.5, 128.4, 126.6, 113.8, 113.0, 111.5, 76.9, 61.1, 42.1, 37.5, 8.4. HRMS (ESI-TOF) caled for C₂₅H₂₂N₂O₆Na⁺ (M+Na)⁺, m/z: 469.1376, observed: 469.1371.

N-((3R,4R)-3-benzyl-8-fluoro-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3ha)

16.588

2

White solid, $[\alpha]^{18} = +20.3$ (*c*: 0.48, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OD-3, scCO₂/^{*i*}PrOH = 85/15, 2 mL/min, $\lambda = 226$ nm, t (major) = 8.56 min, t (minor) = 7.44 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.46 (m, 2H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.27 (t, *J* = 8.0 Hz, 1H), 7.23 – 7.16 (m, 3H), 7.13 – 6.96 (m, 4H), 6.78 (d, *J* = 7.2 Hz, 1H), 6.43 (s, 1H),5.18 – 5.01 (m, 2H), 4.82 (dd, *J* = 13.6, 9.6 Hz, 1H), 3.16 (d, *J* = 14.4 Hz, 1H), 2.97 (d, *J* = 14.4 Hz, 1H).

1.86

¹³C NMR (100 MHz, CDCl₃) δ 168.1, 164.7, 149.8(J = 25.1 Hz, 1C), 138.1 (J = 11.6 Hz, 1C). 133.0, 132.5, 132.1, 130.0, 129.9 (J = 21.6 Hz, 1C), 129.1 (J = 13.8 Hz, 1C), 128.8 (J = 9.5 Hz, 1C), 128.5, 127.0, 125.6 (J = 7.0 Hz, 1C), 124.0, 121.0, 117.3, 117.1, 74.1, 60.4, 40.2, 36.3. HRMS (ESI-TOF) caled for C₂₄H₁₉FN₂O₅Na⁺ (M+Na)⁺, m/z: 457.1176, observed: 457.1176.

	Retention Time	Area	% Area
1	7.247	17289978	50.13
2	8.539	17200754	49.87

	Retention Time	Area	% Area
1	7.443	619787	2.99
2	8.562	20125463	97.01

N-((3R,4R)-3-benzyl-8-chloro-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3ia).

White solid, $[\alpha]^{18} = -28.3$ (*c*: 0.27, $\lambda = 365$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/^{*i*}PrOH = 80/20, 1.5 mL/min, $\lambda = 236$ nm, t (major) = 10.18 min, t (minor) = 11.60 min]; ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.54 (m, 2H), 7.53 – 7.47 (m, 1H), 7.44 – 7.36 (m, 3H), 7.34 – 7.28 (m, 3H), 7.14 – 7.07 (m, 3H), 7.05 – 6.97 (m, 1H), 6.38 (s, 1H), 5.20 (dd, *J* = 13.6, 3.2 Hz, 1H), 5.10 (d, *J* = 9.6 Hz, 1H), 4.89 (dd, *J* = 13.6, 9.6 Hz, 1H), 3.24 (d, *J* = 14.4

Hz, 1H), 3.11 (d, J = 14.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 164.9, 146.1, 133.1, 132.5, 132.2, 130.9, 130.0, 129.2, 128.8, 128.5, 127.0, 125.7, 124.4, 123.4, 122.3, 74.1, 60.4, 40.6, 35.9. HRMS (ESI-TOF) caled for C₂₄H₁₉ClN₂O₅Na⁺ (M+Na)⁺, m/z: 473.0880, 475.0851; observed: 473.0883, 475.0863.

	Retention Time	Area	% Area
1	10.117	23002669	95.67
2	11.603	1039861	4.33

N-((3R,4R)-3-benzyl-8-bromo-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3ja)

White solid, $[\alpha]^{18} = -32.7$ (*c*: 0.62, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/^{*i*}PrOH = 70/30, 1.5 mL/min, $\lambda = 254$ nm, t (major) = 5.20 min, t (minor) = 5.97 min]; ¹H NMR (400 MHz, (CD₃)₂SO) δ 8.70 (s, 1H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.6

Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.28 – 7.14 (m, 5H), 7.12 – 7.00 (m, 2H), 5.54 (dd, J = 14.4, 2.8 Hz, 1H), 5.10 (t, J = 10.4 Hz, 1H), 4.69 (t, J = 8.4 Hz, 1H), 3.33 (d, J = 14.4 Hz, 1H), 3.23 (d, J = 14.4 Hz, 1H). ¹³C NMR (100 MHz, (CD₃)₂SO) δ 166.7, 164.9, 147.0, 133.9, 133.1, 132.7, 131.9, 130.3, 128.3, 128.0, 127.4, 127.1, 125.4, 123.8, 108.9, 74.7, 59.5, 36.3. HRMS (ESI-TOF) calcd for [**M+Na**]⁺ **C**₂₄**H**₁₉**BrN**₂**O**₅**Na**⁺, m/z: 517.0375, 519.0355; observed: 517.0387, 519.0369.

	Retention Time	Area	% Area
1	5.198	4075029	95.44
2	5.965	194720	4.56

N-((3R,4R)-3-benzyl-8-methyl-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3ka).

White solid, $[\alpha]^{18} = -26.1$ (*c*: 0.66, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm, t (major) = 3.20 min, t (minor) = 4.04 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.54 (m, 2H), 7.53 – 7.47 (m, 1H), 7.44 – 7.36 (m, 3H), 7.34 – 7.28 (m, 3H), 7.14 – 7.07 (m, 3H), 7.05 – 6.97 (m, 1H), 6.38 (s, 1H), 5.20 (dd, *J* = 13.6, 3.2 Hz, 1H), 5.10 (d, *J* = 9.6 Hz, 1H), 4.89 (dd, *J* = 13.6, 9.6 Hz, 1H), 3.24 (d, *J* = 14.4 Hz, 1H), 3.11 (d, *J* = 14.4 Hz, 1H). ¹³C

NMR (100 MHz, CDCl₃) δ 168.1, 164.9, 146.1, 133.1, 132.5, 132.2, 130.9, 130.0, 129.2, 128.8, 128.5, 127.0, 125.7, 124.4, 123.4, 122.3, 74.1, 60.4, 40.6, 35.9. HRMS (ESI-TOF) caled for C₂₅H₂₂N₂O₅Na⁺ (M+Na)⁺, m/z: 453.1426, observed: 453.1429.

	Retention Time	Area	% Area
1	3.196	4944001	97.62
2	4.039	120510	2.38

N-((3*R*,4*R*)-3-benzyl-8-methoxy-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3la)

White solid, $[\alpha]^{18} = -10.5$ (*c*: 0.71, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm, t (major) = 4.19 min, t (minor) = 5.20 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.0 Hz, 2H), 7.47 (t, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.33 – 7.26 (m, 3H), 7.19 – 7.04 (m, 3H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.68 (d, *J* = 7.6 Hz, 1H), 6.46 (s, 1H), 5.24 (dd, *J* = 13.6, 3.2 Hz, 1H), 5.06 (d, *J* = 9.2 Hz, 1H), 4.90 (dd, *J* = 13.6, 9.6 Hz, 1H), 3.90 (s, 3H), 3.27 (d, *J* = 14.4 Hz, 1H), 3.13 (d, *J* = 14.4 Hz, 1H). ¹³C NMR (100 MHz,

CDCl₃) δ 168.1, 165.6, 147.6, 139.1, 133.4, 132.7, 132.3, 130.1, 129.1, 128.7, 128.2, 127.0, 125.6, 122.6, 117.2, 113.0, 74.3, 60.5, 56.3, 40.6, 35.4. HRMS (ESI-TOF) caled for C₂₅H₂₂N₂O₆Na⁺ (M+Na)⁺, m/z: 469.1376, observed:469.1373.

	Retention Time	Area	% Area
1	4.188	10445265	96.17
2	5.195	415795	3.83

N-((3*R*,4*R*)-3-benzyl-8-ethoxy-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3ma)

White solid, $[\alpha]^{18} = -16.3$ (*c*: 0.64, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 239$ nm, t (major) = 3.29 min, t (minor) = 4.26 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 6.0 Hz, 3H), 7.11 – 7.02 (m, 3H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.64 (d, *J* = 7.6 Hz, 1H), 6.57 (d, *J* = 15.6 Hz, 1H), 5.18 (dd, *J* = 13.6, 2.8 Hz, 1H), 5.04 (d, *J* = 8.8 Hz, 1H), 4.87 (dd, *J* = 13.6, 10.0 Hz,

1H), 4.09 (q, J = 7.2 Hz, 2H), 3.26 (d, J = 14.4 Hz, 1H), 3.12 (d, J = 14.4 Hz, 1H), 1.41 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 165.7, 146.8, 139.5, 133.4, 132.8, 132.2, 130.1, 129.0, 128.7, 128.1, 127.1, 125.5, 122.7, 117.3, 114.4, 74.4, 65.1, 60.5, 40.5, 35.6, 14.7. HRMS (ESI-TOF) caled for C₂₆H₂₄N₂O₆Na⁺ (M+Na)⁺, m/z: 483.1532, observed: 483.1536.

	Retention Time	Area	% Area
1	3.291	1105772	96.93
		1	
2	4.256	350354	3.07

N-((3R,4R)-3-benzyl-8-

(tert-butyl)-4-(nitromethyl)-

2-oxochroman-3-yl)benzamide (3na)

White solid, $[\alpha]^{18} = -128.9$ (*c*: 0.48, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/[/]PrOH = 70/30, 1.5 mL/min, $\lambda = 254$ nm, t (major) = 1.95 min, t (minor) = 2.89 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.40 (m, 3H), 7.38 – 7.29 (m, 6H), 7.16 – 7.11 (m, 2H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.06 (s, 1H), 5.16 (dd, *J* = 13.2, 3.2 Hz, 1H), 4.80 (dd, *J* = 13.2, 10.4 Hz, 1H), 4.65 (s, 1H), 3.46 (d, *J* = 14.4 Hz, 1H), 3.09 (d, *J* = 14.4 Hz, 1H), 1.41 (s, 1H). ¹³C

NMR (100 MHz, CDCl₃) δ 167.6, 165.5, 149.2, 138.3, 133.2, 133.1, 132.3, 130.2, 129.1, 128.8, 128.1, 127.9, 126.9, 125.0, 124.8, 121.5, 74.7, 59.2, 41.0, 35.2, 35.0, 29.9. HRMS (ESI-TOF) caled for C₂₈H₂₈N₂O₅Na⁺ (M+Na)⁺, m/z: 495.1896, observed: 495.1993.

	Retention Time	Area	% Area
1	1.959	4722127	50.09
2	2.831	4704480	49.91

	Retention Time	Area	% Area
1	1.954	10782399	97.54
2	2.894	272008	2.46

N-((3R,4R)-3-benzyl-4-(nitromethyl)-2-oxochroman-3-yl)-4-chlorobenzamide (3ab)

White solid, $[\alpha]_D{}^{18} = +14.9$ (*c*: 0.74, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm, t (major) = 5.40 min, t (minor) = 7.24 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.4 Hz, 2H), 7.27 (t, *J* = 8.0 Hz, 1H), 7.19 (dd, *J* = 6.0, 3.2 Hz, 5H), 7.08 (t, *J* = 7.6 Hz, 1H), 7.05 – 6.93 (m, 4H), 6.42 (s, 1H), 5.10 (dd, *J* = 13.6, 3.6 Hz, 1H), 4.98 (d, *J* = 8.8 Hz, 1H), 4.81 (dd, *J* = 13.6, 9.2 Hz, 1H), 3.14

(d, J = 14.4 Hz, 1H), 2.97 (d, J = 14.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 165.8, 145.0, 138.7, 132.5, 131.6, 130.1, 130.0, 129.12, 129.0, 128.4, 128.3, 126.2, 125.5, 121.3, 116.9, 74.3, 60.7, 40.2, 35.8. HRMS (ESI-TOF) caled for C₂₄H₁₉ClN₂O₅Na⁺ (M+Na)⁺, m/z: 473.0880, 475.0851; observed: 473.0880, 475.0860.

	Retention Time	Area	% Area
1	5.457	3668391	50.15
2	7.252	3645882	49.85

	Retention Time	Area	% Area
1	5.393	8208001	97.79
2	7.244	185873	2.21

(nitromethyl)-2bromobenzamide (3ac)

N-((3R,4R)-3-benzyl-4-

oxochroman-3-yl)-4-

White solid, $[\alpha]_D{}^{18} = +18.5$ (*c*: 0.80, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm, t (major) = 7.12 min, t (minor) = 9.80 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.32 (m,2H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.22 - 7.17 (m, 4H), 7.13 - 6.96 (m, 5H), 6.44 (s, 1H), 5.09 (dd, J = 13.6, 3.2 Hz, 1H), 4.97 (d, J = 8.0 Hz, 1H), 4.80 (dd, J = 12.8, 10.0Hz, 1H), 3.14 (d, J = 14.4 Hz, 1H), 2.97 (d, J = 14.4 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 167.2, 165.8, 150.0, 132.5, 132.0, 132.0, 130.1, 130.0, 129.1, 128.6, 128.4, 127.2, 126.2, 125.6, 121.3, 116.9, 74.3, 60.6, 40.2, 35.8. HRMS (ESI-TOF) calcd for [M+Na]⁺ C₂₄H₁₉BrN₂O₅Na⁺, m/z: 517.0375, 519.0355; observed: 517.0375, 519.0380.

	Retention Time	Area	% Area
1	7.120	14250899	97.90
2	9.801	306299	2.10

N-((3R,4R)-3-benzyl-4-(nitromethyl)-2-oxochroman-3-yl)-4-methylbenzamide (3ad)

White solid, $[\alpha]^{18} = +19.8$ (*c*: 0.80, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm, t (major) = 3.70 min, t (minor) = 4.59 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 2H), 7.39 – 7.27 (m, 4H), 7.20 – 7.05 (m, 7H), 6.33 (s, 1H), 5.22 (dd, *J* = 13.6, 2.8 Hz, 1H), 4.96 (d, *J* = 9.2 Hz, 1H), 4.86 (dd, *J* = 12.8, 10.0 Hz, 1H), 3.28

(d, J = 14.4 Hz, 1H), 3.11 (d, J = 14.4 Hz, 1H), 2.35 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 166.0, 150.2, 143.0, 132.8, 130.4, 130.1, 130.1, 129.4, 129.1, 128.2, 127.0, 126.4, 125.4, 121.4, 116.9, 74.4, 60.4, 40.5, 35.5, 21.5. HRMS (ESI-TOF) caled for $C_{25}H_{22}N_2O_5Na^+$ (M+Na)⁺, m/z: 453.1426, observed: 453.1427.

	Retention Time	Area	% Area
1	3.740	2192509	50.33
2	4.601	2163406	49.67

	Retention Time	Area	% Area
1	3.700	16123064	97.61
2	4.589	395562	2.39

N-((3R,4R)-3-benzyl-4-

(nitromethyl)-2-

oxochroman-3-yl)-4-methoxybenzamide (3ae)

White solid, $[\alpha]^{18} = +39.0$ (*c*: 0.70, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm, t (major) = 5.00 min, t (minor) = 6.27 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.8 Hz, 2H), 7.43 – 7.23 (m, 4H), 7.21 – 7.03 (m, 5H), 6.95 – 6.75 (m, 2H), 6.28 (s, 1H), 5.22 (dd, J = 13.6, 3.2

Hz, 1H), 4.98 (d, J = 8.4 Hz, 1H), 4.86 (dd, J = 13.2, 10.0 Hz, 1H), 3.81 (s, 1H), 3.27 (d, J = 14.4 Hz, 1H), 3.10 (d, J = 14.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 166.1, 162.9, 150.2, 132.8, 130.1, 129.1, 129.0, 128.3, 126.4, 125.4, 125.4, 121.5, 116.9, 114.0, 74.4, 60.4, 55.5, 40.5, 35.6. HRMS (ESI-TOF) caled for **C**₂₅**H**₂₂**N**₂**O**₆**Na**⁺ (**M**+**Na**)⁺, m/z: 469.1376, observed: 469.1374.

	Retention Time	Area	% Area
1	5.081	1892455	50.00
2	6.550	1892191	50.00

	Retention Time	Area	% Area
1	4.998	17148322	97.77
2	6.272	390519	2.23

N-((3R,4R)-3-benzyl-4-(nitromethyl)-2-oxochroman-3-yl)-4-ethylbenzamide (3af)

3af

White solid, $[\alpha]^{18} = +27.0$ (*c*: 0.64, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/ⁱPrOH = 90/10, 2 mL/min, λ = 237.0 nm, t (major) = 15.24 min, t (minor) = 18.84 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2H), 7.40 – 7.28 (m, 4H), 7.23 – 7.04 (m, 7H), 6.36 (s, 1H), 5.22 (dd, J = 13.2, 3.2 Hz, 1H), 5.08 – 4.74 (m, 2H), 3.20 (dd, J = 74.8, 14.4 Hz, 2H), 2.80 – 2.49 (m, 2H), 1.21 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 Hz, CDCl₃) δ 1680 1660 150.2, 149.2, 132.8 130.6, 130.1 130.1 129.1, 128.3 127.1, 126.4, 125.4, 121.4, 116.9, 74.4 60.3, 40.6 35.5 28.8, 15.2. HRMS (ESI-TOF) caled for C₂₆H₂₄N₂O₅Na⁺ (M+Na)⁺, m/z: 467.1583, observed: 467.1587.

	Retention Time	Area	% Area
1	15.236	49393675	98.98
2	18.839	510020	1.02

N-((3*R*,4*R*)-3-benzyl-4-

(nitromethyl)-2-

oxochroman-3-yl)-4-cyanobenzamide (3ag)

CN

White solid, $[\alpha]^{18} = +64.1$ (*c*: 0.26, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm, t (major) = 4.82 min, t (minor) = 6.26 min]; ¹H NMR (400 MHz, (CD₃)₂SO) δ 8.88 (s, 1H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.26 - 7.07 (m, 7H), 7.02 (d, *J* = 8.0 Hz, 1H), 5.52

(dd, J = 14.0, 2.8 Hz, 1H), 5.09 - 4.92 (t, J = 10.8 Hz, 1H), 4.65 (d, J = 6.8 Hz, 1H), 3.25 (dd, J = 28.4, 14.4 Hz, 2H).¹³C NMR (100 MHz, (CD₃)₂SO) δ 165.3, 165.1, 150.1, 137.1, 134.1, 132.4, 130.4, 129.5, 128.2, 128.1, 127.9, 127.1, 124.5, 121.6, 118.1, 115.8, 114.2, 74.9, 59.9, 36.0. HRMS (ESI-TOF) caled for C₂₅H₁₉N₃O₅Na⁺ (M+Na)⁺, m/z: 464.1222, observed: 464.1221.

	Retention Time	Area	% Area
1	4.939	465485	50.54
2	6.289	455517	49.46

	Retention Time	Area	% Area
1	4.819	12090792	96.80
2	6.254	399101	3.20

N-((3*R*,4*R*)-3-(4-methylbenzyl)-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3ah)

3ah

White solid, $[\alpha]^{18} = -78.3$ (*c*: 0.58, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/^{*i*}PrOH = 70/30, 2.0 mL/min, $\lambda = 254$ nm, t (major) = 3.08 min, t (minor) = 4.10 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.44 (m, 3H), 7.43 – 7.32 (m, 3H), 7.25 – 7.15 (m, 3H), 7.14 – 7.08 (m, 2H), 7.05 – 6.95 (m, 2H), 6.45 (s, 1H), 5.26 (q, *J* = 9.2 Hz, 1H), 4.98 – 4.74 (m, 2H), 3.29 – 3.17 (dd, *J* = 20.4, 14.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 166.0,

150.0, 134.2, 133.2, 132.5, 131.3, 130.3, 129.2, 128.9, 127.0, 126.4, 125.6, 121.2, 117.0, 74.4, 60.7, 41.0, 34.5. HRMS (ESI-TOF) caled for $C_{24}H_{19}CIN_2O_5Na^+$ (M+Na)⁺, m/z: 473.0880, 475.0851; observed: 473.0882, 475.0872.

	Retention Time	Area	% Area
1	3.075	4138639	98.19
2	4.099	76371	1.81

N-((3*R*,4*R*)-3-methyl-4-(nitromethyl)-2-oxochroman-3-yl)benzamide (3ai)

White solid, $[\alpha]^{18} = -52.5$ (c: 0.52, $\lambda = 405$ nm, MeOH); Determined by
UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min,
 $\lambda = 232.0$ nm, t (major) = 1.82 min, t (minor) = 2.33 min]; ¹H NMR (400
MHz, (CD₃)₂SO) δ 8.91 (s, 1H), 7.82 - 7.73 (m, 2H), 7.60 - 7.53 (m, 1H),

7.53–7.44 (m, 2H), 7.44–7.35 (m, 3H), 7.33–7.07 (m, 3H), 5.24 (dd, J = 14.4, 8.0 Hz, 1H), 5.10 (dd, J = 14.4, 4.8 Hz, 1H), 4.93 (dd, J = 8.4, 4.4 Hz, 1H), 1.35 (s, 4H). ¹³C NMR (100 MHz, (CD₃)₂SO) δ 167.5, 167.0, 149.9, 133.4, 131.8, 129.4, 128.2, 127.6, 126.7, 125.0, 121.9, 116.4, 74.2, 56.5, 18.1. HRMS (ESI-TOF) caled for C₁₈H₁₆N₂O₅Na⁺ (M+Na)⁺, m/z: 363.0956, observed: 363.0963.

	Retention Time	Area	% Area
1	1.816	4003826	99.14
2	2.309	34535	0.86

N-((3R,4R)-3-isobutyl-4-(nitromethyl)-2-oxochroman-3-yl)benzamide(3aj)

White solid, $[\alpha]^{18} = +19.4$ (*c*: 0.52, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 85/15, 1.5 mL/min, $\lambda = 238$ nm, t (major) = 3.10 min, t (minor) = 2.69 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* =8.0 Hz, 2H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.45 – 7.33 (m, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 6.8 Hz, 1H), 6.74 (s, 1H), 5.23 – 5.12 (m, 1H), 5.03 (dd, *J* = 13.6, 3.2 Hz, 1H), 4.85 (dd, *J* = 13.6, 9.2 Hz, 1H), 1.77 – 1.57 (m, 3H), 1.00 (d, *J* = 5.2 Hz, 3H), 0.81 (d, *J* = 5.2 Hz, 2Hz, 2Hz)

3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 166.3, 149.8, 133.5, 132.3, 129.8, 128.8, 127.0, 125.7, 125.5, 121.8, 117.0, 74.2, 60.7, 40.7, 38.1, 24.4, 23.9, 23.7. HRMS (ESI-TOF) caled for C₂₁H₂₂N₂O₅Na⁺ (M+Na)⁺, m/z: 405.1426, observed: 405.1427.

	Retention Time	Area	% Area
1	2.656	10841745	50.00
2	3.101	10841334	50.00

	Retention Time	Area	% Area
1	2.658	167314	1.33
2	3.100	12449065	98.67

N-((3R,4R)-4-(nitromethyl)-2-oxo-3-phenethylchroman-3-yl)benzamide (3ak)

Ò

3al

White solid, $[\alpha]^{18} = -16.4$ (*c*: 0.52, $\lambda = 405$ nm, CH₂Cl₂); Determined by UPC2 analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 229$ nm, t (major) = 9.27 min, t (minor) = 6.91 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 1H), 7.41 – 7.37 (m, 2H), 7.37 – 7.26 (m, 4H), 7.25 – 7.13 (m, 5H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.61 (s, 1H), 5.17 (dd, *J* = 9.2, 3.6Hz, 1H), 5.00 (dd, *J* = 13.6, 4.0 Hz, 1H), 4.87 (dd, *J* = 13.6, 9.2 Hz, 1H), 2.83 – 2.61 (m, 2H), 2.31 – 2.18 (m,

1H), 2.17 – 2.08 (m, 1H).¹³C NMR (100 MHz, CDCl₃) δ 167.9, 166.0, 149.9, 139.6, 132.9, 132.3, 129.9, 129.1, 128.6, 128.5, 127.0, 126.8, 125.9, 125.6, 121.5, 117.0, 74.2, 61.1, 40.4, 30.8, 29.9. HRMS (ESI-TOF) caled for **C**₂₅**H**₂₂**N**₂**O**₅**Na**⁺ (**M**+**Na**)⁺, m/z: 453.1426, observed: 453.1427.

NO₂ NO₂ NHCOPh NHCOPH

Determined by UPC2 analysis [Daicel chiralcel OJ-3, $scCO_2/POH = 70/30$, 1.5 mL/min, $\lambda = 222.5$ nm, t (major) = 26.98 min, t (minor) = 21.90 min]; ¹H NMR (400 MHz, (CD₃)₂CO) δ 10.17 (s, 1H), 7.50 (s, 1H), 7.40 – 7.27 (m, 5H), 7.26 – 7.11 (m, 4H), 7.05 – 6.86 (m, 4H), 6.73 (t, J = 7.6 Hz, 1H), 5.66 – 5.35 (m, 1H), 4.97 – 4.59 (m, 2H), 3.65 (d, J = 15.6 Hz, 1H), 3.26 (d, J = 15.6 Hz, 1H). ¹³C NMR (100 MHz, (CD₃)₂CO) δ 168.0, 166.9, 152.1, 137.3, 134.8, 132.5, 130.4, 129.4, 129.2, 129.0, 128.2, 125.9, 125.2, 123.0, 122.4, 119.9, 119.3, 116.9, 112.3, 107.6, 76.2, 60.5, 41.3, 27.1. HRMS (ESI-TOF) caled for C₂₆H₂₁N₃O₅Na⁺ (M+Na)⁺, m/z: 478.1379, observed: 478.1374.

	Retention Time	Area	% Area
1	21.895	60721	0.20
2	26.976	29758704	99.80

White solid, $[\alpha]_D{}^{18} = +36.3$ (*c*: 0.20, CH₂Cl₂); HRMS (ESI-TOF) caled for **C**₄₃**H**₄₉**F**₂**N**₅**O**₃**SH**⁺ (**M**+**H**)⁺, m/z: 754.3602, observed: 754.3599. ¹H NMR (400 MHz, MeOD) δ 7.44 – 7.14 (m, 6H), 7.04 (dd, *J* = 12.8, 5.2 Hz, 7H), 6.93 (d, *J* = 6.4 Hz, 3H), 6.67 (t, *J* = 8.8 Hz, 1H), 5.07 (d, *J* = 8.0 Hz, 1H), 4.66 (d, *J* = 14.0 Hz, 1H), 4.58 (d, *J* = 7.6 Hz, 2H), 4.41 (d, *J* = 14.0 Hz, 1H), 3.54 – 3.39 (m, 2H), 3.12 (dd, *J* = 15.2, 8.8 Hz, 1H), 1.97 (s, 2H), 1.88

- 1.46 (m, 13H), 1.42 - 1.22 (m, 7H). ¹³C NMR (100 MHz, MeOD) δ 171.5, 161.7, 160.1, 135.6, 135.0, 129.4, 129.0, 128.8, 128.8, 128.5, 128.3, 127.9, 126.7, 113.4, 113.1, 65.4, 64.3, 61.0, 60.2, 55.8, 50.2, 35.0, 34.9, 34.8, 34.0, 33.6, 26.8, 26.3, 26.1, 26.

7. NMR spectra

3ba

3ca

3da

3ea

3fa

3ha

3ak

8.	X-ray crystal	structure of the	product 3aa
----	---------------	------------------	-------------

fxm-ruan2
$C_{48}H_{40}N_2O_5$
832.84
135
monoclinic
P21
10.31419(17)
19.2062(3)
11.0205(2)
90
109.532(2)
90
2057.48(6)
2
1.344
0.785
872.0
$0.6\times0.45\times0.35$
Cu Ka ($\lambda = 1.54184$)
9.098 to 145.514
$\textbf{-12} \leq h \leq 9, \textbf{-23} \leq k \leq 23, \textbf{-13} \leq l \leq 13$

Reflections collected	30369
Independent reflections	8035 [Rint = 0.0349, Rsigma = 0.0275]
Data/restraints/parameters	8035/1/559
Goodness-of-fit on F2	1.061
Final R indexes [I>= 2σ (I)]	R1 = 0.0414, $wR2 = 0.1079$
Final R indexes [all data]	R1 = 0.0427, wR2 = 0.1097
Largest diff. peak/hole / e Å- 3	0.21/-0.30

-0.07(6)

3aa

(R,R)-3aa (standard)

10. References

(a) Z. P. Yu, X. H. Liu, L. Zhou, L. L. Lin and X. M. Feng, *Angew. Chem. Int. Ed.*, 2009, 48, 5195; (b) S. X. Dong, X. H. Liu, X. H. Chen, F. Mei, Y. L. Zhang, B. Gao, L. L. Lin and X. M. Feng, *J. Am. Chem. Soc.*, 2010, 132, 10650; (c) S. X. Dong, X. H. Liu, Y. L. Zhang, L. L. Lin and X. M. Feng, *Org. Lett.*, 2011, 13, 5060.