Supporting Information

Phosphine Catalyzed δ-Carbon Addition and Isomerization of Alkynones to Ketimines: Preparation of 1,3-Dienes Substituted Dihydroquinazolinones and 3aminooxindoles

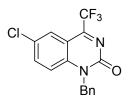
Yao-Liang Sun,^a Yin Wei,^{*b} Min Shi^{a,b,c*}

 ^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China. weiyin@sioc.ac.cn, mshi@sioc.ac.cn. Fax 86-21-64166128
^cState Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin

300071, P. R. China.

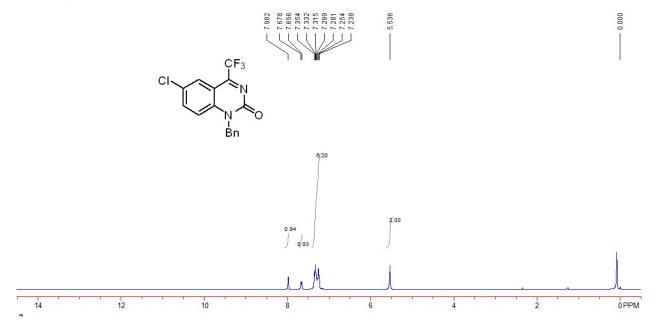
CONTENTS

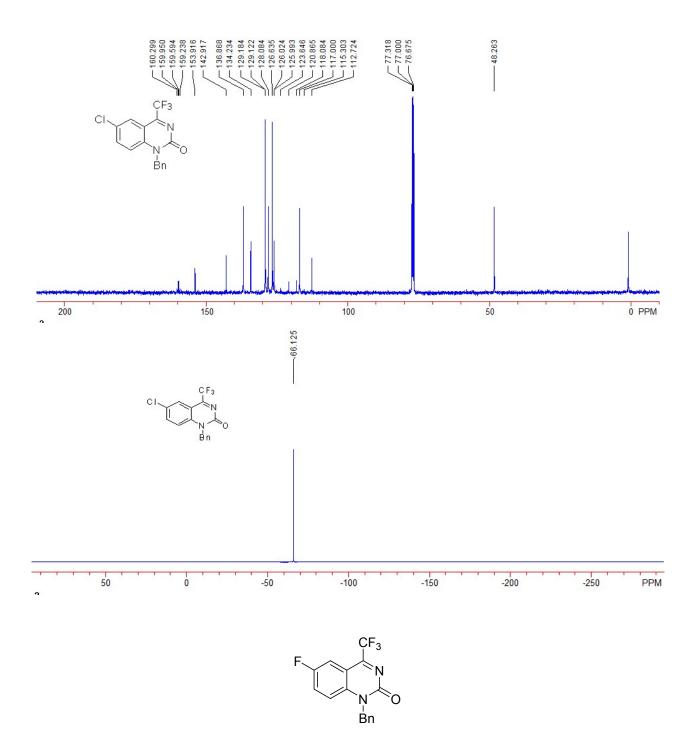
1.	General Remarks					
2.	General Procedure for Synthesis of Cyclic Ketimines 2 and Spectroscopic Data of the					
	Products					
3.	General Procedure for Hex-3-yn-2-one 1a to Cyclic Trifluoromethyl Ketimines 2 and					
	Spectroscopic Data of the Products					
4.	Optimal Conditions for the Synthesis of 5a					
5.	General Procedure for Hex-3-yn-2-one 1a to Isatin-derived N-Boc Ketimines 4 and					
	Spectroscopic Data of the Products					
6.	Optimal Conditions for the Synthesis of 7a					
7.	General Procedure for Hex-3-yn-2-one 1a to N-tosyl α -Ketimine Esters 6a and Spectroscopic					
	Data of the Products					
8.	Screening of Chiral Phosphine Catalysts of δ -Carbon Activation of Hex-3-yn-2-one 1a and					
	Addition to Cyclic Trifluoromethyl Ketimine 2a					
9.	General Procedure for Alkynones 1 to Cyclic Trifluoromethyl Ketimines 2a and Spectroscopic					
	Data of the Products					
10.	Control Experiments and Spectroscopic Data of the Products					
11.	Large-scale Testing and Transformations of Product 3a					
12.	X-ray Crystal Data of 3a and 5a					
13.	Reference					


General Remarks. ¹H NMR spectra were recorded on a Varian Mercury-300 and 400 spectrometer for solution in CDCl₃ with tetramethylsilane (TMS) as an internal standard; coupling constants J are given in Hz. ¹³C NMR spectra were recorded on a Varian Mercury-300 and 400 spectrophotometers (75 or 100 MHz) with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm). Mass and HRMS spectra were recorded by EI or ESI method. Organic solvents used were dried by standard methods when necessary. Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm⁻¹. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. Commercially obtained reagents were used without further purification. All these reactions were monitored by TLC with silica gel coated plates. Flash column chromatography was carried out using silica gel at increased pressure.

Compound **1a** was commercially available compound. Compounds **1b-1d** are known compounds and prepared according to the previous literature.^[1]

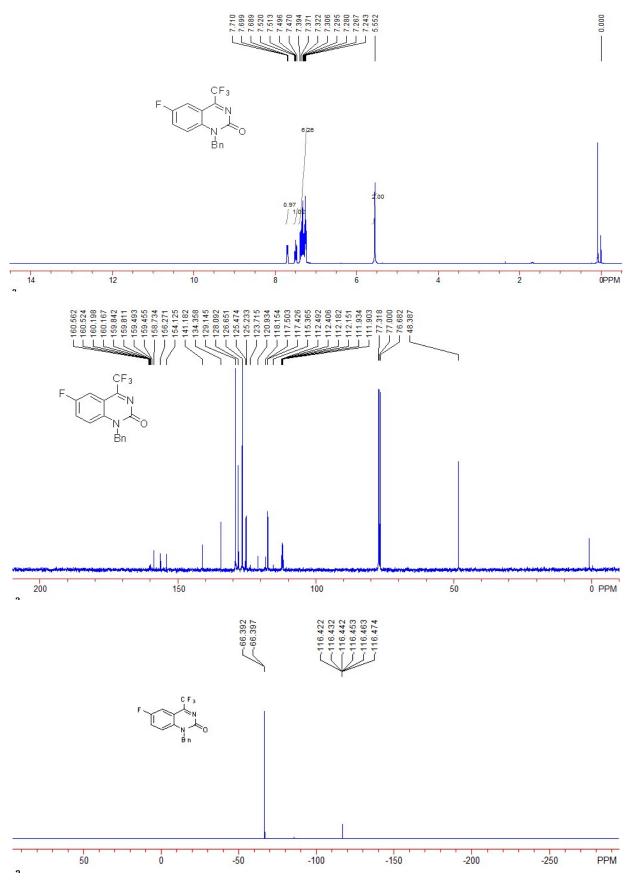
Compounds **4a-4g**, **6a**, and **8a** are known compounds and prepared according to the previous literature.^[2]

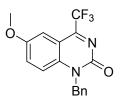

General Procedure for Synthesis of Cyclic Ketimines 2 and Spectroscopic Data of the Products


Cyclic ketimines **2** were prepared according to a reported procedure in the previous literature.^[3] Among them, **2a-2d** are known compounds.

1-benzyl-6-chloro-4-(trifluoromethyl)quinazolin-2(1H)-one (2e).

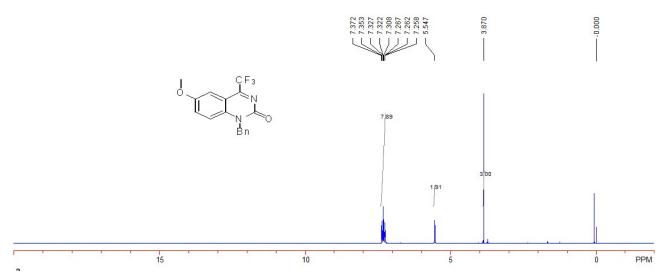
A yellow solid, 54% yield. M.p.: 154-156 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ , 5.54 (s, 2H, CH₂), 7.23-7.36 (m, 6H, ArH), 7.67 (d, *J* = 8.8 Hz, 1H, ArH), 7.98 (s, 1H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 48.26, 112.7, 115.3, 119.5 (q, *J* = 278.1 Hz), 126.0 (d, *J* = 3.1 Hz), 126.6, 128.1, 129.1, 129.2, 134.2, 136.9, 142.9, 153.9, 159.8 (q, *J* = 35.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -66.13. IR (CH₂Cl₂) v 2955, 2923, 2851, 1681, 1622, 1555, 1221, 1200, 1142, 974, 734 cm⁻¹. MS (ESI) *m/z* (%): 339.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₁₆H₁₁ClF₃N₂O⁺¹(M+H)⁺ requires 339.0507, Found: 339.0505.

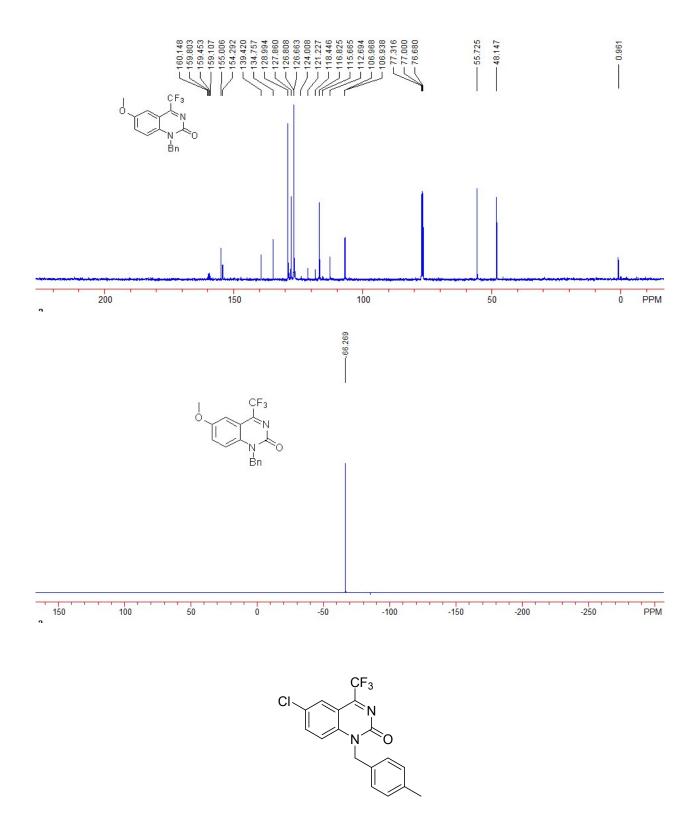




1-benzyl-6-fluoro-4-(trifluoromethyl)quinazolin-2(1H)-one (2f).

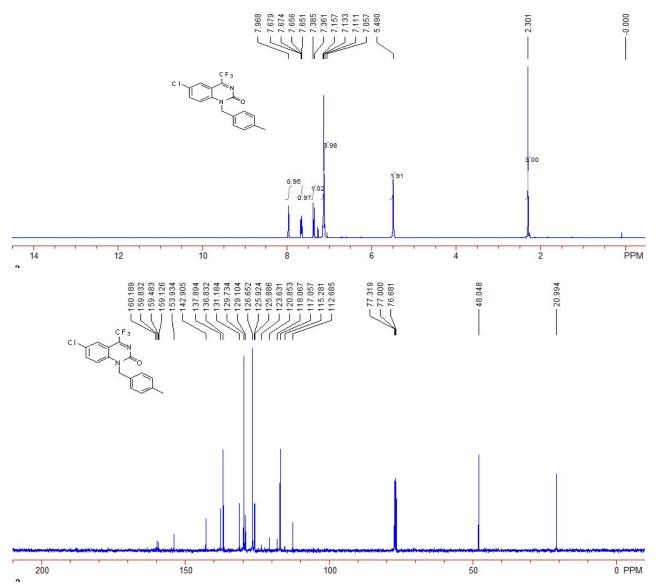
A yellow solid, 59% yield. M.p.: 142-144 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 5.55 (s, 2H, CH₂), 7.24-7.40 (m, 6H, ArH), 7.47-7.52 (m, 1H, ArH), 7.68-7.71 (m, 1H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 48.39, 112.0 (dd, *J* = 3.1, 24.8 Hz), 112.4 (d, *J* = 8.6 Hz), 117.5 (d, *J* = 7.7 Hz), 119.5 (q, *J* = 278.0 Hz), 125.4 (d, *J* = 24.1 Hz), 126.7, 128.1, 129.1, 134.5, 141.2, 154.1, 157.5 (d, *J* = 246.3 Hz), 160.0 (dd, *J* = 3.1, 35.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -66.39-(-66.40), - 116.42-(-116.47). IR (CH₂Cl₂) v 2954, 2923, 2853, 1682, 1566, 1445, 1238, 1203, 799, 728 cm⁻¹.

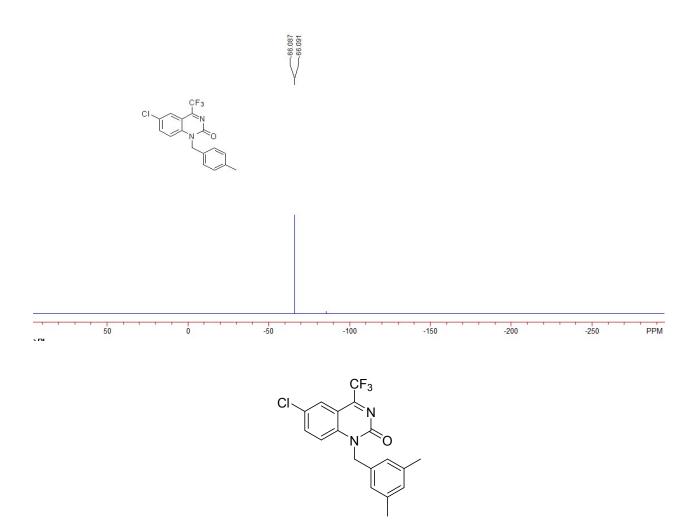

MS (ESI) *m/z* (%): 323.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₁₆H₁₁F₄N₂O⁺¹(M+H)⁺ requires 323.0802, Found: 323.0805.



1-benzyl-6-methoxy-4-(trifluoromethyl)quinazolin-2(1H)-one (2g).

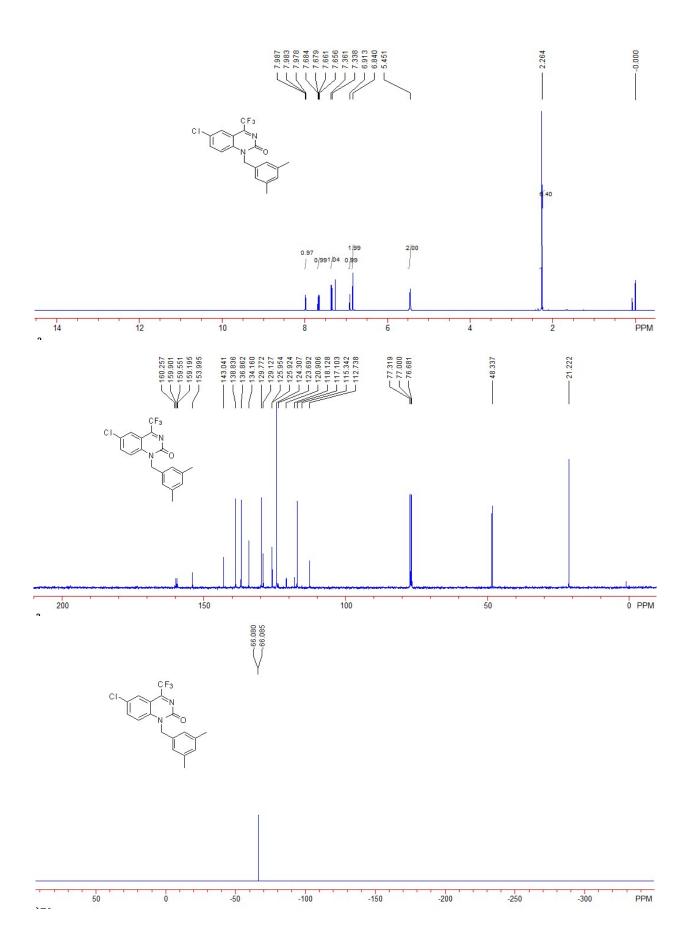
A green solid, 73% yield. M.p.: 161-163 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 3.87 (s, 3H, CH₃), 5.55 (s, 2H, CH₂), 7.25-7.38 (m, 8H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 48.15, 55.73, 107.0 (d, *J* = 3.0 Hz), 112.7, 116.8, 119.8 (q, *J* = 278.1 Hz), 126.7, 126.8, 127.9, 129.0, 134.8, 139.4, 154.3, 155.0, 159.6 (q, *J* = 35.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -66.27. IR (CH₂Cl₂) v 2956, 2923, 2852, 1456, 1400, 1259, 1088, 1017, 850, 798, 729 cm⁻¹. MS (ESI) *m/z* (%): 335.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₁₇H₁₄F₃N₂O₂⁺¹(M+H)⁺ requires 335.1002, Found: 335.1008.





6-chloro-1-(4-methylbenzyl)-4-(trifluoromethyl)quinazolin-2(1H)-one (2h).

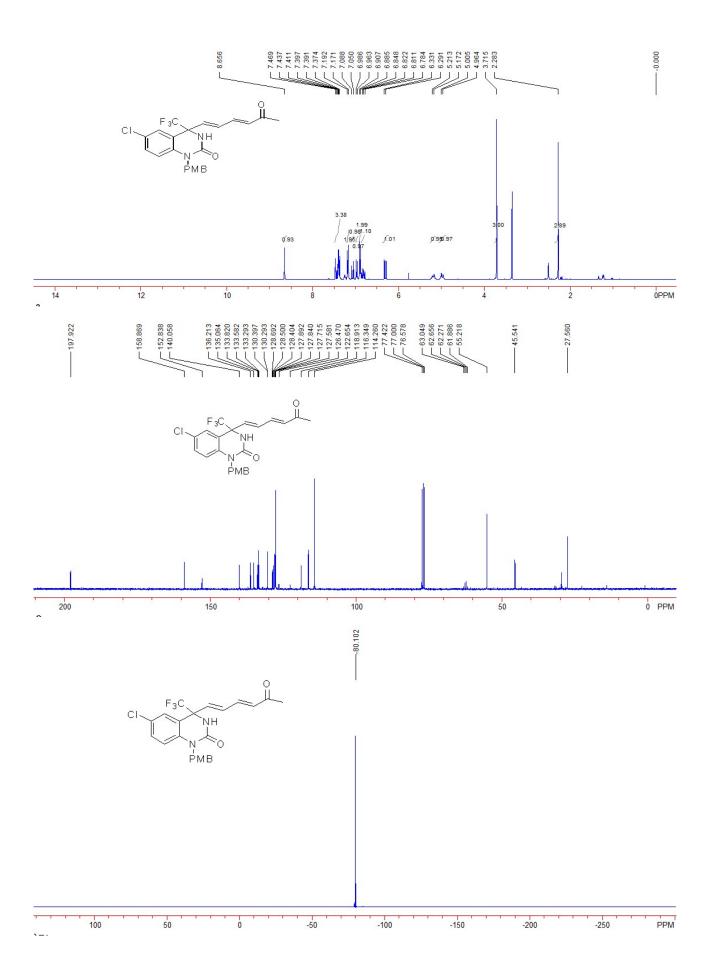
A yellow solid, 72% yield. M.p.: 158-160 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.30 (s, 3H, CH₃), 5.49 (s, 2H, CH₂), 7.05-7.16 (m, 4H, ArH), 7.37(d, J = 9.6 Hz, ArH), 7.67(dd, J = 2.0, 9.2 Hz, ArH), 7.97 (s, 1H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.0, 48.05, 112.7, 117.1, 119.5 (q, J = 278.6 Hz), 125.9 (d, J = 3.8 Hz), 126.7, 129.1, 129.7, 131.2, 136.8, 137.7, 153.9, 159.7 (q, J =

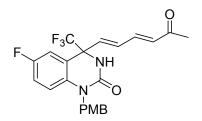

34.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -66.09 (d, *J* =1.5 Hz). IR (CH₂Cl₂) v 3214, 3078, 2921, 1697, 1668, 1622, 1556, 1223, 1200, 973, 822 cm⁻¹. MS (ESI) *m/z* (%): 353.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₁₇H₁₃ClF₃N₂O⁺¹(M+H)⁺ requires 353.0663, Found: 353.0662.

6-chloro-1-(3,5-dimethylbenzyl)-4-(trifluoromethyl)quinazolin-2(1H)-one (2i).

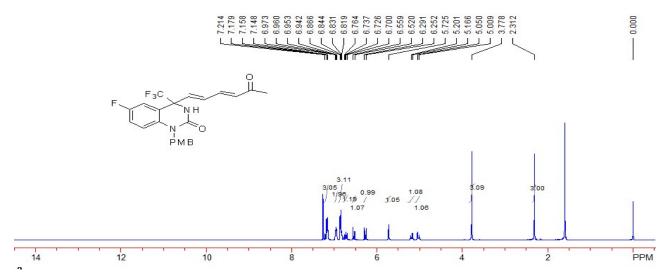
A yellow solid, 76% yield. M.p.: 153-155 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.26 (s, 6H, CH₃), 5.45 (s, 2H, CH₂), 6.84 (s, 1H, ArH), 6.91 (s, 1H, ArH), 7.35(d, *J* = 9.2 Hz, ArH), 7.67(dd, *J* = 2.0, 9.2 Hz, ArH), 7.97-7.99 (m, 1H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.2, 48.34, 112.7, 117.1, 119.5 (q, *J* = 277.8 Hz), 124.3, 125.9 (d, *J* = 3.0 Hz), 129.1, 129.8, 134.2, 136.9, 138.8, 143.0, 154.0, 159.7 (q, *J* = 35.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -66.08 (d, *J* =1.9 Hz). IR (CH₂Cl₂) v 2970, 1680, 1622, 1556, 1449, 1222, 1200, 1142, 976, 816 cm⁻¹. MS (ESI) *m/z* (%): 367.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₁₈H₁₅F₃N₂O⁺¹(M+H)⁺ requires 367.0820, Found: 367.0822.

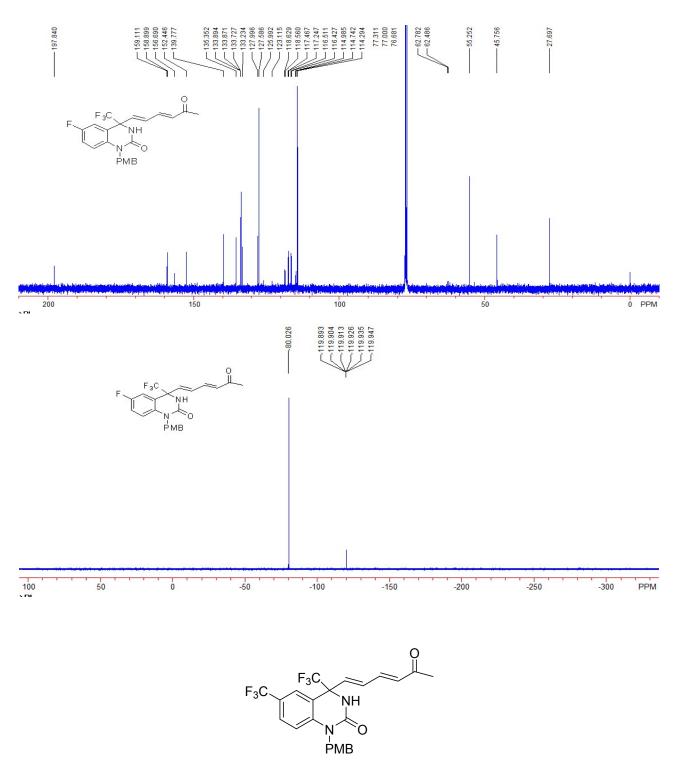
S11


General Procedure for Hex-3-yn-2-one 1a to Cyclic Trifluoromethyl Ketimines 2 and Spectroscopic Data of the Products


General procedure: The 4Å MS was added to a Schlenk tube and heated under vacuum to remove ambient moisture and water, then filled with argon. After the Schlenk tube was returned to room temperature, cyclic trifluoromethyl ketimines 2 (0.2 mmol) and P(4-FC₆H₄)₃ (13 mg, 0.04 mmol) was added. Under argon atmosphere, to a solution of cyclic trifluoromethyl ketimines 2 (0.2 mmol) and P(4-FC₆H₄)₃ (13 mg, 0.04 mmol) in toluene (1.0 mL) was added the hex-3-yn-2-one **1a** (0.8 mmol) at room temperature. Then the resulting mixture was heated to 65 °C and continued stirring at 65 °C until the reaction completed (monitoring by TLC). Then the solvent was removed under reduced pressure and the residue was directly subjected to a flash column chromatography on silica gel to afford the desired products **3a-3i**. Trace impurity was contained, which has been described in detail in Page S47.

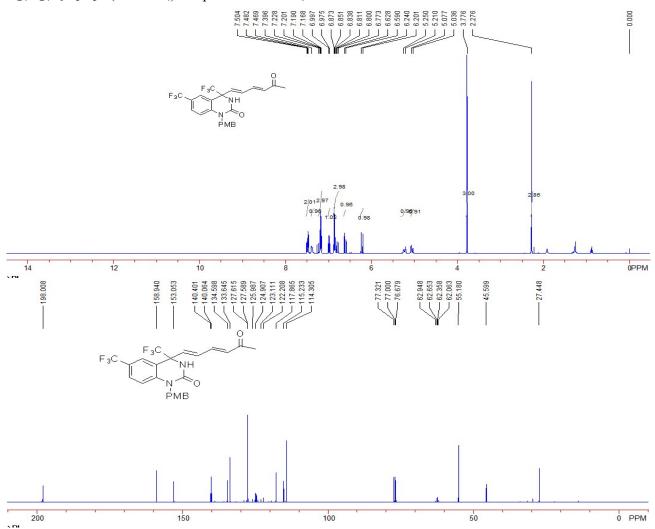
6-chloro-1-(4-methoxybenzyl)-4-((1E,3E)-5-oxohexa-1,3-dien-1-yl)-4-(trifluoromethyl)-3,4dihydroquinazolin-2(1H)-one (3a).

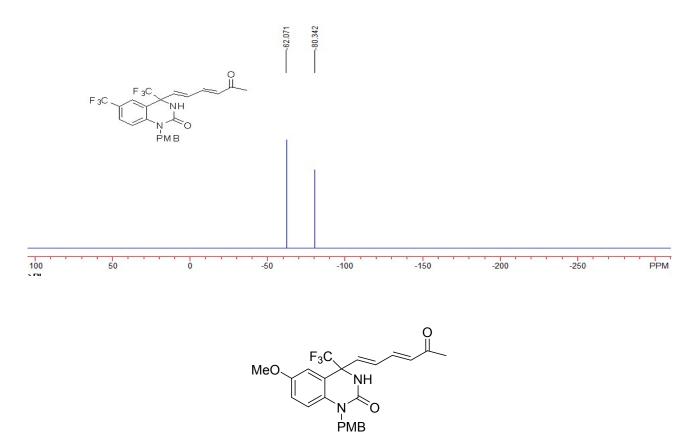

A white solid, 92% yield (85 mg). M.p.: 243-245 °C. ¹H NMR (d₆-DMSO, TMS, 400 MHz) δ 2.28 (s, 3H, CH₃), 3.72 (s, 3H, CH₃), 4.98 (d, *J* = 16.4 Hz, 1H, CH₂), 5.19 (d, *J* = 16.4 Hz, 1H, CH₂), 6.31 (d, *J* = 16.0 Hz, 1H, =CH), 6.82 (dd, *J* = 10.4, 15.2 Hz, 1H, =CH), 6.90 (d, *J* = 8.8 Hz, 2H, ArH), 6.97 (d, *J* = 9.2 Hz, 1H, ArH), 7.07 (d, *J* = 15.2 Hz, 1H, =CH), 7.18 (d, *J* = 8.8 Hz, 2H, ArH), 7.37-7.47 (m, 3H, =CH, ArH), 7.45 (s, 1H, NH). ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 27.6, 45.5, 55.2, 62.5 (q, *J* = 28.9 Hz), 114.3, 116.3, 118.9, 124.6 (q, *J* = 286.2 Hz), 127.6, 127.7, 127.8, 127.9, 128.4, 128.5, 128.7, 130.4, 133.3, 133.8, 135.1, 136.2, 140.1, 158.9, 198.0. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -80.10. IR (CH₂Cl₂) v 3214, 2960, 2925, 1682, 1601, 1513, 1502, 1428, 1393, 1250, 1175, 1066, 1045, 808 cm⁻¹. MS (ESI) *m/z* (%): 487.0 (100) [M+Na]⁺; HRMS (ESI) Calcd. For C₂₃H₂₁F₃N₂ClO₃⁺¹(M+H)⁺ requires 465.1187, Found: 465.1180.



6-fluoro-1-(4-methoxybenzyl)-4-((1E,3E)-5-oxohexa-1,3-dien-1-yl)-4-(trifluoromethyl)-3,4dihydroquinazolin-2(1H)-one (3b).

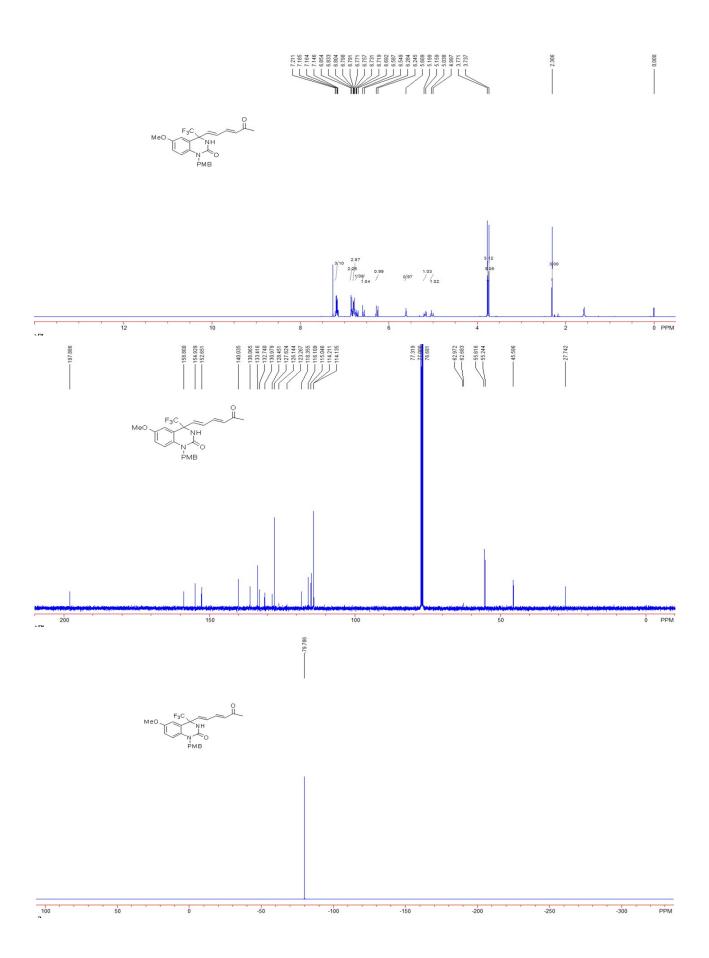
A white solid, 83% yield (74 mg). M.p.: 231-233 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.31 (s, 3H, CH₃), 3.78 (s, 3H, CH₃), 5.03 (d, *J* = 16.4 Hz, 1H, CH₂), 5.18 (d, *J* = 16.4 Hz, 1H, CH₂), 5.73 (s, 1H, NH), 6.27 (d, *J* = 15.6 Hz, 1H, =CH), 6.54 (d, *J* = 15.6 Hz, 1H, =CH), 6.73 (dd, *J* = 10.8, 15.6 Hz, 1H, =CH), 6.81-6.87 (m, 3H, ArH, =CH), 6.94-6.97 (m, 2H, ArH), 7.14-7.22 (m, 3H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 27.7, 45.8, 55.3, 62.6 (q, *J* = 29.6 Hz), 114.3, 114.9 (d, *J* = 24.3 Hz), 116.5 (d, *J* = 8.4 Hz), 117.4 (d, *J* = 22.0 Hz), 118.6 (d, *J* = 6.9 Hz), 124.6 (q, *J* = 287.7 Hz), 127.6, 128.0, 133.2, 133.7, 133.9 (d, *J* = 2.3 Hz), 135.4, 139.8, 152.4, 157.9 (d, *J* = 242.1 Hz), 158.9, 197.8. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -80.03, -119.89-(-119.95) (m). IR (CH₂Cl₂) v 3366, 2955, 2923, 2853, 1678, 1513, 1457, 1377, 1259, 1089, 1017, 800 cm⁻¹. MS (ESI) *m/z* (%): 449.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₃H₂₁F₄N₂O₃⁺¹(M+H)⁺ requires 449.1483, Found: 449.1487.

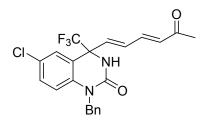




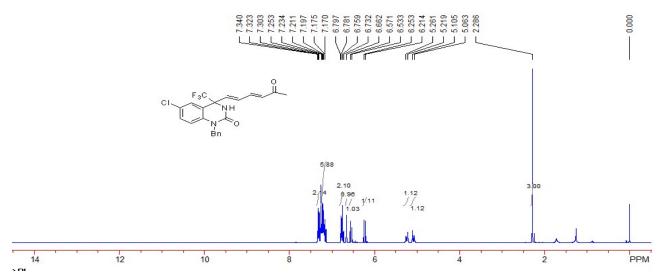
1-(4-methoxybenzyl)-4-((1E,3E)-5-oxohexa-1,3-dien-1-yl)-4,6-bis(trifluoromethyl)-3,4dihydroquinazolin-2(1H)-one (3c).

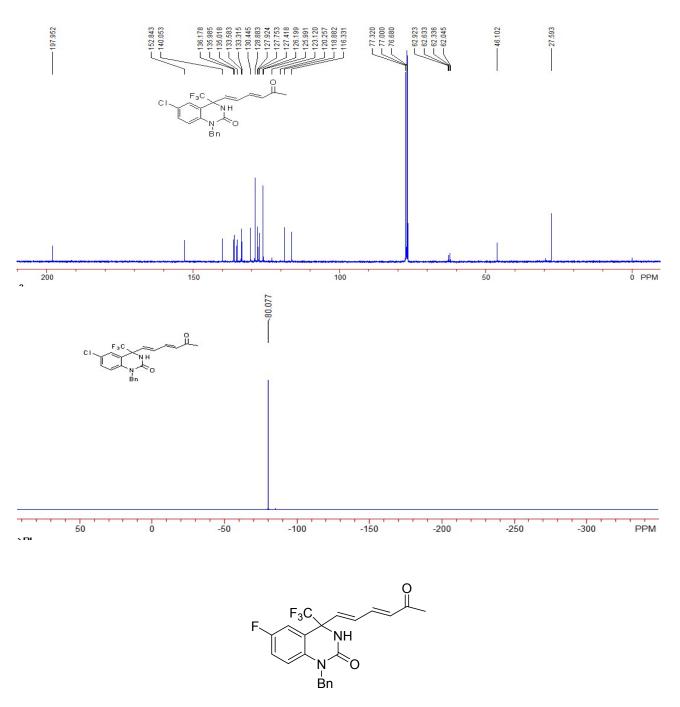
A white solid, 73% yield (72 mg). M.p.: 165-167 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.28 (s, 3H, CH₃), 3.78 (s, 3H, CH₃), 5.07 (d, J = 16.4 Hz, 1H, CH₂), 5.23 (d, J = 16.4 Hz, 1H, CH₂), 6.22 (d, J = 15.6 Hz, 1H, =CH), 6.61 (d, J = 15.2 Hz, 1H, =CH), 6.77-6.88 (m, 3H, ArH, =CH), 6.99 (d, J = 8.8 Hz, 1H, ArH), 7.16-7.23 (m, 3H, ArH, =CH), 7.40 (br, 1H, NH) 7.46-7.51 (m, 2H, ArH).


¹³C NMR (CDCl₃, TMS, 100 MHz) δ 27.4, 45.6, 55.2, 62.5 (q, *J* = 29.5 Hz), 114.3, 115.2, 117.9, 123.5 (q, *J* = 269.9 Hz), 124.5 (q, *J* = 287.7 Hz), 127.59, 127.62, 133.6, 134.6, 140.1, 140.4, 153.1, 158.9, 198.0. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -62.07, -80.34. IR (CH₂Cl₂) v 3219, 3091, 2955, 2915, 2853, 1685, 1624, 1598, 1513, 1394, 1370, 1329, 1290, 1249, 1171, 1121, 1090, 998, 821, 738 cm⁻¹. MS (ESI) *m/z* (%): 516.2 (100) [M+NH₄]⁺; HRMS (ESI) Calcd. For C₂₄H₂₄F₆N₃O₃⁺¹(M+ NH₄)⁺ requires 516.1716, Found: 516.1713.



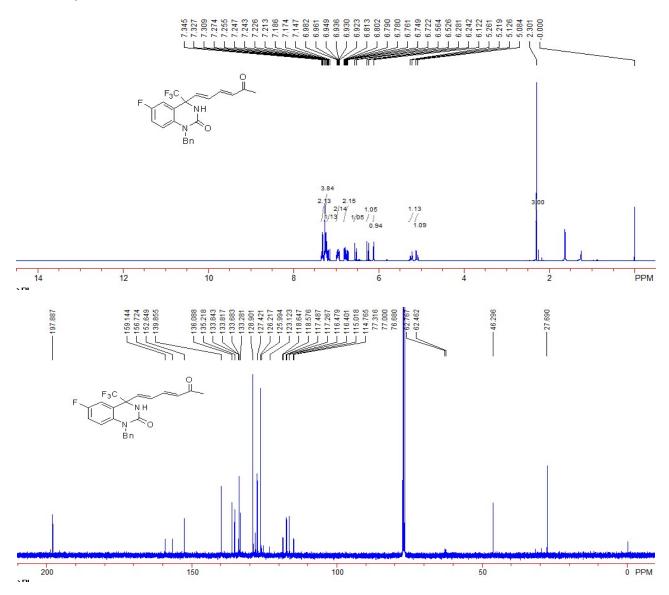
6-methoxy-1-(4-methoxybenzyl)-4-((1E,3E)-5-oxohexa-1,3-dien-1-yl)-4-(trifluoromethyl)-3,4dihydroquinazolin-2(1H)-one (3d).

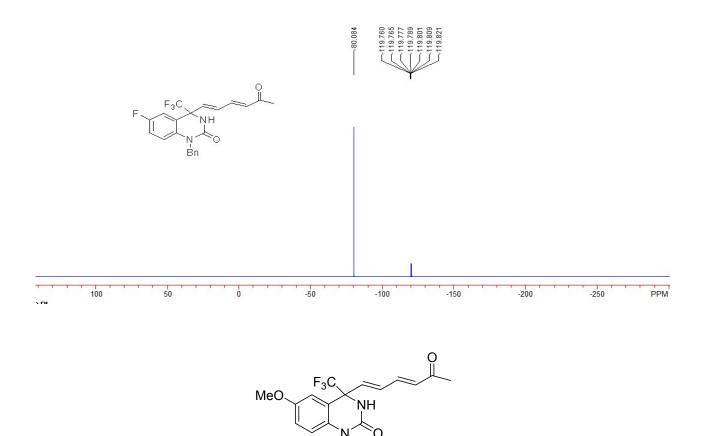

A white solid, 76% yield (70 mg). M.p.: 215-217 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.31 (s, 3H, CH₃), 3.74 (s, 3H, CH₃), 3.77 (s, 3H, CH₃), 5.02 (d, *J* = 16.0 Hz, 1H, CH₂), 5.18 (d, *J* = 16.0 Hz, 1H, CH₂), 5.61 (s, 1H, NH), 6.27 (d, *J* = 15.6 Hz, 1H, =CH), 6.57 (d, *J* = 15.2 Hz, 1H, =CH), 6.73 (dd, *J* = 10.4, 15.2 Hz, 1H, =CH), 6.77-6.81 (m, 3H, ArH, =CH), 6.84 (d, *J* = 8.4 Hz, 2H, ArH), 7.14-7.22 (m, 3H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 27.7, 45.6, 55.2, 55.6, 62.8 (q, *J* = 28.9 Hz), 114.1, 114.2, 115.0, 116.1, 118.4, 124.7 (q, *J* = 287.7 Hz), 127.6, 128.5, 131.0, 132.7, 133.4, 136.1, 140.0, 152.7, 154.9, 158.8, 197.9. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -79.79. IR (CH₂Cl₂) v 3344, 2954, 2922, 2852, 1673, 1596, 1513, 1455, 1401, 1377, 1259, 1175, 1089, 1018, 800, 762 cm⁻¹. MS (ESI) *m/z* (%): 461.2 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₄H₂₄F₃N₂O₄⁺¹(M+H)⁺ requires 461.1683, Found: 461.1689.



1-benzyl-6-chloro-4-((1E,3E)-5-oxohexa-1,3-dien-1-yl)-4-(trifluoromethyl)-3,4dihydroquinazolin-2(1H)-one (3e).

A white solid, 82% yield (71 mg). M.p.: 213-215 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.29 (s, 3H, CH₃), 5.08 (d, *J* = 16.8 Hz, 1H, CH₂), 5.24 (d, *J* = 16.8 Hz, 1H, CH₂), 6.23 (d, *J* = 15.6 Hz, 1H, =CH), 6.55 (d, *J* = 15.2 Hz, 1H, =CH), 6.66 (s, 1H, NH), 6.73-6.80 (m, 2H, =CH), 7.17-7.26 (m, 6H, ArH), 7.30-7.34 (m, 2H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 27.6, 46.1, 62.5 (d, *J* = 29.7 Hz), 116.3, 118.9, 124.6 (q, *J* = 287.1 Hz), 126.2, 127.4, 127.8, 127.9, 128.9, 130.4, 133.3, 133.6, 135.0, 136.0, 136.2, 140.1, 152.8, 198.0. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -80.08. IR (CH₂Cl₂) v 3216, 3084, 2954, 2923, 2851, 1682, 1599, 1501, 1425, 1175 cm⁻¹. MS (ESI) *m/z* (%): 435.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₂H₁₉F₃N₂O₃⁺¹(M+H)⁺ requires 435.1082, Found: 435.1080.

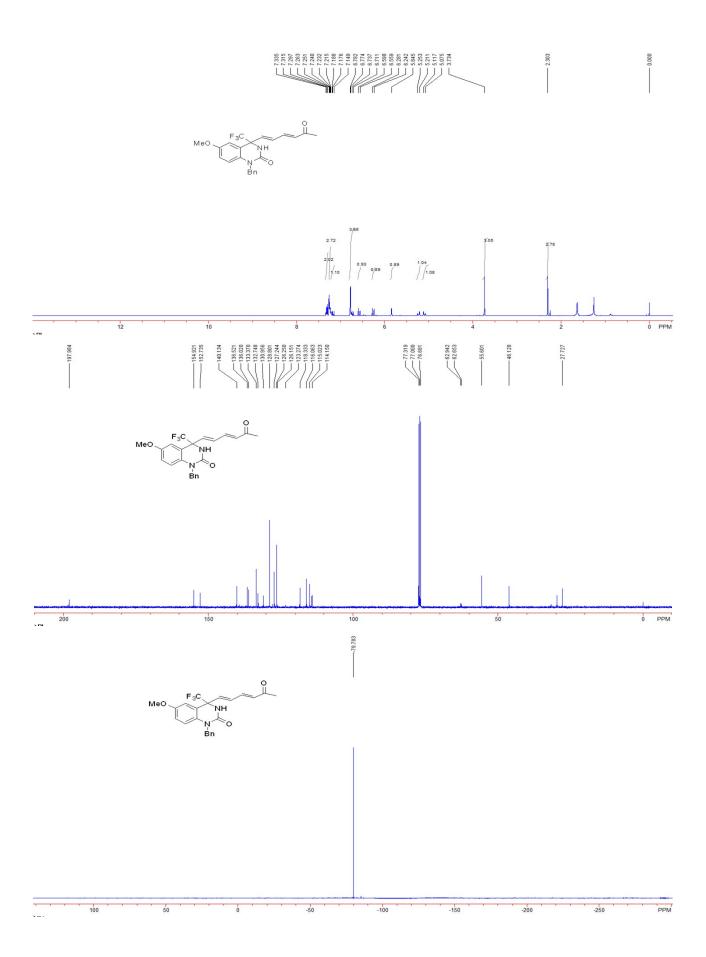


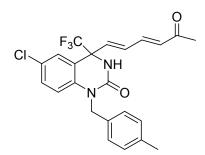

1-benzyl-6-fluoro-4-((1E,3E)-5-oxohexa-1,3-dien-1-yl)-4-(trifluoromethyl)-3,4-

dihydroquinazolin-2(1H)-one (3f).

A white solid, 90% yield (75 mg). M.p.: 226-228 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.30 (s, 3H, CH₃), 5.11 (d, *J* = 16.8 Hz, 1H, CH₂), 5.24 (d, *J* = 16.8 Hz, 1H, CH₂), 6.12 (s, 1H, NH), 6.26 (d, *J* = 15.6 Hz, 1H, =CH), 6.55 (d, *J* = 15.2 Hz, 1H, =CH), 6.72-6.82 (m, 2H, ArH, =CH), 6.92-6.99 (m, 2H, ArH), 7.18 (dd, *J* = 10.8, 15.6 Hz, 1H, =CH), 7.22-7.27 (m, 3H, ArH), 7.30-7.35 (m, 2H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 27.7, 46.3, 62.6 (q, *J* = 30.5 Hz), 114.9 (d, *J* = 25.3 Hz), 116.4 (d, *J* = 3.9 Hz), 117.4 (d, *J* = 22.0 Hz), 118.6 (d, *J* = 7.1 Hz), 124.6 (q, *J* = 287.1 Hz), 126.2,

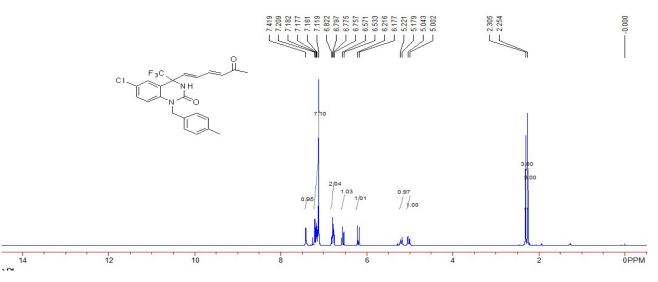
127.4, 128.9, 133.3, 133.7, 133.8 (d, J = 2.6 Hz), 135.2, 136.1, 139.9, 152.6, 157.9 (d, J = 242.0 Hz), 197.9. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -80.08, -119.76-(-119.83) (m). IR (CH₂Cl₂) v 3210, 3080, 2955, 2919, 2850, 1678, 1599, 1515, 1439, 1397, 1255, 1175, 999, 724 cm⁻¹. MS (ESI) m/z (%): 441.1 (100) [M+Na]⁺; HRMS (ESI) Calcd. For C₂₂H₁₈F₄N₂NaO₂⁺¹(M+Na)⁺ requires 441.1197, Found: 441.1200.

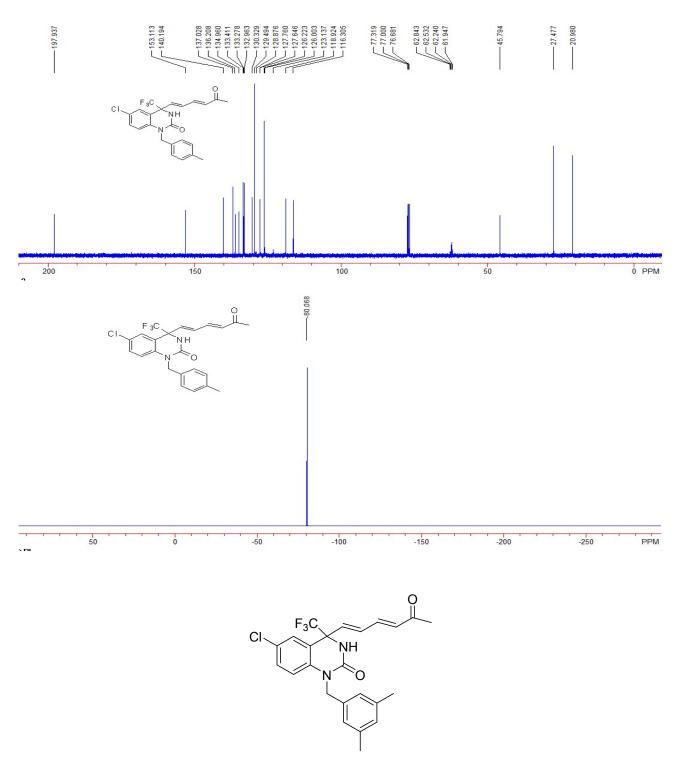




1-benzyl-6-methoxy-4-((1E,3E)-5-oxohexa-1,3-dien-1-yl)-4-(trifluoromethyl)-3,4dihydroquinazolin-2(1H)-one (3g).

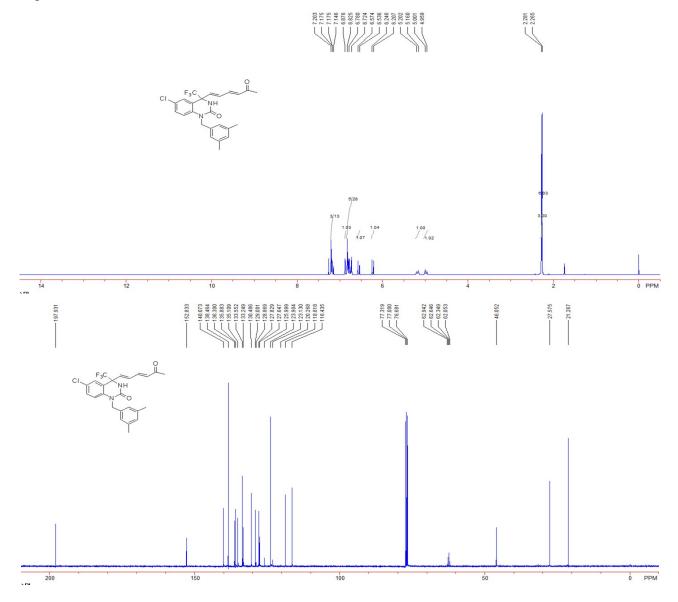
Β'n

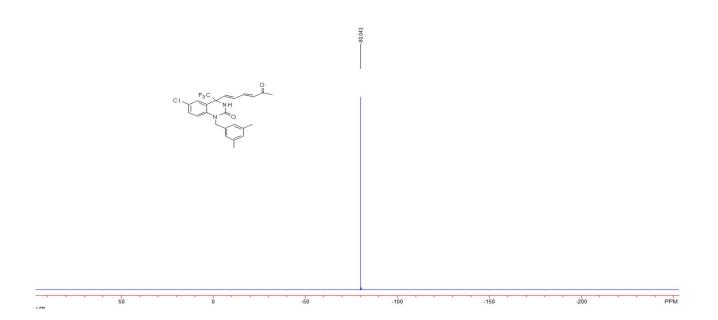

A white solid, 60% yield (51 mg). M.p.: 201-203 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.30 (s, 3H, CH₃), 3.73 (s, 3H, CH₃), 5.10 (d, *J* = 16.8 Hz, 1H, CH₂), 5.23 (d, *J* = 16.8 Hz, 1H, CH₂), 5.85 (s, 1H, NH), 6.26 (d, *J* = 15.6 Hz, 1H, =CH), 6.58 (d, *J* = 15.6 Hz, 1H, =CH), 6.71-6.79 (m, 4H, ArH, =CH), 7.18 (dd, *J* = 10.8, 15.6 Hz, 1H, =CH), 7.23-7.27 (m, 2H, ArH), 7.29-7.34 (m, 2H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 27.7, 46.1, 55.6, 62.8 (q, *J* = 28.9 Hz), 114.2, 115.0, 116.1, 118.3, 124.7 (q, *J* = 287.7 Hz), 126.3, 127.2, 128.8, 131.0, 132.7, 133.4, 136.0, 136.5, 140.1, 152.7, 154.9, 158.8, 198.0. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -79.78. IR (CH₂Cl₂) v 3216, 3073, 2954, 2923, 2852, 1675, 1596, 1516, 1454, 1434, 1403, 1255, 1231, 1180, 725 cm⁻¹. MS (ESI) *m/z* (%): 431.2 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₃H₂₃F₃N₂O₃⁺¹(M+H)⁺ requires 431.1577, Found: 431.1573.



6-chloro-1-(4-methylbenzyl)-4-((1E,3E)-5-oxohexa-1,3-dien-1-yl)-4-(trifluoromethyl)-3,4dihydroquinazolin-2(1H)-one (3h).

A white solid, 87% yield (78 mg). M.p.: 242-244 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.25 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 5.02 (d, *J* = 16.4 Hz, 1H, CH₂), 5.20 (d, *J* = 16.0 Hz, 1H, CH₂), 6.20 (d, *J* = 15.6 Hz, 1H, =CH), 6.55 (d, *J* = 15.2 Hz, 1H, =CH), 6.75-6.83 (m, 2H, =CH), 7.11-7.21 (m, 7H, ArH), 7.42 (s, 1H, NH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.0, 27.5, 45.8, 62.4 (q, *J* = 29.2 Hz), 116.3, 118.9, 124.6 (q, *J* = 286.6 Hz), 126.2, 127.6, 127.8, 129.5, 130.3, 133.0, 133.3, 133.4, 135.0, 136.2, 137.0, 140.2, 153.1, 197.9. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -80.07. IR (CH₂Cl₂) v 3394, 2922, 1681, 1592, 1451, 1337, 1123, 1020, 955, 912, 847, 818, 668, 626 cm⁻¹. MS (ESI) *m/z* (%): 449.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₃H₂₁ClF₃N₂O₂⁺¹(M+H)⁺ requires 449.1238, Found: 449.1238.



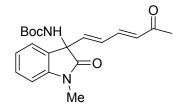


6-chloro-1-(3,5-dimethylbenzyl)-4-((1E,3E)-5-oxohexa-1,3-dien-1-yl)-4-(trifluoromethyl)-3,4dihydroquinazolin-2(1H)-one (3i).

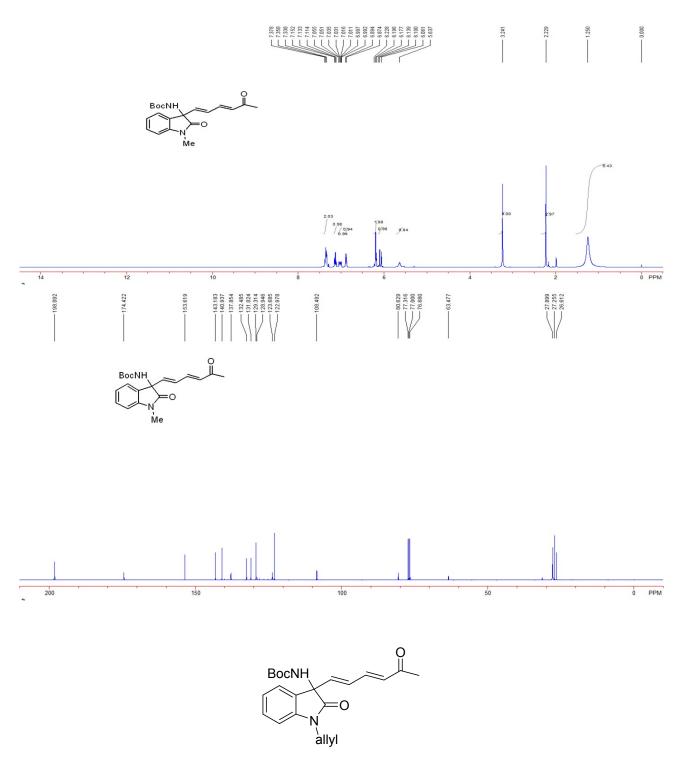
A white solid, 96% yield (87 mg). M.p.: 251-253 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.27 (s, 6H, CH₃), 2.28 (s, 3H, CH₃), 4.98 (d, *J* = 16.8 Hz, 1H, CH₂), 5.28 (d, *J* = 16.0 Hz, 1H, CH₂), 6.23 (d, *J* = 15.6 Hz, 1H, =CH), 6.56 (d, *J* = 15.2 Hz, 1H, =CH), 6.72-6.83 (m, 5H, ArH, =CH), 6.88 (s, 1H, NH), 7.14-7.21 (m, 3H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.3, 27.6, 46.1, 62.5 (q, *J*

= 29.7 Hz), 116.4, 118.8, 123.9, 124.6 (q, J = 286.9 Hz), 127.6, 127.8, 129.1, 130.5, 133.2, 133.6, 135.1, 135.9, 136.3, 138.5, 140.1, 152.8, 197.9. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -80.04. IR (CH₂Cl₂) v 3206, 3085, 2922, 2851, 1681, 1600, 1503, 1425, 1392, 1259, 1175, 1118, 1000, 810 cm⁻¹. MS (ESI) *m/z* (%): 463.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₄H₂₃ClF₃N₂O₂⁺¹(M+H)⁺ requires 463.1395, Found: 463.1392.

Optimal Conditions for the Synthesis of 5a

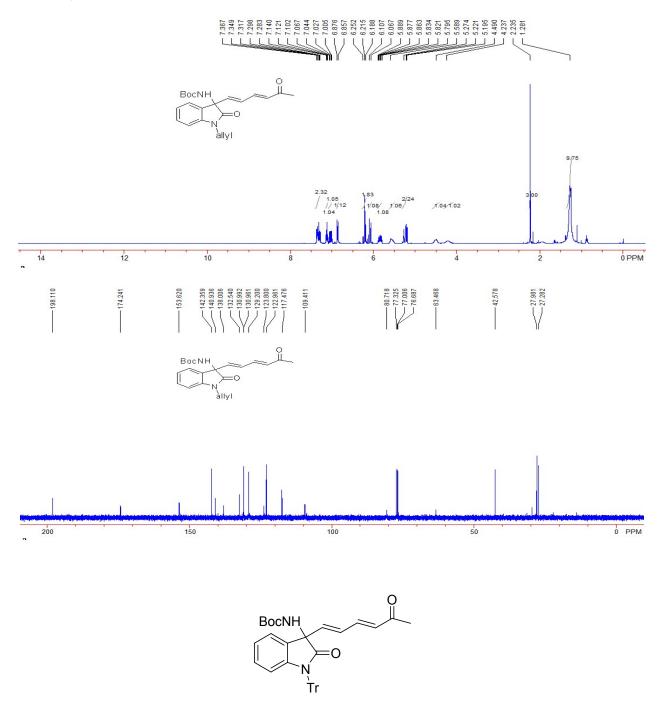

Table S1. Optimization of the reaction conditions.

/-	(0 (1a	+ + 4a	NBoc PG	cat. ene, 4Å MS	~ 1	→ >=0 >G	0
entry ^[a]	PG	1a (equiv)	Cat.	4Å MS	temp (°C)	time (h)	yield%
1	Bn	3	PPh ₃	0	rt	72	53 ^[b]
2	allyl	3	PPh ₃	0	rt	72	34 ^[b]
3	allyl	3	MePPh ₂	0	rt	72	complex
4	Me	2	PPh_3	0	rt	42	35 ^[b]
5	allyl	2	P(4-FC ₆ H ₄) ₃	0	rt	24	trace
6 ^[d]	Me	2	PPh ₃	200 mg	60	42	56 ^[c]
7	Ме	4	$P(4-FC_6H_4)_3$	100 mg	65	96	86 ^[b]

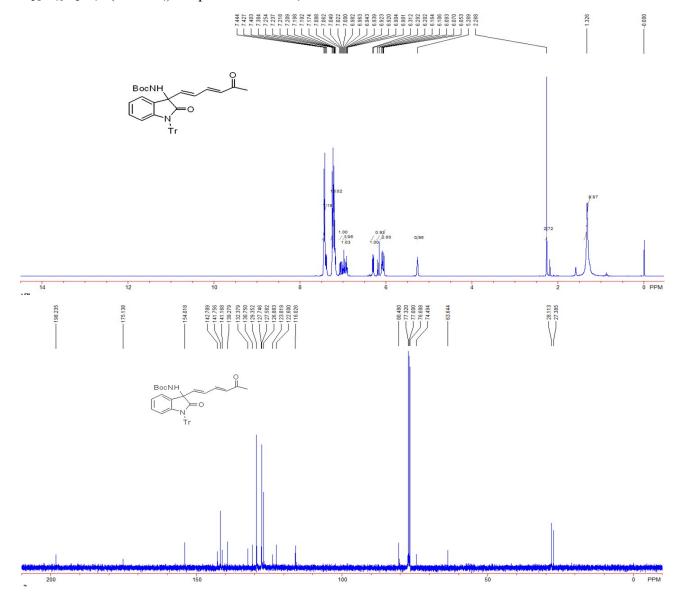

[a] The reaction was carried out using **1a** (0.2~0.8 mmol), **4a** (0.2 mmol), cat. (0.02 mmol), in the indicated solvent (1.0 mL) in a Schlenk tube at the indicated temperature. [b] Isolated yield. [c] The reaction was carried out using **1a** (2.0 mmol), **4a** (1.0 mmol), cat. (0.25 mmol), in the indicated solvent (3 mL) in a Schlenk tube at the indicated temperature.

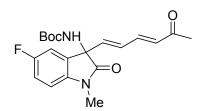
General Procedure for Hex-3-yn-2-one 1a to Isatin-derived N-Boc Ketimines 4 and Spectroscopic Data of the Products

General procedure: The 4Å MS was added to a Schlenk tube and heated under vacuum to remove ambient moisture and water, then filled with argon. After the Schlenk tube was returned to room temperature, isatin-derived *N*-Boc ketimines **4** (0.2 mmol) and P(4-FC₆H₄)₃ (13 mg, 0.04 mmol) was added. Under argon atmosphere, to a solution of isatin-derived *N*-Boc ketimines **4** (0.2 mmol) and P(4-FC₆H₄)₃ (13 mg, 0.04 mmol) in toluene (1.0 mL) was added the hex-3-yn-2-one **1a** (0.8 mmol) at room temperature. Then the resulting mixture was heated to 65 °C and continued stirring at 65 °C until the reaction completed (monitoring by TLC). Then the solvent was removed under reduced pressure and the residue was directly subjected to a flash column chromatography on silica gel to afford the desired products **5a-5g**.

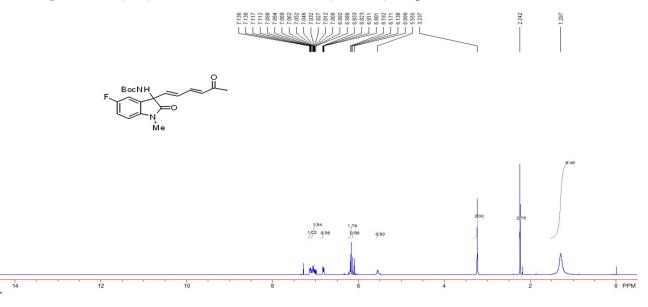


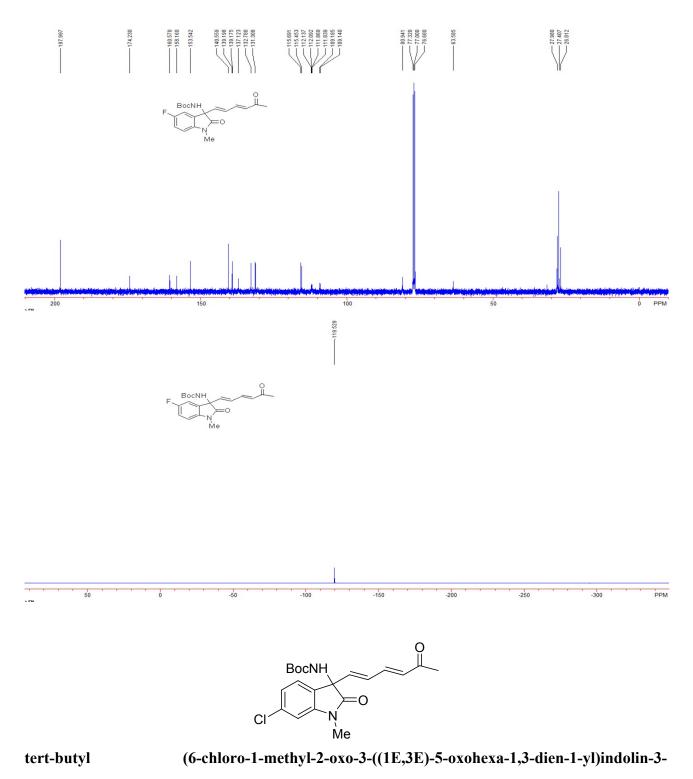
tert-butyl (1-methyl-2-oxo-3-((1E,3E)-5-oxohexa-1,3-dien-1-yl)indolin-3-yl)carbamate (5a). A white solid, 86% yield (61 mg). M.p.: 180-182 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.25 (s, 9H, C(CH₃)₃), 2.23 (s, 3H, CH₃), 3.24 (s, 3H, CH₃), 5.64 (s, 1H, NH), 6.08 (d, J = 15.6 Hz, 1H, =CH), 6.13-6.23 (m, 2H, =CH), 6.89 (d, J = 8.0 Hz, 1H, ArH), 7.02 (ddd, J = 1.6, 8.0, 15.6 Hz, 1H, =CH), 7.11-7.16 (m, 1H, ArH), 7.33-7.38 (m, 2H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 26.6, 27.3, 27.9, 63.5, 80.6, 108.5, 123.0, 123.7, 128.9, 129.3, 131.0, 132.5, 137.9, 140.9, 143.2, 153.6, 174.4, 198.1. IR (CH₂Cl₂) v 3323, 2956, 2922, 2851, 1722, 1494, 1464, 1376, 1259, 1161, 1088, 852, 761, 692 cm⁻¹. MS (ESI) *m/z* (%): 357.2 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₀H₂₅N₂O₄⁺¹(M+H)⁺ requires 357.1809, Found: 357.1813.


tert-butyl (1-methyl-2-oxo-3-((1E,3E)-5-oxohexa-1,3-dien-1-yl)indolin-3-yl)carbamate (5b). A white solid, 90% yield (64 mg). M.p.: 119-121 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.28 (s, 9H, C(CH₃)₃), 2.24 (s, 3H, CH₃), 4.23 (br, 1H, CH₂), 4.49 (br, 1H, CH₂), 5.19-5.28 (m, 2H, =CH), 5.59 (br, 1H, NH), 5.79-5.89 (m, 1H, =CH), 6.08 (d, *J* = 16.0 Hz, 1H, =CH), 6.18-6.25 (m, 2H, =CH), 6.87 (d, *J* = 7.6 Hz, 1H, ArH), 7.04 (dd, *J* = 9.2, 16.0 Hz, 1H, =CH), 7.12 (dd, *J* = 7.6, 7.6 Hz, 1H, ArH), 7.28-7.37 (m, 2H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 27.3, 28.0, 42.6, 63.5,


80.7, 109.4, 117.5, 123.0, 123.8, 129.2, 131.0, 132.5, 138.0, 140.9, 142.4, 153.6, 174.2, 198.1. IR (CH₂Cl₂) v 3322, 2970, 2922, 1708, 1670, 1611, 1487, 1466, 1363, 1250, 1159, 995, 753, 734 cm⁻¹. MS (ESI) *m/z* (%): 383.2 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₂H₂₇N₂O₄⁺¹(M+H)⁺ requires 383.1965, Found: 383.1965.

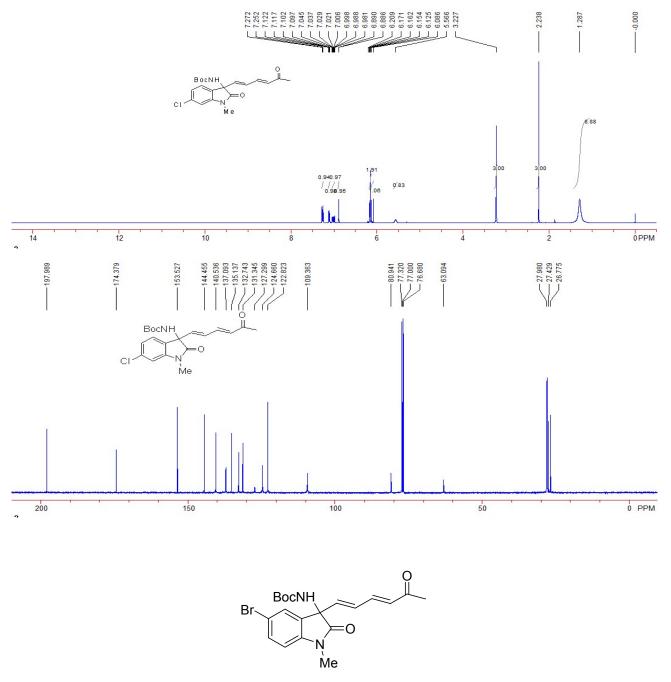
tert-butyl (1-methyl-2-oxo-3-((1E,3E)-5-oxohexa-1,3-dien-1-yl)indolin-3-yl)carbamate (5c). A white solid, 84% yield (92 mg). M.p.: 235-237 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.33 (s, 9H, C(CH₃)₃), 2.27 (s, 3H, CH₃), 5.27 (s, 1H, NH), 6.05-6.11 (m, 2H, =CH), 6.18 (d, *J* = 15.2 Hz,


1H, =CH), 6.30 (d, J = 8.0 Hz, 1H, ArH), 6.92 (ddd, J = 1.2, 8.0, 8.0 Hz, 1H, ArH), 6.98 (dd, J = 7.6, 7.6 Hz, 1H, ArH), 7.06 (dd, J = 10.4, 15.6 Hz, 1H, ArH), 7.17-7.26 (m, 10H, ArH), 7.38-7.45 (m, 7H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 27.4, 28.1, 63.6, 74.5, 80.5, 116.0, 122.6, 123.8, 126.9, 127.6, 127.7, 129.4, 130.8, 132.4, 139.3, 141.2, 141.8, 142.8, 154.0, 175.1, 198.2. IR (CH₂Cl₂) v 3303, 2971, 2927, 2850, 1715, 1670, 1596, 1490, 1462, 1449, 1365, 1256, 1156, 1021, 998, 908, 730, 703 cm⁻¹. MS (ESI) *m/z* (%): 602.3 (100) [M+NH₄]⁺; HRMS (ESI) Calcd. For C₃₈H₄₀N₃O₄⁺¹(M+NH₄)⁺ requires 602.3013, Found: 602.3015.



tert-butyl (5-fluoro-1-methyl-2-oxo-3-((1E,3E)-5-oxohexa-1,3-dien-1-yl)indolin-3yl)carbamate (5d).

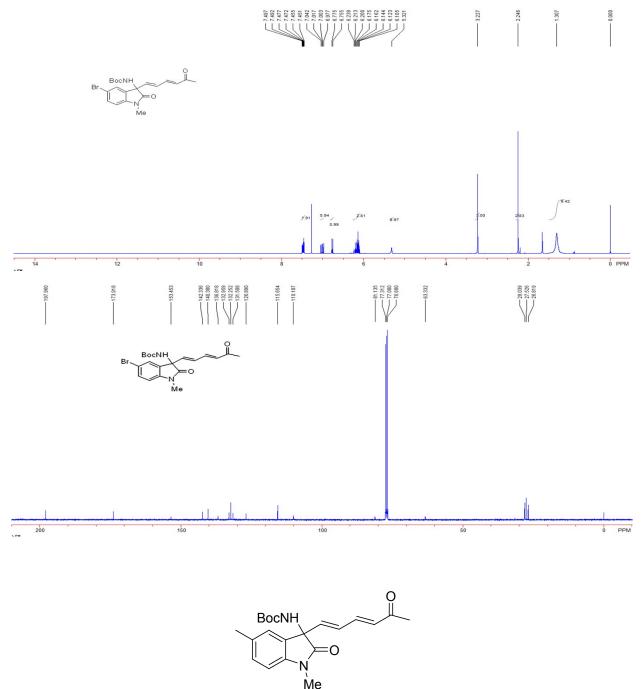
A white solid, 82% yield (61 mg). M.p.: 188-190 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.30 (s, 9H, C(CH₃)₃), 2.24 (s, 3H, CH₃), 3.24 (s, 3H, CH₃), 5.56 (s, 1H, NH), 6.12 (d, *J* = 15.6, 1H, =CH), 6.17-6.23 (m, 2H, =CH), 6.82 (dd, *J* = 4.0, 8.8 Hz, 1H, ArH), 6.98-7.09 (m, 2H, =CH, ArH), 7.12 (dd, *J* = 2.4, 8.8 Hz, 1H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 26.8, 27.4, 28.0, 63.6, 80.9, 109.2 (d, *J* = 4.5 Hz), 111.9 (d, *J* = 3.0 Hz), 112.1 (d, *J* = 4.5 Hz), 115.6 (d, *J* = 23.8 Hz), 131.3, 132.8, 137.1, 139.2 (d, *J* = 2.3 Hz), 140.6, 153.5, 159.4 (d, *J* = 241.0 Hz), 174.2, 198.0. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -119.53. IR (CH₂Cl₂) v 3289, 2925, 2849, 1723, 1593, 1497, 1469, 1366, 1266, 1235, 1159, 1116, 830, 813, 733, 702, 661 cm⁻¹. MS (ESI) *m/z* (%): 293.1 (100) [M+NH₄]⁺; HRMS (ESI) Calcd. For C₂₀H₂₇FN₃O₄⁺¹(M+NH₄)⁺ requires 392.1980, Found: 392.1980.



yl)carbamate (5e).

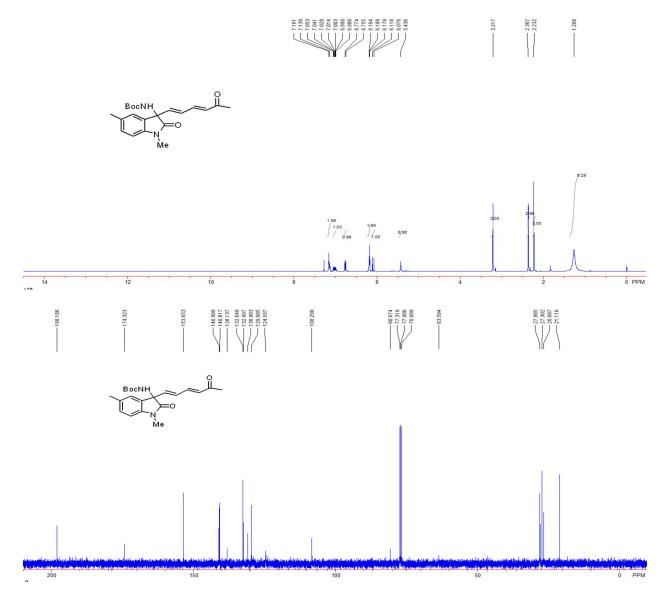
A white solid, 92% yield (72 mg). M.p.: 236-238 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.29 (s, 9H, C(CH₃)₃), 2.24 (s, 3H, CH₃), 3.23 (s, 3H, CH₃), 5.57 (s, 1H, NH), 6.11 (d, *J* = 15.6 Hz, 1H, =CH), 6.15-6.21 (m, 2H, =CH), 6.89 (d, *J* = 1.6 Hz, 1H, ArH), 7.01 (ddd, *J* = 3.2, 6.4, 15.6 Hz, 1H, =CH), 7.11 (dd, *J* = 2.0, 8.0 Hz, 1H, ArH), 7.26 (d, *J* = 8.0 Hz, 1H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 26.8, 27.4, 28.0, 63.1, 80.9, 109.4, 122.8, 124.7, 127.3, 131.3, 132.7, 135.1, 137.1,

140.5, 144.5, 153.5, 174.4, 198.0. IR (CH₂Cl₂) v 3316, 2980, 2917, 2848, 1724, 1671, 1610, 1595, 1489, 1364, 1263, 1160, 1116, 997, 812, 701 cm⁻¹. MS (ESI) m/z (%): 391.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₀H₂₄ClN₂O₄⁺¹(M+NH₄)⁺ requires 391.1419, Found: 391.1417.



tert-butyl (5-bromo-1-methyl-2-oxo-3-((1E,3E)-5-oxohexa-1,3-dien-1-yl)indolin-3-

yl)carbamate (5f).

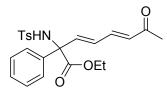

A white solid, 88% yield (77 mg). M.p.: 289-290 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.31 (s, 9H, C(CH₃)₃), 2.25 (s, 3H, CH₃), 3.23 (s, 3H, CH₃), 5.32 (s, 1H, NH), 6.10-6.24 (m, 3H, =CH), 6.77 (d, *J* = 8.0 Hz, 1H, ArH), 7.01 (dd, *J* = 10.0, 15.6 Hz, 1H, =CH), 7.45-7.50 (m, 2H, ArH). ¹³C NMR

(CDCl₃, TMS, 100 MHz) δ 26.8, 27.5, 28.0, 63.3, 81.1, 110.1, 115.7, 126.9, 131.5, 132.3, 133.0, 136.8, 140.4, 142.3, 153.5, 173.9, 198.0. IR (CH₂Cl₂) v 3315, 2959, 2925, 2846, 1727, 1671, 1607, 1488, 1364, 1254, 1162, 1116, 999, 810 cm⁻¹. MS (ESI) *m/z* (%): 452.1 (100) [M+NH₄]⁺; HRMS (ESI) Calcd. For C₂₀H₂₇BrN₃O₄⁺¹(M+NH₄)⁺ requires 452.1179, Found: 452.1178.

tert-butyl (1,5-dimethyl-2-oxo-3-((1E,3E)-5-oxohexa-1,3-dien-1-yl)indolin-3-yl)carbamate (5g). A white solid, 64% yield (47 mg). M.p.: 142-144 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.27 (s, 9H, C(CH₃)₃), 2.23 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 3.22 (s, 3H, CH₃), 5.44 (s, 1H, NH), 6.10 (d, *J*

= 16.0 Hz, 1H, =CH), 6.17-6.20 (m, 2H, =CH), 6.76 (d, J = 7.6 Hz, 1H, ArH), 6.98-7.06 (m, 1H, =CH), 7.13-7.17 (m, 2H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 21.1, 26.7, 27.3, 28.0, 63.6, 80.7, 108.3, 124.6, 129.6, 130.9, 132.5, 132.6, 138.1, 140.8, 141.0, 153.7, 174.3, 198.1. IR (CH₂Cl₂) v 3318, 2974, 2926, 1708, 1670, 1602, 1499, 1363, 1281, 1251, 1165, 997, 810, 732 cm⁻¹. MS (ESI) m/z (%): 371.2 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₁H₂₇N₂O₄⁺¹(M+NH₄)⁺ requires 371.1965, Found: 371.1964.

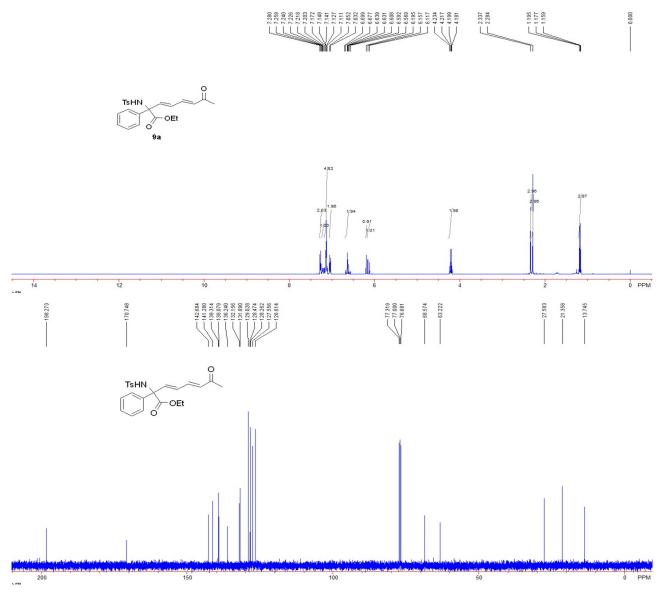
Optimal Conditions for the Synthesis of 7a


Table S2. Optimization of the reaction conditions.

	——————————————————————————————————————	NTs OEt	cat. (20 mol%) toluene, r.t,	→ TsHN → O 7a	DEt
entry ^[a]	Cat.	4ÅMS	temp (^o C)	time (h)	yield%
1	PPh ₃	0	rt	144	30 ^[b]
2	PPh ₃	100	65	72	24 ^[b]
3	MePPh ₂	100	rt	144	complex
4	PPh ₃	100	rt	144	14 ^[b]
5	P(4-FC ₆ H ₄) ₃	100	rt	144	24 ^[b]

[a] The reaction was carried out using **1a** (0.3 mmol), **6a** (0.2 mmol), cat. (0.02 mmol), in the indicated solvent (1.0 mL) in a Schlenk tube at the indicated temperature. [b] Isolated yield.

General Procedure for Hex-3-yn-2-one 1a to N-tosyl α-Ketimine Esters 6a and Spectroscopic Data of the Products


General procedure: Under argon atmosphere, to a solution of N-tosyl α -ketimine esters **6a** (0.2 mmol) and PPh₃ (11 mg, 0.04 mmol) in toluene (1.0 mL) was added the hex-3-yn-2-one **1a** (0.3 mmol) at room temperature. Then the resulting mixture was stirred at 65 °C until the reaction completed (monitoring by TLC). Then the solvent was removed under reduced pressure and the residue was directly subjected to a flash column chromatography on silica gel to afford the desired product **7a**.

Ethyl (3E,5E)-2-((4-methylphenyl)sulfonamido)-7-oxo-2-phenylocta-3,5-dienoate (7a).

A white solid, 30% yield (62 mg). M.p.: 156-158 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.18 (t, *J* = 7.2 Hz, 3H, CH₃), 2.28 (s, 3H, CH₃), 2.34 (s, 3H, CH₃), 4.21 (q, *J* = 7.2 Hz, 2H, CH₂), 6.14 (d, *J* = 16.0 Hz, 1H, =CH), 6.20 (s, 1H, NH), 6.56-6.68 (m, 2H, =CH), 7.04 (d, *J* = 8.0 Hz, 2H, ArH), 7.11-7.18 (m, 5H, =CH), 7.19-7.24 (m, 1H, ArH), 7.27 (d, *J* = 8.0 Hz, 2H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 13.7, 21.4, 27.6, 63.2, 68.6, 126.6, 127.6, 128.3, 128.5, 129.0, 131.9, 132.2, 136.2, 139.1, 139.3, 141.3, 142.7, 170.7, 198.3. IR (CH₂Cl₂) v 3255, 2923, 1733, 1663, 1590, 1329, 1246,

1155, 1092, 999, 813, 698, 662 cm⁻¹. MS (ESI) m/z (%): 445.2 (100) [M+NH₄]⁺; HRMS (ESI) Calcd. For C₂₃H₂₉N₂O₅S⁺¹(M+NH₄)⁺ requires 445.1792, Found: 445.1792.

Screening of Chiral Phosphine Catalysts of δ-Carbon Activation of Hex-3-yn-2-one 1a and Addition to Cyclic Trifluoromethyl Ketimine 2a.

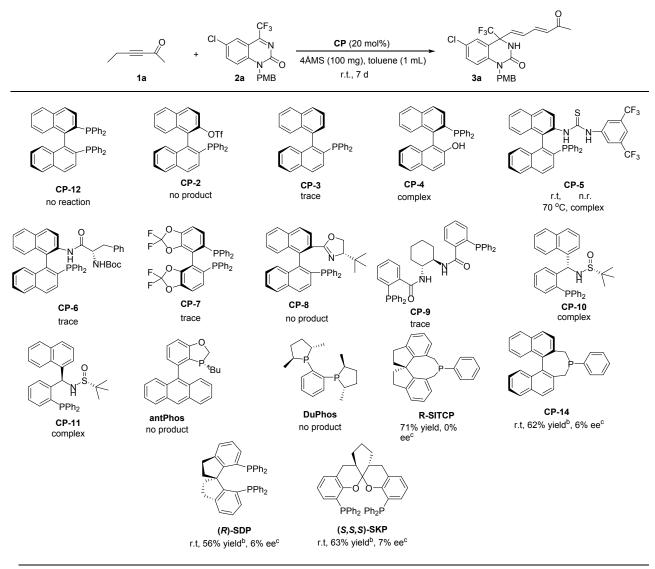
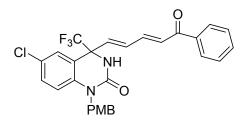
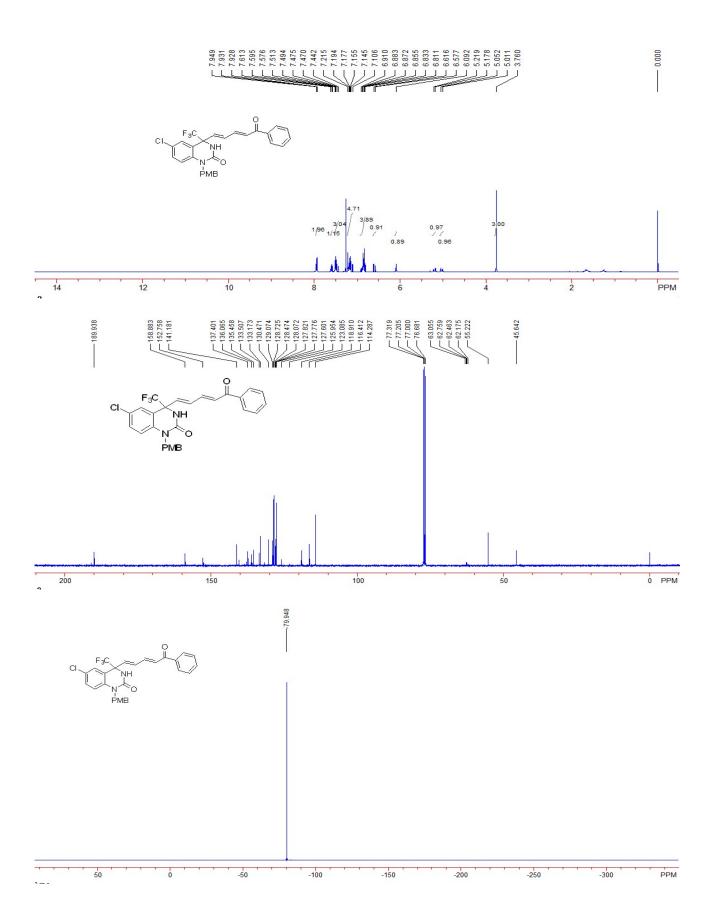
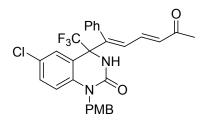



Table S3. Screening of chiral phosphine catalysts in the enantioselective addition of 1a and 2a.^a

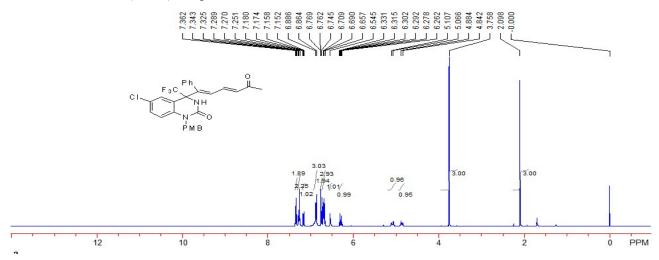
^a Reactions were performed with **1a** (0.40 mmol) and **2a** (0.20 mmol) in the presence of 20 mol% of **CP** in toluene (1 mL) for 7 days. ^b Isolated yields. ^c Determined by chiral HPLC analysis.

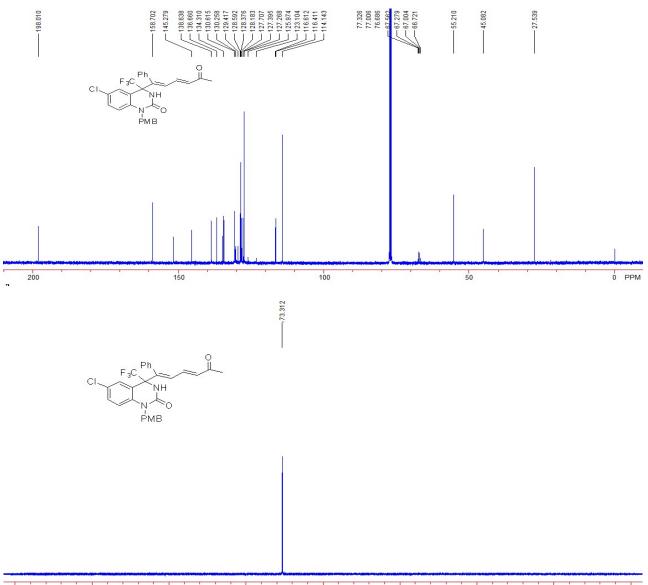

General Procedure for Alkynones 1 to Cyclic Trifluoromethyl Ketimines 2a and Spectroscopic Data of the Products


General procedure: The 4Å MS was added to a Schlenk tube and heated under vacuum to remove ambient moisture and water, then filled with argon. After the Schlenk tube was returned to room temperature, cyclic trifluoromethyl ketimines **2a** (0.2 mmol) and P(4-FC₆H₄)₃ (13 mg, 0.04 mmol) was added. Under argon atmosphere, to a solution of cyclic trifluoromethyl ketimines **2** (0.2 mmol) and P(4-FC₆H₄)₃ (13 mg, 0.04 mmol) in toluene (1.0 mL) was added the alkynones **1** (0.8 mmol) at room temperature. Then the resulting mixture was heated to 65 °C and continued stirring at 65 °C until the reaction completed (monitoring by TLC). Then the solvent was removed under reduced pressure and the residue was directly subjected to a flash column chromatography on silica gel to afford the desired products **3j** and **3k**.

6-chloro-1-(4-methoxybenzyl)-4-((1E,3E)-5-oxo-5-phenylpenta-1,3-dien-1-yl)-4-(trifluoromethyl)-3,4-dihydroquinazolin-2(1H)-one (3j).

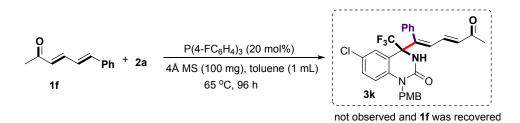
A white solid, 88% yield (93 mg). M.p.: 221-223 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 3.76 (s, 3H, CH₃), 5.03 (d, *J* = 16.4 Hz, 1H, CH₂), 5.20 (d, *J* = 16.0 Hz, 1H, CH₂), 6.09 (s, 1H, NH), 6.60 (d, *J* = 15.6 Hz, 1H, =CH), 6.81-6.91 (m, 4H, ArH, =CH), 7.11-7.12 (m, 5H, ArH, =CH), 7.44-7.52 (m, 3H, ArH, =CH), 7.58-7.61 (m, 1H, ArH), 7.92-7.95 (m, 1H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 45.6, 62.6 (q, *J* = 29.6 Hz), 114.3, 116.4, 118.9, 124.5 (q, *J* = 286.9 Hz), 127.6, 127.78, 127.82, 128.1, 128.5, 128.7, 129.1, 130.5, 133.2, 133.5, 135.5, 136.1, 137.4, 141.2, 152.8, 158.9, 189.9. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -79.95. IR (CH₂Cl₂) v 3205, 3065, 2952, 2924, 2853, 1678, 1599, 1513, 1503, 1428, 1247, 1173, 1013, 734, 695 cm⁻¹. MS (ESI) *m/z* (%): 527.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₈H₂₃ClF₃N₂O₃⁺¹(M+H)⁺ requires 527.1344, Found: 527.1343.

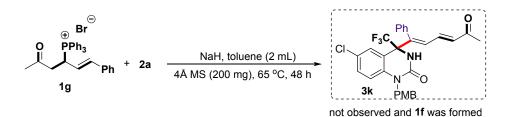




6-chloro-1-(4-methoxybenzyl)-4-((1E,3E)-5-oxo-1-phenylhexa-1,3-dien-1-yl)-4-

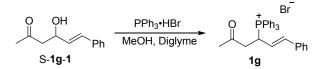
(trifluoromethyl)-3,4-dihydroquinazolin-2(1H)-one (3k).


A white solid, 65% yield (70 mg). M.p.: 172-174 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.10 (s, 3H, CH₃), 3.76 (s, 3H, CH₃), 4.86 (d, *J* = 16.8 Hz, 1H, CH₂), 5.09 (d, *J* = 16.8 Hz, 1H, CH₂), 6.30 (td, *J* = 6.4, 14.8 Hz, 1H, =CH), 6.55 (br, 1H, NH), 6.65-6.71 (m, 3H, ArH, =CH), 6.74-6.77 (m, 2H, ArH), 6.88 (d, *J* = 8.8 Hz, 3H, ArH, =CH), 7.17 (dd, *J* = 2.4, 8.8 Hz, 1H, ArH), 7.25-7.29 (m, 2H, ArH), 7.32-7.37 (m, 2H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 27.5, 45.1, 55.2, 67.1 (q, *J* = 31.3 Hz), 114.1, 116.4, 116.6, 124.5 (q, *J* = 287.0 Hz), 127.3, 127.4, 128.2, 128.4, 129.4, 130.3, 130.6, 134.3, 136.7, 138.6, 145.3, 158.7, 198.0. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -73.31. IR (CH₂Cl₂) v 3205, 3080, 2959, 2922, 2849, 1675, 1601, 1512, 1425, 1392, 1248, 1174, 1091, 1066, 1028, 805, 737, 705 cm⁻¹. MS (ESI) *m/z* (%): 541.2 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₉H₂₅ClF₃N₂O₃⁺¹(M+H)⁺ requires 541.1500, Found: 541.1500.



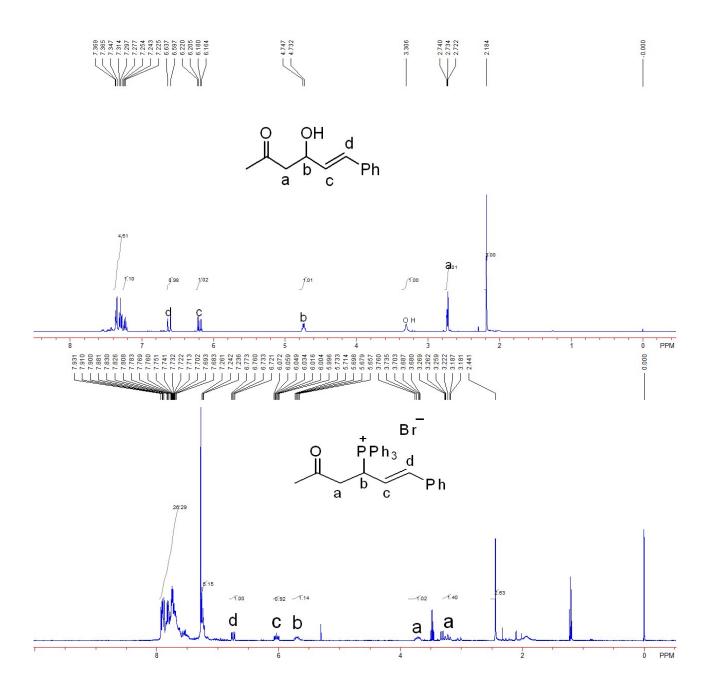
100 50 0 -50 -100 -150 -200 -250 PPM

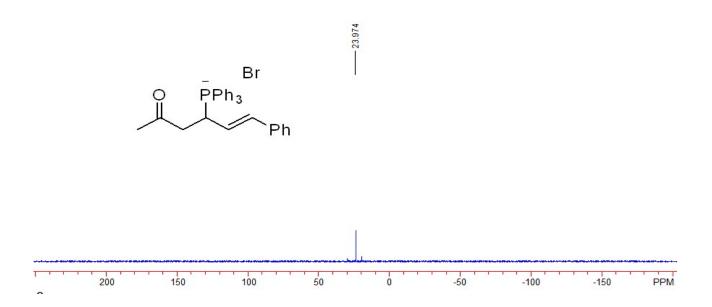
Control Experiments and Spectroscopic Data of the Products.



The 4Å MS was added to a Schlenk tube and heated under vacuum to remove ambient moisture and water, then filled with argon. After the Schlenk tube was returned to room temperature, cyclic trifluoromethyl ketimine **2a** (0.2 mmol) and P(4-FC₆H₄)₃ (13 mg, 0.04 mmol) were added. Under argon atmosphere, to a solution of cyclic trifluoromethyl ketimines **2a** (0.2 mmol) and P(4-FC₆H₄)₃ (13 mg, 0.04 mmol) and P(4-FC₆H₄)₃ (13 mg, 0.04 mmol) in toluene (1.0 mL) was added the (3E,5E)-6-phenylhexa-3,5-dien-2-one **1f** (0.8 mmol) at room temperature. Then the resulting mixture was heated to 65 °C and continued stirring at 65 °C for 96 hours. Product **3k** was not obtained and **1f** was recovered.

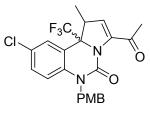
NaH (2.0 equiv) was added slowly into a solution of the phosphonium salt **1g** (2.0 equiv) and cyclic trifluoromethyl ketimine **2a** (0.20 mmol) in toluene (2 mL) at room temperature. After stirring the mixture at 65 °C for 48 h, the solvent was evaporated under reduced pressure. Product **3k** was not obtained and **1f** was formed.


Compound 1g was prepared following a slightly modified literature procedure.^[4]

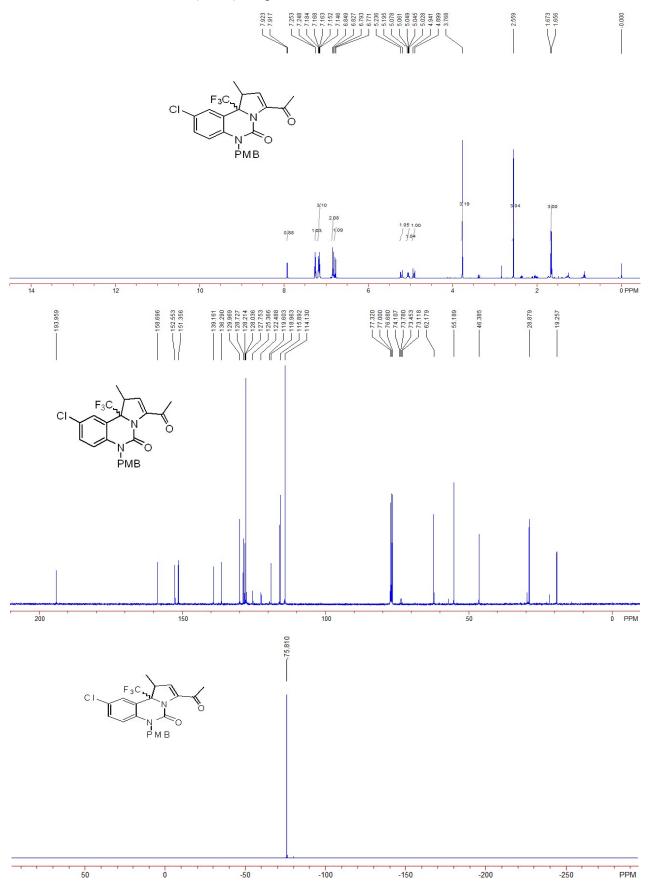

S-1g-1 (4 mmol) was dissolved in a mixture of MeOH (5 mL) and Diglyme (5 mL) followed by addition of triphenylphosphine hydrobromide, and the resulting mixture was stirred overnight. After the reaction completed, most of the solvent was removed by vacuum evaporation, then Et_2O (20 mL)

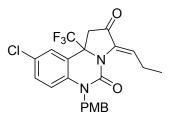
was added. The crude solid product containing small amount of triphenylphosphine hydrobromide was obtained by filtration.

³¹P NMR (121 MHz, CDCl₃) δ 24.0; HRMS (ESI) Calcd. For C₃₀H₂₈OP⁺¹[M-Br]⁺ requires 435.1872, Found: 435.1874.


S46

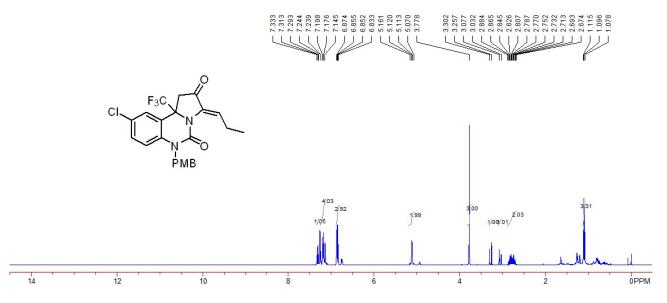
Large-scale Testing and Transformations of Product 3a and Spectroscopic Data of the Products.

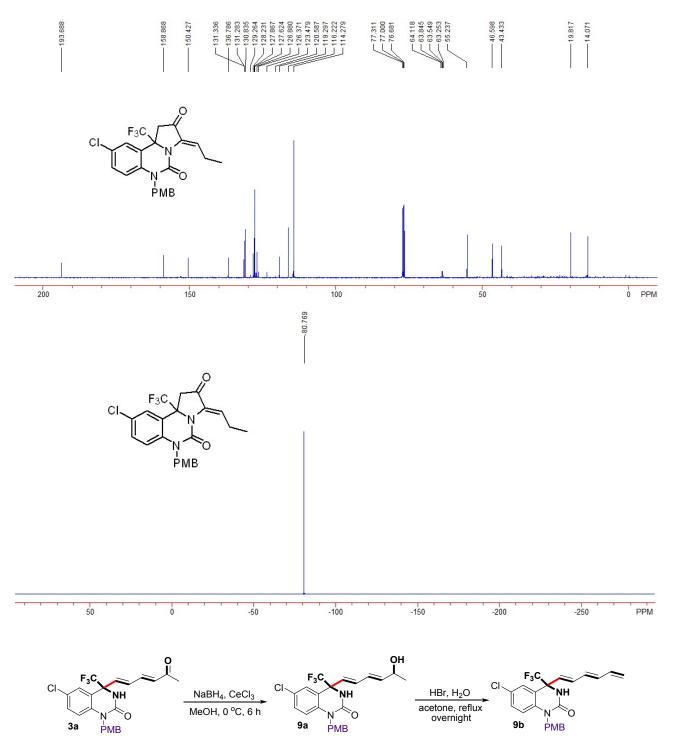

The used 4Å MS (200 mg) was added to a Schlenk tube and was heated under vacuum to remove ambient moisture and water, then filled with argon. After the Schlenk tube was returned to room temperature, cyclic trifluoromethyl ketimine **2a** (1.0 mmol) and PPh₃ (53 mg, 0.2 mmol) was added, followed by addition of toluene (3.0 mL) and then hex-3-yn-2-one **1a** (4.0 mmol) was added at room temperature. Then the resulting mixture was heated to 65 °C and continued stirring at 65 °C until the reaction complete (monitoring by TLC). Then the solvent was removed under reduced pressure and the residue was directly subjected to a flash column chromatography on silica gel to afford the desired product **3a**. Products **3a-1** and **3a-2** were separated as byproducts in a very small amount. The polarity of **3a** and **3a-1** is very similar, which led to the isolation of these two compounds become very difficult.



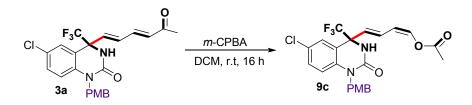
3-acetyl-9-chloro-6-(4-methoxybenzyl)-1-methyl-10b-(trifluoromethyl)-6,10bdihydropyrrolo[1,2-c]quinazolin-5(1H)-one (3a-1).

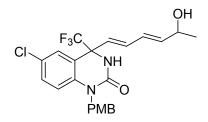
A viscous liquid, 4% yield (19 mg). ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.66 (d, *J* = 6.8 Hz, 3H, CH₃), 2.56 (s, 3H, CH₃), 3.77 (s, 3H, CH₃), 4.92 (d, *J* = 16.8 Hz, 1H, CH₂), 5.02-5.08 (m, 1H, CH), 5.22 (d, *J* = 16.8 Hz, 1H, CH₂), 6.78 (d, *J* = 8.8 Hz, 1H, ArH), 6.84 (d, *J* = 8.8 Hz, 1H, ArH), 7.14-7.19 (m, 3H, ArH, =CH), 7.25 (d, *J* = 2.0 Hz, 1H, ArH), 7.92 (d, *J* = 2.0 Hz, 1H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 19.3, 28.9, 46.4, 55.2, 62.2, 73.6 (d, *J* = 32.7 Hz), 114.1, 115.9, 119.0, 119.6, 123.9 (q, *J* = 287.8 Hz), 127.8, 128.2, 128.7, 130.0, 136.3, 139.2, 151.4, 152.6, 158.7, 194.0. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -75.81. IR (CH₂Cl₂) v 2984, 2363, 1673, 1615, 1514, 1390, 1246, 1189, 1174, 1033, 808, 718 cm⁻¹. MS (ESI) *m/z* (%): 487.0 (100) [M+Na]⁺; HRMS (ESI)


Calcd. For $C_{23}H_{21}F_3N_2ClO_3^{+1}(M+H)^+$ requires 465.1187, Found: 465.1186.



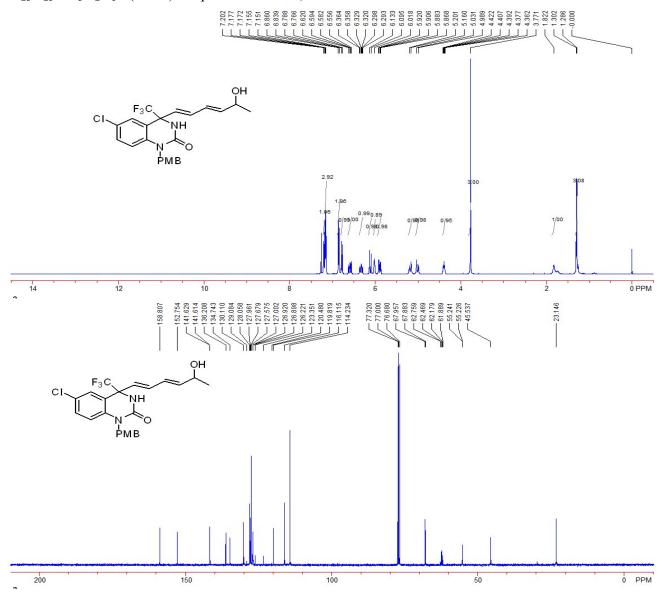
2-chloro-8-ethyl-5-(4-methoxybenzyl)-11a-(trifluoromethyl)-11,11a-dihydro-6H-pyrido[1,2c]quinazoline-6,10(5H)-dione (3a-2).

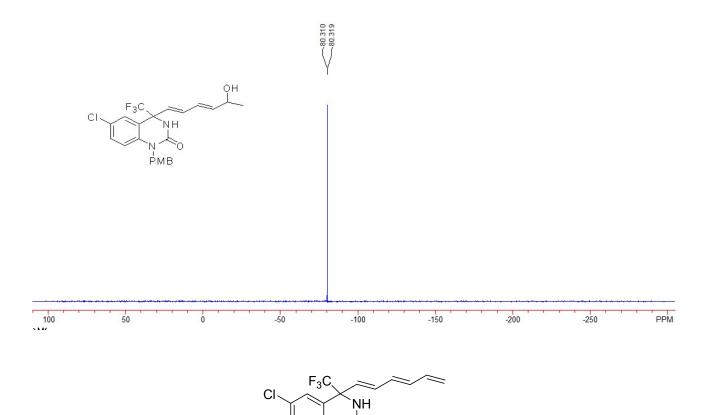

A viscous liquid, 5% yield (23 mg). ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.10 (t, *J* = 8.0 Hz, 3H, CH₃), 2.67-2.89 (m, 2H, CH₂), 3.05 (d, *J* = 18.0 Hz, 1H, CH₂), 3.28 (d, *J* = 18.0 Hz, 1H, CH₂), 3.78 (s, 3H, CH₃), 5.07-5.17 (m, 2H, CH₂), 6.83-6.87 (m, 3H, ArH), 7.14-7.24 (m, 4H, ArH), 7.92 (dd, *J* = 8.0, 8.0 Hz, 1H, ArH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 14.1, 19.8, 43.4, 46.6, 55.2, 63.7 (d, *J* = 29.6 Hz), 114.3, 116.2, 119.3, 120.6, 124.9 (q, *J* = 289.2 Hz), 126.9, 127.6, 127.9, 128.2, 129.3, 130.8, 131.28, 131.34, 136.8, 150.4, 158.9, 193.7. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -80.77. IR (CH₂Cl₂) v 2970, 2933, 2357, 2336, 1677, 1514, 1500, 1384, 1177, 1065, 998 cm⁻¹. MS (ESI) *m/z* (%): 486.9 (100) [M+Na]⁺; HRMS (ESI) Calcd. For C₂₃H₂₁F₃N₂ClO₃⁺¹(M+H)⁺ requires 465.1187, Found: 465.1182.



Under argon atmosphere, to a solution of 3a (0.2 mmol) in methanol (2.0 mL) was added CeCl₃ (0.2 mmol) at 0 °C. After 10 minutes, NaBH₄ (0.3 mmol) was added to the resulting mixture and continued to stir for another 15 minutes at 0 °C. Then the reaction mixture was allowed to rise to room temperature. After 4 hours, the solvent was removed under reduced pressure and the residue was directly subjected to a flash column chromatography on silica gel to afford the desired product **9a**.

9a (0.178 mmol) was dissolved in acetone/H₂O (4.32 mL/25 μ L) and was heated to reflux, followed by addition of HBr (10 μ L). The reaction mixture was under reflux overnight. After return to room temperature, trace amount of saturated sodium carbonate solution was added into the reaction mixture to quench the reaction. The solvent was removed under reduced pressure and the residue was directly subjected to a flash column chromatography on silica gel to afford the desired product **9b**.

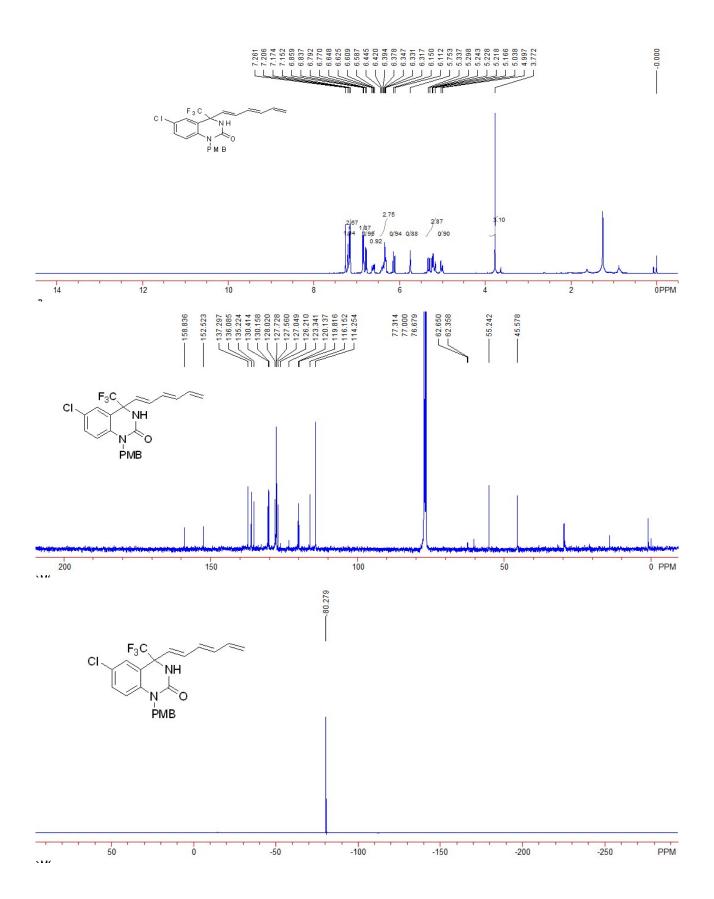

Under argon atmosphere, to a solution of **3a** (0.2 mmol) in dichloromethane (1.0 mL) was added CeCl₃ (0.2 mmol) at 0 °C. After 10 minutes, *m*-CPBA (0.26 mmol) was added to the resulting mixture and continued to stir for another 15 minutes at the 0 °C. Then the reaction mixture was allowed to rise to room temperature. After 4 hours, Me₂S was added to quench the reaction. The solvent was removed under reduced pressure and the residue was directly subjected to a flash column chromatography on silica gel to afford the desired product **9c**.



6-chloro-4-((1E,3E)-5-hydroxyhexa-1,3-dien-1-yl)-1-(4-methoxybenzyl)-4-(trifluoromethyl)-3,4-dihydroquinazolin-2(1H)-one (9a).

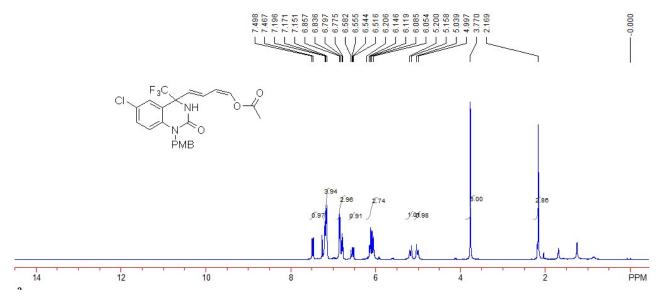
A white solid, 89% yield (83 mg). M.p.: 256-258 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.29 (d, J = 6.4 Hz, 3H, CH₃), 1.82 (br, 1H, OH), 3.77 (s, 3H, CH₃), 4.36-4.43 (m, 1H, CH), 5.01 (d, J = 16.8 Hz, 1H, CH₂), 5.18 (d, J = 16.8 Hz, 1H, CH₂), 5.89 (dd, J = 5.6, 14.8 Hz, 1H, =CH), 6.02 (s, 1H, NH), 6.11 (d, J = 15.2 Hz, 1H, =CH), 6.29-6.37 (m, 1H, =CH), 6.59 (dd, J = 10.4, 15.2 Hz, 1H, =CH), 6.78 (d, J = 8.8 Hz, 1H, ArH), 6.85 (d, J = 8.4 Hz, 2H, ArH), 7.15-7.18 (m, 3H, ArH), 7.20

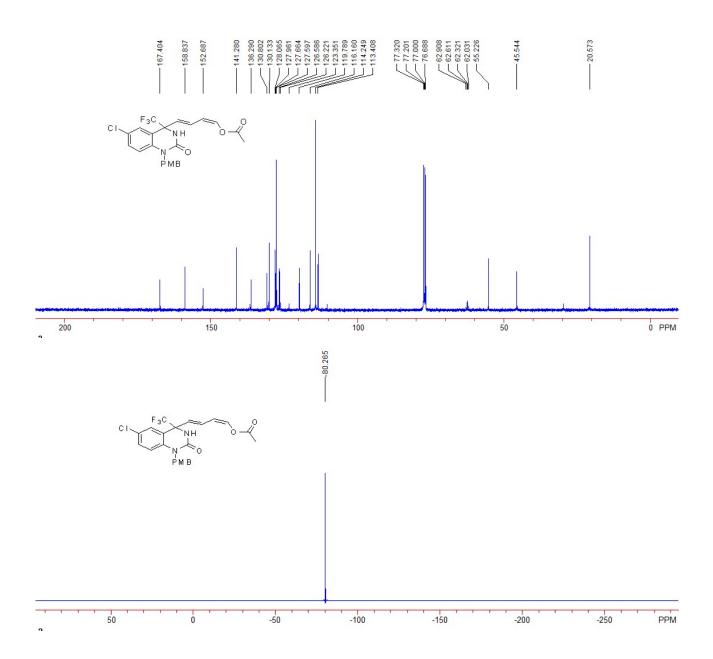
(s, 1H, Ar). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 23.1, 45.5, 55.2 (d, J = 1.4 Hz), 62.3 (q, J = 29.0 Hz), 114.2, 116.1, 119.8, 124.8 (q, J = 287.0 Hz), 126.90, 126.92, 127.0, 127.6, 127.8, 128.0, 128.1, 130.1, 134.7, 136.2, 141.6 (d, J = 1.5 Hz), 152.8, 158.8, 158.8. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -80.31 (d, J = 3.4 Hz). IR (CH₂Cl₂) v 3380, 3090, 2971, 2929, 1678, 1603, 1513, 1427, 1392, 1249, 1174, 1032, 993, 809, 742 cm⁻¹. MS (ESI) m/z (%): 467.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₃H₂₃ClF₃N₂O₃⁺¹(M+H)⁺ requires 467.1344, Found: 467.1340.

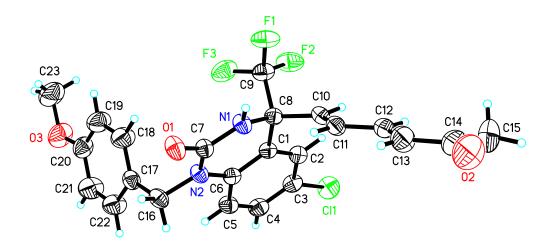




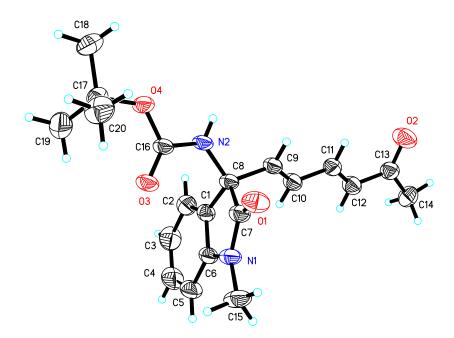
6-chloro-4-((1E,3E)-5-hydroxyhexa-1,3-dien-1-yl)-1-(4-methoxybenzyl)-4-(trifluoromethyl)-3,4-dihydroquinazolin-2(1H)-one (9b).


A white solid, 43% yield (34 mg). M.p.: 201-203 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 3.77 (s, 3H, CH₃), 5.02 (d, *J* = 16.4 Hz, 1H, CH₂), 5.16-5.34 (m, 3H, CH₂, =CH), 5.75 (s, 1H, NH), 6.13 (d, *J* = 15.2 Hz, 1H, =CH), 6.32-6.45 (m, 3H, =CH), 6.62 (dd, *J* = 8.8, 15.6 Hz, 1H, =CH), 6.78 (d, *J* = 8.8 Hz, 1H, ArH), 6.85 (d, *J* = 8.8 Hz, 2H, ArH), 7.16 (d, *J* = 8.8 Hz, 3H, ArH), 7.21 (s, 1H, Ar). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 45.6, 55.2, 62.5 (d, *J* = 1.4 Hz), 62.3 (q, *J* = 29.2 Hz), 114.3, 116.2, 119.8, 120.1, 124.8 (q, *J* = 286.9 Hz), 127.0, 127.6, 127.7, 128.0, 130.2, 130.4, 135.2, 136.1, 137.3, 152.5, 158.8. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -80.28. IR (CH₂Cl₂) v 3032, 2925, 2863, 1681, 1513, 1502, 1427, 1390, 1174, 1007, 809 cm⁻¹. MS (ESI) *m/z* (%): 471.1 (100) [M+Na]⁺; HRMS (ESI) Calcd. For C₂₃H₂₁ClF₃N₂O₃⁺¹(M+H)⁺ requires 449.1238, Found: 449.1235.




(1Z,3E)-4-(6-chloro-1-(4-methoxybenzyl)-2-oxo-4-(trifluoromethyl)-1,2,3,4tetrahydroquinazolin-4-yl)buta-1,3-dien-1-yl acetate (9c).

A white solid, 53% yield (47 mg). M.p.: 157-159 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.17 (s, 3H, CH₃), 3.77 (s, 3H, CH₃), 5.02 (d, *J* = 16.8 Hz, 1H, CH₂), 5.18 (d, *J* = 16.8 Hz, 1H, CH₂), 6.05-6.14 (m, 3H, =CH, ArH), 6.81 (dd, *J* = 11.2, 15.2 Hz, 1H, =CH), 6.77-6.86 (m, 3H, =CH, ArH), 7.15-7.20 (m, 4H, =CH, NH, ArH), 7.48 (d, *J* = 12.4 Hz, 1H, =CH). ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 20.6, 45.5, 55.2, 62.5 (d, *J* = 29.0 Hz), 114.2, 116.2, 119.8, 124.8 (q, *J* = 287.0 Hz), 126.6, 127.6, 127.7, 128.0, 128.1, 130.1, 130.8, 136.3, 141.3, 152.7, 152.8, 167.4. ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃) δ -80.27. IR (CH₂Cl₂) v 2958, 2923, 2358, 2332, 1763, 1681, 1427, 1210, 1109, 1038, 895, 741 cm⁻¹. MS (ESI) *m/z* (%): 481.1 (100) [M+H]⁺; HRMS (ESI) Calcd. For C₂₃H₂₁F₃N₂ClO₄⁺¹(M+H)⁺ requires 481.1142, Found: 481.1097.



X-ray Crystal Data of 3a and 5a.

The crystal data of **3a** have been deposited in CCDC with number 1005236. Empirical Formula: $C_{23}H_{20}ClF_3N_2O_3$; Formula Weight: 464.86; Crystal Color, Habit: colorless; Crystal Dimensions: 0.211 x 0.175 x 0.112 mm³; Crystal System: Orthorhombic; Lattice Parameters: a = 18.1727(15) Å, alpha = 90 deg. b = 10.5743(9) Å, beta = 90 deg. c = 23.8130(19) Å, gamma = 90 deg.; V = 4576.0(7) Å³; Space group: Pbca; Z = 8; $D_{calc} = 1.350$ g/cm³; $F_{000} = 1920$; Diffractometer: Rigaku AFC7R; Residuals: R; R_w: 0.0596, 0.1255.

The crystal data of **5a** have been deposited in CCDC with number 1011176. Empirical Formula: $C_{20}H_{24}N_2O_4$; Formula Weight: 356.41; Crystal Color, Habit: colorless; Crystal Dimensions: 0.211 x 0.156 x 0.123 mm³; Crystal System: Monoclinic; Lattice Parameters: a = 18.416(5) Å, alpha = 90 deg. b = 11.310(3) Å, beta = 93.907(7) deg. c = 9.759(3) Å, gamma = 90 deg.; V = 2027.9(10) Å³; Space group: P 21/c; Z = 4; D_{calc} = 1.167 g/cm³; F₀₀₀ = 760; Diffractometer: Rigaku AFC7R; Residuals: R; R_w: 0.0457, 0.1271.

References:

- (a) O. Lifchits, M. Mahlau, C. M. Reisinger, A. Lee, C. Farès, I. Polyak, G. Gopakumar, W. Thiel and B. List, *J. Am. Chem. Soc.*, 2013, **135**, 6677; (b) D.-Y. Li, Y. Wei and M. Shi, *Eur. J. Org. Chem.*, 2015, **2015**, 4108.
- (a) S. Takizawa, F. A. Arteaga, Y. Yoshida, M. Suzuki and H. Sasai, *Org. Lett.*, 2013, 15, 4142; (b) K. Kato, H. Nakamura and K. Nakanishi, *Appl. Surf. Sci.*, 2014, 293, 312; (c) S. Nakamura, S. Takahashi, D. Nakane and H. Masuda, *Org. Lett.*, 2015, 17, 106; (d) X. Ren and H. Du, *J. Am. Chem. Soc.*, 2016, 138, 810.
- 3. N. A. Magnus, P. N. Confalone, L. Storace, M. Patel, C. C. Wood, W. P. Davis and R. L. Parsons, J. Org. Chem., 2003, 68, 754.
- G. E. Magoulas, S. E. Bariamis, C. M. Athanassopoulos, A. Haskopoulos, P. G. Dedes, M. G. Krokidis, N. K. Karamanos, D. Kletsas, D. Papaioannou and G. Maroulis, *Eur. J. Med. Chem.*, 2011, 46, 721.