Supporting Information

Evolution of Two Routes for Asymmetric Total Synthesis of Tetrahydroprotoberberine Alkaloids

Jingxun Yu, Zhihong Zhang, Shiqiang Zhou, Wei Zhang, Rongbiao Tong*
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Email: rtong@ust.hk

Table of Contents

1.General Information	S-2
2. Asymmetric synthesis to Tetrahydroprotoberberines with Redox-A ${ }^{3}$ Reaction	S-3
3. Asymmetric synthesis to Tetrahydroprotoberberines via Noyori Transfer Hydrogenation	S-5
- M1: Preparation and Noyori Reduction of Dihydroberberines	S-5
- M2: Noyori Reduction of Quaternary Salts	S-5
4. Copies of NMR Spectra and HPLC Spectra	S-9

1. General Information

Reactions were carried out in oven or flame-dried glassware under a nitrogen atmosphere, unless otherwise noted. Tetrahydrofuran (THF) was freshly distilled before use from sodium using benzophenone as indicator. Dichloromethane was freshly distilled before use from calcium hydride $\left(\mathrm{CaH}_{2}\right)$. All other solvents were dried over $3 \AA$ or $4 \AA$ molecular sieves. Solvents used in workup, extraction and column chromatography were used as received from commercial suppliers without prior purification. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC, 0.25 mm) on Merck pre-coated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size $0.040-0.062 \mathrm{~mm}$) supplied by Grace. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). Chemical shifts are reported in parts per million (ppm) as values relative to the internal chloroform (7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.0 ppm for ${ }^{13} \mathrm{C}$). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Optical rotations were measured on a JASCO Perkin-Elmer model P-2000 polarimeter. Enantiomeric ratios were determined by chiral HPLC with Agilent 1290 Infinity UPLC.

2. Asymmetric Synthesis of Tetrahydroprotoberberines with Redox- $\mathbf{A}^{\mathbf{3}}$ Reaction

General Procedure for Hydroboration Oxidation Reaction with 5-v:

To a round-bottom flask were added $\mathbf{5 v}(45 \mathrm{mg}, 0.13 \mathrm{mmol})$ and then $9-\mathrm{BBN}(0.5 \mathrm{~mol} / \mathrm{L}, 2.6 \mathrm{~mL}, 13 \mathrm{mmol})$ under nitrogen atmosphere, and the mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 12 h . The mixture was then cooled to $0^{\circ} \mathrm{C}$ followed by addition of $3 \mathrm{~N} \mathrm{NaOH}(0.4 \mathrm{ml})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.4 \mathrm{~mL})$ sequentially, and the resulting mixture was stirred for 2 h at ambient temperature. The biphasic mixture was separated, and the aqueous layer was extracted with EA ($3 \times 4 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was subjected to Swern oxidation without further purification.

General Procedure for Swern Oxidation:

To a solution of dimethyl sulfoxide ($58 \mu \mathrm{~L}, 1.6 \mathrm{mmol}$) in dry dichloromethane (3 mL) under a nitrogen atmosphere was added dropwise trifluoroacetic anhydride ($57 \mu \mathrm{~L}, 0.81 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ for 30 min . Then a solution of $\mathbf{5 a a}(30 \mathrm{mg}, 0.08 \mathrm{mmol})$ in dry dichloromethane (1 mL) was added dropwise. After stirring for 1 h , triethylamine ($342 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) was added slowly. The reaction mixture was warmed to room temperature after 10 mins , and quenched with saturated aqueous sodium bicarbonate and extracted with $\mathrm{DCM}(3 \times 5 \mathrm{~mL})$, the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (Hexane/EA: 4/1) to give $\mathbf{6 a}(12 \mathrm{mg}, 0.03 \mathrm{mmol}, 41 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.52(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.58$ $(\mathrm{d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.89(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 2 \mathrm{H})$, $3.54(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.61(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 202.05,151.40,146.63$, $146.40,144.98,129.23,126.91,125.23,123.26,111.18,108.56,106.06,100.94,60.65,60.21,55.96,55.80,53.72,51.20,29.66$. $[\alpha]_{\mathrm{D}}^{25}=+165\left(c=1, \mathrm{CHCl}_{3}\right)$; IR (film, KBr) $v_{\max }: 2920,2852,1659,1577,1266,878,778,669 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 368.1498$; found 368.1509.

$\mathbf{6 b}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 4.03$ $(\mathrm{d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 6 \mathrm{H}), 3.84(\mathrm{dd}, J=6.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ $(\mathrm{m}, 2 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.11,148.64,148.04,146.68,146.44,129.22,127.36,126.88$, $121.74,111.88,108.82,108.59,106.08,100.97,60.93,57.76,56.18,56.00,55.97,55.94,51.16,29.62 .[\alpha]_{\mathrm{D}}^{25}=+177\left(c=1, \mathrm{CHCl}_{3}\right)$; IR (film, KBr) $v_{\max }$: 2922, 2854, 1658, 1577, 1516, 1200, 1044, 878, 752, $603 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5}[\mathrm{M}+$ $\mathrm{H}]^{+} 368.1498$; found 368.1504 .

6c ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.51(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.88(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=15.4,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.22-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.69,146.68,146.46$,
$146.30,143.43,129.16,126.78,124.23,122.78,117.13,108.57,107.25,106.04,101.39,100.97,60.89,56.10,52.67,51.11,29.64$. $[\alpha]_{\mathrm{D}}^{25}=+184\left(c=1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\right.$ film, KBr) $v_{\max }: 2956,2918,2852,1715,1645,1475,1036,871,799,615 \mathrm{~cm}^{-1} ; \mathrm{HRMS}_{\left(\mathrm{CI}^{+}\right)}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{5}[\mathrm{M}]^{+} 351.1107$; found 351.1105.

6d ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.50(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}), 5.99-5.86(\mathrm{~m}, 4 \mathrm{H}), 3.97(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dt}, J=14.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{ddd}, J=10.0,6.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.54(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.78,147.23,146.69,146.57,146.46,129.21,128.42,126.78,122.93,109.31,108.59,106.03$, $106.01,101.02,100.97,60.77,58.06,56.28,51.06,29.59 .[\alpha]_{\mathrm{D}}^{25}=+199\left(c=1, \mathrm{CHCl}_{3}\right)$; IR (film, KBr) $v_{\max }: 2957,2919,2852,1716$, 1629, 1577, 1037, 872, 753, $616 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / z)$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{5}[\mathrm{M}]^{+} 351.1107$; found 351.1119.

6e ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.48(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=17.1$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H}), 3.83(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=15.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.62(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.68,147.91,147.86,146.28,143.44$, $128.06,125.62,124.20,122.74,117.20,111.43,108.99,107.24,101.38,60.38,56.11,55.90,55.83,52.71,51.25,29.13 .[\alpha]_{\mathrm{D}}^{25}=$ $+185\left(c=1, \mathrm{CHCl}_{3}\right)$; IR (film, KBr) $v_{\max }$: 2920, 2852, 1658, 1577, 1463, 1266, 877, 780, $611 \mathrm{~cm}^{-1} ; \mathrm{HRMS}_{\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z}) \text { calcd. for }}$ $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5}[\mathrm{M}]^{+} 367.1420$; found 367.1433 .

6f ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.47(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{dd}, J=10.6$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.07$ (m, 2H), $2.74-2.57(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.76,147.91,147.85,147.18,146.53,128.49,128.11,125.63$, $122.87,111.49,109.24,109.01,106.02,100.99,60.35,58.11,56.09,55.83,51.18,43.36,29.06 .[\alpha]_{\mathrm{D}}^{25}=+172\left(c=1, \mathrm{CHCl}_{3}\right)$; IR (film, KBr) $v_{\max }$: 2919, 2851, 1658, 1578, 1463, 1265, 1042, 878, 781, 665, $615 \mathrm{~cm}^{-1}$; HRMS (CI ${ }^{+}$) (m / z) calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5}[\mathrm{M}$ $+\mathrm{H}]^{+} 368.1498$; found 368.1485 .

General Procedure for Decarbonylation Reaction of 6a:

To a solution of $\mathbf{6 a}(12 \mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added Wilkinson's catalyst $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(27.8 \mathrm{mg}, 0.03$ mmol), and the mixture was heated to $110^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction mixture was then cooled to room temperature and concentrated to afford a residue which was subjected to flash chromatography on silica gel (Hexane/EA: 1/8~1/4) to give canadine ($7 \mathbf{7}, 3.0 \mathrm{mg}, 0.009 \mathrm{mmol}, 29.5 \%$) as a colorless oil. 97% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ \mathrm{i}$ -
$\operatorname{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=11.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=6.7 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=+30\left(c=0.1, \mathrm{CHCl}_{3}\right)$

Isocanadine ($\mathbf{7 b}, 1.1 \mathrm{mg}, 18.3 \%$) as a pale-yellow oil. 99% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=80 / 20$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=8.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=9.7 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=+36\left(c=0.1, \mathrm{CHCl}_{3}\right)$

Stylopine (7c, $1.0 \mathrm{mg}, 18.5 \%$) as a pale-yellow oil. 93% ee (HPLC conditions: Chiralcel OD-H column, hexane i - $\operatorname{PrOH}=80 / 20$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=7.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=9.7 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=+68\left(c=0.1, \mathrm{CHCl}_{3}\right)$

Tetrahydropseudocoptisine ($\mathbf{7 d}, 1.6 \mathrm{mg}, 20.0 \%$) as a pale-yellow oil. 93% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\operatorname{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=7.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=11.5 \mathrm{~min}\right) ; \quad[\alpha]_{\mathrm{D}}^{25}=+49\left(c=0.1, \mathrm{CHCl}_{3}\right)$

Sinactine (7e, $1.5 \mathrm{mg}, 12.0 \%$) as a pale-yellow oil. 88% ee (HPLC conditions: Chiralcel OD-H column, hexane $i-\operatorname{PrOH}=80 / 20$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=19.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=14.0 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=+69\left(c=0.1, \mathrm{CHCl}_{3}\right)$

Isosinactine ($\mathbf{7 f}, 1.2 \mathrm{mg}, 21.8 \%$) as a pale-yellow oil. 88% ee (HPLC conditions: Chiralcel $\mathrm{OD}-\mathrm{H}$ column, hexane $/ i-\mathrm{PrOH}=$ $80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=8.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=19.7 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=+31\left(c=0.1, \mathrm{CHCl}_{3}\right)$

3. Asymmetric synthesis of tetrahydroprotoberberines via Noyori Reduction

M1: Preparation and Noyori Reduction of Dihydroberberines:

To a suspension of $\mathrm{LiAlH}_{4}(142 \mathrm{mg}, 4 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{AlCl}_{3}(133 \mathrm{mg}, 1 \mathrm{mmol})$. The reaction mixture was warmed to room temperature with vigorous stirring for 0.5 h .8 -Oxyprotoberberine ${ }^{1}(9,27 \mathrm{mg}, 0.077 \mathrm{mmol})$ was added to ethereal AlH_{3} mixture and the reaction mixture was heated to reflux for 2 h . The reaction was quenched by slow, careful sequential addition of $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.1 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$. The aluminates were removed by filtration and washed with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined filtrates were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give the crude product lambertine $(\mathbf{1 0}, 21 \mathrm{mg}$, 81%) as yellow solid, which gradually turned brown in air. The crude product was used for Noyori reduction without further purification.

To a stirred solution of $\mathbf{1 0}(21 \mathrm{mg}, 0.063 \mathrm{mmol})$ in dichloromethane (2 mL) was added formic acid ($29 \mathrm{mg}, 0.63 \mathrm{mmol}$), triethylamine ($25 \mathrm{mg}, 0.252 \mathrm{mmol}$) and $\operatorname{RuCl}[(\mathrm{S}, \mathrm{S})-\mathrm{TsDPEN}]($ mesitylene) $(0.006 \mathrm{mmol}, 3.7 \mathrm{mg})$. The reaction mixture was stirred at room temperature for 40 h . Then the reaction was quenched by addition of NaHCO_{3} and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using eluents ($\mathrm{EtOAc} /$ hexane $=1 / 1$) to afford the product canadine ${ }^{2}(7 \mathbf{a}$, $6.0 \mathrm{mg}, 74 \%$) as a pale yellow solid.

M2: Noyori Reduction of Quaternary Salts:

[^0]

Quaternary salts were prepared according our previous report ${ }^{1}$. To a stirred solution of $\mathbf{1 1}(8 \mathrm{mg}, 0.025 \mathrm{mmol})$ in dichloromethane $(1 \mathrm{~mL})$ was added formic acid ($11.5 \mathrm{mg}, 0.25 \mathrm{mmol}$), triethylamine ($10 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathrm{RuCl}[(\mathrm{S}, \mathrm{S})-\mathrm{TsDPEN}]$ (mesitylene) (1.5 $\mathrm{mg}, 0.002 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 40 h . Then the reaction was quenched by addition of NaHCO_{3} and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The combined organic fractions were washed brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using eluents (EtOAc/hexane $=1 / 1$) to afford the product (-)-canadine ($\mathbf{7 a}, 7.4 \mathrm{mg}, 88 \%$) as a pale-yellow solid. 77% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=6.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=11.0 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=-52\left(c=0.17, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 4.23$ $(\mathrm{d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.53(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.07(\mathrm{~m}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J=15.411 .7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 150.3,146.1,145.9,145.0,130.8,128.6,127.8,127.6,123.9,110.9,108.4,105.5,100.7,60.1$, 59.6, 55.9, 53.9, 51.4, 36.4, 29.6.

Isocanadine ${ }^{3}$ ($\mathbf{7 b}, 5.1 \mathrm{mg}, 58 \%$ yield over 2 steps) as a pale-yellow solid. 99% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=9.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=8.9 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=-72\left(c=0.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=15.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.78(\mathrm{~m}, 1 \mathrm{H})$, $2.67-2.57(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 147.6,147.4,146.1,145.9,130.9,127.7,126.2,111.4,109.0,108.4,105.5$, 100.7, 59.9, 58.2, 56.0, 55.9, 51.2, 36.5, 29.5 .

Stylopine ${ }^{4}$ ($7 \mathrm{c}, 5.2 \mathrm{mg}, 70 \%$ yield over 2 steps) as a pale-yellow solid. 86% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=9.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=7.5 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=-100\left(c=0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{dd}, J=15.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 3 \mathrm{H}), 2.80(\mathrm{dd}$, $J=15.8,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 146.2,146.0,145.0,143.3,130.7,128.6,127.8$, $121.0,116.9,108.4,106.8,105.5,101.0,100.8,59.8,52.9,51.2,36.5,29.6$.

Tetrahydropseudocoptisine ${ }^{5}$ ($7 \mathrm{~d}, 5.5 \mathrm{mg}, 65 \%$ yield over 2 steps) as a pale-yellow solid. $86 \% e e$ (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\operatorname{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=11.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=7.1 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=-85(c=0.19$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 3.90$

[^1](d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.06(\mathrm{~m}, 3 \mathrm{H}), 2.78(\mathrm{dd}, J=15.5,11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 146.1,145.9,145.9,145.8,130.7,127.7,127.2,108.4,108.4,106.0,105.4$, $100.8,100.6,100.0,59.8,58.5,51.2,36.9,29.4$.

Sinactine ${ }^{6}$ ($\mathbf{7 e}, 5.7 \mathrm{mg}, 70 \%$ yield over 2 steps) as a pale-yellow solid. 88% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=14.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=19.2 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=-136\left(c=0.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}$, $1 \mathrm{H}), 4.10(\mathrm{t}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=15.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.09(\mathrm{~m}, 2 \mathrm{H})$, $2.81-2.62(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 147.5,147.4,145.0,143.3,129.6,128.6,126.7,121.0,116.9,111.3$, $108.6,106.7,101.0,59.4,56.1,55.8,53.0,51.3,36.4,29.1$.

Isosinactine ${ }^{7}$ ($\mathbf{7 f}, 5.7 \mathrm{mg}, 58 \%$ yield over 2 steps) as a pale-yellow solid. 99% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=19.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=8.9 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=-30\left(c=0.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=16.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 2 \mathrm{H})$, 2.87-2.79 (m, 1H), 2.69-2.59 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 147.6,147.5,146.2,145.9,129.5,127.2,126.6$, $111.4,108.5,108.4,106.0,100.7,59.5,58.5,56.1,55.9,51.2,36.7,29.70,28.9$.

Tetrahydropalmatine ${ }^{8}(7 \mathrm{~g}, 5.5 \mathrm{mg}, 80 \%$ yield over 2 steps) as a pale-yellow solid. 99% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ \mathrm{EtOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=12.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=8.0 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=-48\left(c=0.2, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=15.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.09(\mathrm{~m}, 3 \mathrm{H}), 2.82(\mathrm{dd}, J=15.3,11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.85-2.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 150.2,147.5,147.4,145.0,129.7,128.7,127.6,126.8,123.8,111.2$, $110.9,108.6,60.1,59.3,56.0,55.8,55.7,53.9,51.5,36.2,29.0$.

Xylopine ${ }^{9}$ ($\mathbf{7 h}, 6.0 \mathrm{mg}, 72 \%$ yield over 2 steps) as a pale-yellow solid. $90 \% e e$ (HPLC conditions: Chiralcel AD-H column, hexane $/ \mathrm{EtOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=12.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=8.0 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=-40\left(c=0.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=11.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=15.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.10$

[^2]$(\mathrm{m}, 2 \mathrm{H}), 2.85(\mathrm{dd}, J=15.6,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 147.6,147.5,147.4,147.4$, $129.8,126.7,126.3,126.3,111.3,109.0,108.5,59.6,58.2,56.0,56.0,55.9,55.8,51.3,36.4,29.0$.

$\begin{array}{lllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & \mathrm{ppm}\end{array}$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

File Information	
LC-File	1DC-0201.D
File Path	C: CCHEM32\1\DATA\
Date	15-Aug-17, 13:25:44
Sample	YJX8834-1-1a
Sample Info	
Barcode	
Operator	LLX
Method	AD-20-30.M
Analysis Time	29.993 min
Sampling Rate	0.0067 min (0.402 sec), 4500 datapoints

\#	Time	Area	Height	Width		Area\%		Symmetry
1	6.619	36325.3	2210	0.274	89.985	0.418		
2	10.74	4448.1	727.5	0.1706	11.015	0.468		

Noyori

7a: (-)-canadine (77 ee\%)

File Information

LC-File	1DC-0401.D
File Path	C:CHEM32,1\DATAWX_YU
Date	26-Aug-17, 15:02:53
Sample	YJXX849-1-1sa
Sample Info	
Barcode	
Operator	YJX
Method	0D-20-30.M
Analysis Time	29.993 min
Sampling Rate	$0.0067 \mathrm{~min}(0.402 \mathrm{sec}), 4500$ datapoints

\#	Time	Area	Height	Width	Area\%	
1	9.731	81.6	3.7	0.3301	100.000	0.738

Noyori

7b: (-)-isocanadine (99 ee\%)

| File Information |
| ---: | :--- |
| LC-File 1DC-0701.D
 File Path C:CHEM 32\11.DATA \backslash
 Date $17-A u g-17,18: 15: 43$
 Sample $Z 138-2$
 Sample Info
 Barcode
 Operator $Z \mathrm{H}$
 Method $0 \mathrm{D}-20-30 \mathrm{M}$
 Analysis Time 29.993 min
 Sampling Rate $0.0067 \mathrm{~min}[0.402$ sec], 4500 datapoints |

\square

File Information

LC-File	1DC-0701.D
File Path	C:\CHEM32\1\DATA
Date	17-Aug-17, 18:15:43
Sample	Z $7138-2$
Sample Info	
Barcode	
Operator	Z Z
Method	0D-20-30.M
Analysis Time	29.993 min
Sampling Rate	0.0067 min (0.402 sec), 4500 datapoints

\#	Time	Area	Height	width	Area\%	Symmetry
1	6.633	281.7	19.2	0.2451	6.834	0.955
2	10.528	3840.6	171.4	0.3734	93.166	0.726

File Information
LC-File 1DC-1001.D
File Path $\mathrm{C}: \$ CHEM $3211 \backslash \mathrm{DATA}$
Date 17-Aug-17, 19:48:40 Sample ZZ138-2
Sample Info
Barcode
Operator ZZH
Method AD-20-30.M

Analysis Time	29.993 min

Sampling Rate	$0.0067 \mathrm{~min}(0.402 \mathrm{sec}), 4500$ datapoints

7d: (-)-tetrahydropseudocoptisine (87 ee\%)

File Information	
LC-File	1DB-0501.D
File Path	C:\CHEM32\1\DATAWX_YU\}
Date	21-Aug-17, 15:59:26
Sample	YJX840-1-1\%
Sample Info	
Barcode	
Operator	YJX
Method	00-20-30.M
Analysis Time	29.993 min
Sampling Rate	0.0067 min (0.402 sec], 4500 datapoints

\#	Time	Area	Height	Width	Area\%	Symmetry
1	13.977	10084.3	270.7	0.6209	51.838	0.645
2	19.209	9369.3	104.1	1.4993	48.162	0.245
 rac-sinactine						

File Information	
LC-File	1CF-0601.D
File Path	C:CHEM32\1\DATAWX_YU
Date	29-Aug-17, 01:24:36
Sample	YJX881-1-1a
Sample Info	
Barcode	
Operator	YJX
Method	A.D-20-40_ $(\mathrm{A} .1+\mathrm{B} 2)$. M
Analysis Time	39.993 min
Sampling Rate	0.0067 min [0.402 sec], 6000 datapoints

rac-tetrahydropalmatine
 4

File Information

File Information	
LC.File	1CD-0201.D
File Path	C:CHEM32\1\DATAWX_YU
Date	28-Aug-17, 22:41:41
Sample	YJX881-1/1r
Sample Info	
Barcode	
Operator	YJX
Method	AD-20-40_[A, $1+\mathrm{B} 2] . \mathrm{M}$
Analysis Time	39.993 min
Sampling Rate	0.0067 min (0.402 sec), 6000 datapoints

(-)-tetrahydropalmatine (99 ee\%)

File Information	
LC-File	SNAPSHOT.D
File Path	C \CHEM32\1\DATA
Date	29-Aug-17, 01:24:36
Sample	YJX882-1-1r
Sample Info	
Barcode	
Operator	YJX
Method	AD-20-40_(A1+B2).M
Analysis Time	22.887 min
Sampling Rate	0.0067 min (0.402 sec), 3434 datapoints

$\boldsymbol{\#}$	Time	Area	Height	Width	Area\%	
1	9.071	59972	2357.3	0.3533	48.926	Symetry
2	18.346	62595.2	2255.2	0.4626	51.073	0.508

rac-xylopine OMe

File Information	
LC-File	1CF-0602.D
File Path	C:\CHEM32\1\DATAWX_YU\
Date	29-Aug-17, 02:34:36
Sample	YJJ $\times 882 \cdot 1-1 \mathrm{a}$
Sample Info	
Barcode	
Operator	YJXX
Method	AD-20-40_(A1+B2].M
Analysis Time	39.993 min
Sampling Rate	0.0067 min (0.402 sec), 6000 datapoints

\#	Time	Area	Height	Width	Area\%	
1	9.364	2950.3	228.9	0.2148	4.863	0.505
2	18.746	57719.6	2200.8	0.4371	95.137	0.531

7h: (-)-xylopine (90 ee\%)

[^0]: ${ }^{1}$ Zhou. S., Tong, R. Chem. Eur. J. 2016, 22, 7084-7089.
 ${ }^{2}$ Mastranzo, V. M., Romero, J. L. O., Yuste, F., Ortiz, B., Sánchez-Obregón, R. \& Ruano, J. L. G. Tetrahedron, 2012, 68, 1266-1271.

[^1]: ${ }^{3}$ Orito, K., Satoh, Y., Nishizawa, H., Harada, R., Tokuda, M. Org. Lett. 2000, 2, 2535-2537.
 ${ }^{4}$ Kim, J. H., Ryu, Y. B., Lee, W. S., Kim, Y. H. Bioorg. Med. Chem. 2014, 22, 6047-6052.
 ${ }^{5}$ Gatland, A. E., Pilgrim, B. S., Procopiou, P. A., Donohoe, T. J. Angew. Chem. Int. Ed. 2014, 126, 14783-14786.

[^2]: ${ }^{6}$ Seger, C., Sturm, S., Strasser, E. M., Ellmerer, E., Stuppner, H. Magn. Reson. Chem. 2004, 42, 882-886.
 7 Orito, K., Satoh, Y., Nishizawa, H., Harada, R. \& Tokuda, M. Org. lett. 2000, 2, 2535-2537.
 ${ }^{8}$ Boudou, M., Enders, D. J. Org. Chem. 2005, 70, 9486-9494.
 9 Mastranzo, V. M., Yuste, F., Ortiz, B., Sánchez-Obregón, R., Toscano, R. A., García Ruano, J. L. J. Org. Chem. 2011, 76, 5036-5041.

