Supporting Information

Evolution of Two Routes for Asymmetric Total Synthesis of

Tetrahydroprotoberberine Alkaloids

Jingxun Yu, Zhihong Zhang, Shiqiang Zhou, Wei Zhang, Rongbiao Tong*

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Email: rtong@ust.hk

Table of Contents

1.General Information	S-2
2. Asymmetric synthesis to Tetrahydroprotoberberines with Redox-A ³ Reaction	S-3
3. Asymmetric synthesis to Tetrahydroprotoberberines via Noyori Transfer Hydrogenation	S-5
• M1: Preparation and Noyori Reduction of Dihydroberberines	S-5
• M2: Noyori Reduction of Quaternary Salts	S-5
4. Copies of NMR Spectra and HPLC Spectra	S-9

1. General Information

Reactions were carried out in oven or flame-dried glassware under a nitrogen atmosphere, unless otherwise noted. Tetrahydrofuran (THF) was freshly distilled before use from sodium using benzophenone as indicator. Dichloromethane was freshly distilled before use from calcium hydride (CaH₂). All other solvents were dried over 3Å or 4Å molecular sieves. Solvents used in workup, extraction and column chromatography were used as received from commercial suppliers without prior purification. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC, 0.25 mm) on Merck pre-coated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size 0.040 – 0.062 mm) supplied by Grace. ¹H and ¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C). Chemical shifts are reported in parts per million (ppm) as values relative to the internal chloroform (7.26 ppm for ¹H and 77.0 ppm for ¹³C). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Optical rotations were measured on a JASCO Perkin-Elmer model P-2000 polarimeter. Enantiomeric ratios were determined by chiral HPLC with Agilent 1290 Infinity UPLC.

2. Asymmetric Synthesis of Tetrahydroprotoberberines with Redox-A³ Reaction

General Procedure for Hydroboration Oxidation Reaction with 5-v:

To a round-bottom flask were added **5v** (45 mg, 0.13 mmol) and then 9-BBN (0.5 mol/L, 2.6 mL, 13 mmol) under nitrogen atmosphere, and the mixture was heated to 60 °C and stirred for 12 h. The mixture was then cooled to 0 °C followed by addition of 3 N NaOH (0.4 ml) and 30% H_2O_2 (0.4 mL) sequentially, and the resulting mixture was stirred for 2h at ambient temperature. The biphasic mixture was separated, and the aqueous layer was extracted with EA (3 x 4 mL). The combined organic layers were washed with saturated aqueous Na₂SO₃ solution and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was subjected to Swern oxidation without further purification.

General Procedure for Swern Oxidation:

To a solution of dimethyl sulfoxide (58 µL, 1.6 mmol) in dry dichloromethane (3 mL) under a nitrogen atmosphere was added dropwise trifluoroacetic anhydride (57 µL, 0.81 mmol) at -78°C for 30 min. Then a solution of **5aa** (30 mg, 0.08 mmol) in dry dichloromethane (1 mL) was added dropwise. After stirring for 1 h, triethylamine (342 µL, 2.5 mmol) was added slowly. The reaction mixture was warmed to room temperature after 10 mins, and quenched with saturated aqueous sodium bicarbonate and extracted with DCM (3 x 5 mL), the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (Hexane/EA: 4/1) to give **6a** (12 mg, 0.03 mmol, 41%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.52 (d, *J* = 3.3 Hz, 1H), 6.97 (d, *J* = 8.5 Hz, 1H), 6.89–6.82 (m, 1H), 6.69 (s, 1H), 6.58 (d, *J* = 2.7 Hz, 1H), 5.97–5.89 (m, 2H), 4.25 (d, *J* = 15.9 Hz, 1H), 3.88 (s, 1H), 3.86 (dd, *J* = 3.0, 1.2 Hz, 6H), 3.85–3.81 (m, 2H), 3.54 (d, *J* = 16.1 Hz, 1H), 3.19 (d, *J* = 9.6 Hz, 1H), 2.74–2.61 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 202.05, 151.40, 146.63, 146.40, 144.98, 129.23, 126.91, 125.23, 123.26, 111.18, 108.56, 106.06, 100.94, 60.65, 60.21, 55.96, 55.80, 53.72, 51.20, 29.66. [α]_D²⁵ = +165 (*c* = 1, CHCl₃); **IR** (film, KBr) *v_{max}*: 2920, 2852, 1659, 1577, 1266, 878, 778, 669 cm⁻¹; HRMS (Cl⁺) (*m/z*) calcd. for C₂₁H₂₁NO₅ [M + H]⁺ 368.1498; found 368.1509.

6b ¹H NMR (400 MHz, CDCl₃) δ 9.56 (d, *J* = 3.7 Hz, 1H), 6.73 (d, *J* = 14.3 Hz, 2H), 6.62 (d, *J* = 12.6 Hz, 2H), 5.94 (s, 2H), 4.03 (d, *J* = 14.6 Hz, 1H), 3.95 – 3.91 (m, 1H), 3.89 (d, *J* = 1.9 Hz, 6H), 3.84 (dd, *J* = 6.6, 2.9 Hz, 1H), 3.70 (d, *J* = 14.6 Hz, 1H), 3.16 (m, 2H), 2.72 – 2.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 202.11, 148.64, 148.04, 146.68, 146.44, 129.22, 127.36, 126.88, 121.74, 111.88, 108.82, 108.59, 106.08, 100.97, 60.93, 57.76, 56.18, 56.00, 55.97, 55.94, 51.16, 29.62. [α]_D²⁵ = +177 (*c* = 1, CHCl₃); **IR** (film, KBr) *v_{max}*: 2922, 2854, 1658, 1577, 1516, 1200, 1044, 878, 752, 603 cm⁻¹; HRMS (Cl⁺) (*m/z*) calcd. for C₂₁H₂₁NO₅ [M + H]⁺ 368.1498; found 368.1504.

6c ¹H NMR (400 MHz, CDCl₃) δ 9.51 (d, *J* = 3.2 Hz, 1H), 6.74 (s, 2H), 6.70 (s, 1H), 6.58 (s, 1H), 6.00 (d, *J* = 1.4 Hz, 1H), 5.96 (d, *J* = 1.5 Hz, 1H), 5.95 – 5.88 (m, 2H), 4.12 (d, *J* = 15.4 Hz, 1H), 3.93 (s, 1H), 3.85 (t, *J* = 3.1 Hz, 1H), 3.55 (dd, *J* = 15.4, 1.1 Hz, 1H), 3.22 – 3.12 (m, 1H), 3.07 (d, *J* = 13.3 Hz, 1H), 2.78 – 2.55 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 201.69, 146.68, 146.46,

146.30, 143.43, 129.16, 126.78, 124.23, 122.78, 117.13, 108.57, 107.25, 106.04, 101.39, 100.97, 60.89, 56.10, 52.67, 51.11, 29.64. $[\alpha]_D^{25} = +184 \ (c = 1, \text{CHCl}_3); \text{IR} \ (\text{film, KBr}) \ v_{max}: 2956, 2918, 2852, 1715, 1645, 1475, 1036, 871, 799, 615 \ \text{cm}^{-1}; \text{HRMS} \ (\text{CI}^+) \ (m/z)$ calcd. for C₂₀H₁₇NO₅ [M]⁺ 351.1107; found 351.1105.

6d ¹H NMR (400 MHz, CDCl₃) δ 9.50 (d, *J* = 3.3 Hz, 1H), 6.76 – 6.65 (m, 2H), 6.58 (s, 2H), 5.99 – 5.86 (m, 4H), 3.97 (d, *J* = 14.8 Hz, 1H), 3.88 (s, 1H), 3.80 – 3.72 (m, 1H), 3.63 (dt, *J* = 14.7, 1.1 Hz, 1H), 3.12 (ddd, *J* = 10.0, 6.8, 3.2 Hz, 2H), 2.70 – 2.54 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 201.78, 147.23, 146.69, 146.57, 146.46, 129.21, 128.42, 126.78, 122.93, 109.31, 108.59, 106.03, 106.01, 101.02, 100.97, 60.77, 58.06, 56.28, 51.06, 29.59. [α]_D²⁵ = +199 (*c* = 1, CHCl₃); **IR** (film, KBr) *v_{max}*: 2957, 2919, 2852, 1716, 1629, 1577, 1037, 872, 753, 616 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₀H₁₇NO₅ [M]⁺ 351.1107; found 351.1119.

6e ¹H NMR (400 MHz, CDCl₃) δ 9.48 (d, J = 3.2 Hz, 1H), 6.75 (s, 2H), 6.69 (s, 1H), 6.61 (d, J = 2.0 Hz, 1H), 5.98 (dd, J = 17.1, 1.5 Hz, 2H), 3.95 (d, J = 2.7 Hz, 1H), 3.91 (t, J = 3.3 Hz, 1H), 3.86 (d, J = 1.6 Hz, 6H), 3.83 (d, J = 17.1 Hz, 1H), 3.55 (dd, J = 15.5, 1.0 Hz, 1H), 3.25 – 3.02 (m, 2H), 2.74 – 2.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 201.68, 147.91, 147.86, 146.28, 143.44, 128.06, 125.62, 124.20, 122.74, 117.20, 111.43, 108.99, 107.24, 101.38, 60.38, 56.11, 55.90, 55.83, 52.71, 51.25, 29.13. [α]_D²⁵ = +185 (c = 1, CHCl₃); **IR** (film, KBr) v_{max} : 2920, 2852, 1658, 1577, 1463, 1266, 877, 780, 611 cm⁻¹; HRMS (Cl⁺) (m/z) calcd. for C₂₁H₂₁NO₅ [M]⁺ 367.1420; found 367.1433.

6f ¹H NMR (400 MHz, CDCl₃) δ 9.47 (d, J = 3.4 Hz, 1H), 6.72 (s, 1H), 6.67 (s, 1H), 6.59 (d, J = 9.5 Hz, 2H), 5.92 (dd, J = 10.6, 1.5 Hz, 2H), 3.97 (d, J = 14.8 Hz, 1H), 3.90 – 3.88 (m, 1H), 3.86 (s, 6H), 3.83 (d, J = 3.2 Hz, 1H), 3.66 – 3.60 (m, 1H), 3.19 – 3.07 (m, 2H), 2.74 – 2.57 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 201.76, 147.91, 147.85, 147.18, 146.53, 128.49, 128.11, 125.63, 122.87, 111.49, 109.24, 109.01, 106.02, 100.99, 60.35, 58.11, 56.09, 55.83, 51.18, 43.36, 29.06. [α]_D²⁵ = +172 (c = 1, CHCl₃); **IR** (film, KBr) v_{max} : 2919, 2851, 1658, 1578, 1463, 1265, 1042, 878, 781, 665, 615 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₁H₂₁NO₅ [M + H]⁺ 368.1498; found 368.1485.

General Procedure for Decarbonylation Reaction of 6a:

To a solution of **6a** (12 mg, 0.03 mmol) in toluene (2 mL) was added Wilkinson's catalyst RhCl(PPh₃)₃ (27.8 mg, 0.03 mmol), and the mixture was heated to 110 °C and stirred for 2h. The reaction mixture was then cooled to room temperature and concentrated to afford a residue which was subjected to flash chromatography on silica gel (Hexane/EA: $1/8 \sim 1/4$) to give **canadine** (**7a**, 3.0 mg, 0.009 mmol, 29.5%) as a colorless oil. 97% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-

 $PrOH = 80/20, 1.0 \text{ mL/min}, \lambda = 210 \text{ nm}, t_{R}(\text{major}) = 11.0 \text{ min}, t_{R}(\text{minor}) = 6.7 \text{ min}); \ [\alpha]_{D}^{25} = +30 \ (c = 0.1, \text{ CHCl}_{3})$

Isocanadine (**7b**, 1.1 mg, 18.3%) as a pale-yellow oil. 99% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 210$ nm, $t_R(major) = 8.9$ min, $t_R(minor) = 9.7$ min); $[\alpha]_D^{25} = +36$ (c = 0.1, CHCl₃)

Stylopine (7c, 1.0 mg, 18.5%) as a pale-yellow oil. 93% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 210$ nm, $t_R(major) = 7.5$ min, $t_R(minor) = 9.7$ min); $[\alpha]_D^{25} = +68$ (c = 0.1, CHCl₃)

Tetrahydropseudocoptisine (**7d**, 1.6 mg, 20.0%) as a pale-yellow oil. 93% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 210$ nm, $t_R(major) = 7.1$ min, $t_R(minor) = 11.5$ min); $[\alpha]_D^{25} = +49$ (c = 0.1, CHCl₃)

Sinactine (7e, 1.5 mg, 12.0%) as a pale-yellow oil. 88% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 210$ nm, $t_R(major) = 19.2$ min, $t_R(minor) = 14.0$ min); $[\alpha]_D^{25} = +69$ (c = 0.1, CHCl₃)

Isosinactine (**7f**, 1.2 mg, 21.8%) as a pale-yellow oil. 88% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 210$ nm, $t_R(major) = 8.9$ min, $t_R(minor) = 19.7$ min); $[\alpha]_D^{25} = +31$ (c = 0.1, CHCl₃)

3. Asymmetric synthesis of tetrahydroprotoberberines via Noyori Reduction

M1: Preparation and Noyori Reduction of Dihydroberberines:

To a suspension of LiAlH₄ (142 mg, 4 mmol) in Et₂O (15 mL) at 0 °C was added AlCl₃ (133 mg, 1 mmol). The reaction mixture was warmed to room temperature with vigorous stirring for 0.5 h. 8-Oxyprotoberberine¹ (**9**, 27 mg, 0.077 mmol) was added to ethereal AlH₃ mixture and the reaction mixture was heated to reflux for 2 h. The reaction was quenched by slow, careful sequential addition of H₂O (0.1 mL), 15% NaOH (0.1 mL), and H₂O (0.3 mL). The aluminates were removed by filtration and washed with EtOAc (3 x 5 mL). The combined filtrates were dried over Na₂SO₄ and evaporated to give the crude product lambertine (**10**, 21mg, 81%) as yellow solid, which gradually turned brown in air. The crude product was used for Noyori reduction without further purification.

To a stirred solution of **10** (21 mg, 0.063 mmol) in dichloromethane (2 mL) was added formic acid (29 mg, 0.63 mmol), triethylamine (25 mg, 0.252 mmol) and RuCl[(S,S)-TsDPEN](mesitylene) (0.006 mmol, 3.7 mg). The reaction mixture was stirred at room temperature for 40 h. Then the reaction was quenched by addition of NaHCO₃ and washed with CH₂Cl₂ (4 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using eluents (EtOAc/hexane = 1/1) to afford the product canadine² (**7a**, 6.0 mg, 74%) as a pale yellow solid.

M2: Noyori Reduction of Quaternary Salts:

¹ Zhou. S., Tong, R. Chem. Eur. J. 2016, 22, 7084-7089.

² Mastranzo, V. M., Romero, J. L. O., Yuste, F., Ortiz, B., Sánchez-Obregón, R. & Ruano, J. L. G. Tetrahedron, 2012, 68, 1266–1271.

Quaternary salts were prepared according our previous report¹. To a stirred solution of **11** (8 mg, 0.025 mmol) in dichloromethane (1 mL) was added formic acid (11.5 mg, 0.25 mmol), triethylamine (10 mg, 0.1 mmol) and RuCl[(S,S)-TsDPEN] (mesitylene) (1.5 mg, 0.002 mmol). The reaction mixture was stirred at room temperature for 40 h. Then the reaction was quenched by addition of NaHCO₃ and washed with CH₂Cl₂ (2 mL). The combined organic fractions were washed brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using eluents (EtOAc/hexane = 1/1) to afford the product (-)-canadine (7a, 7.4 mg, 88%) as a pale-yellow solid. 77% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 210 nm, t_R(major) = 6.7 min, t_R(minor) = 11.0 min); [α]_D²⁵ = -52 (*c* = 0.17, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.86 (d, *J* = 8.4 Hz, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 6.73 (s, 1H), 6.59 (s, 1H), 5.91 (s, 2H), 4.23 (d, *J* = 15.8 Hz, 1H), 3.84 (s, 6H), 3.53 (d, *J* = 15.4 Hz, 2H), 3.24–3.07 (m, 3H), 2.81 (dd, *J* = 15.4 11.7Hz, 1H), 2.67–2.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.3, 146.1, 145.9, 145.0, 130.8, 128.6, 127.8, 127.6, 123.9, 110.9, 108.4, 105.5, 100.7, 60.1, 59.6, 55.9, 53.9, 51.4, 36.4, 29.6.

Isocanadine³ (**7b**, 5.1 mg, 58% yield over 2 steps) as a pale-yellow solid. 99% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 210 nm, t_R(major) = 9.7 min, t_R(minor) = 8.9 min); [α]_D²⁵ = -72 (*c* = 0.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.73 (s, 1H), 6.64 (s, 1H), 6.59 (s, 1H), 6.56 (s, 1H), 5.92 (s, 2H), 3.93 (d, *J* = 14.6 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.67 (d, *J* = 14.4 Hz, 1H), 3.57 (m, 1H), 3.20 (dd, *J* = 15.9, 3.8 Hz, 1H), 3.15–3.08 (m, 2H), 2.85–2.78 (m, 1H), 2.67–2.57 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 147.6, 147.4, 146.1, 145.9, 130.9, 127.7, 126.2, 111.4, 109.0, 108.4, 105.5, 100.7, 59.9, 58.2, 56.0, 55.9, 51.2, 36.5, 29.5.

Stylopine⁴ (**7c**, 5.2 mg, 70% yield over 2 steps) as a pale-yellow solid. 86% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 210 nm, t_R(major) = 9.7 min, t_R(minor) = 7.5 min); $[\alpha]_D^{25} = -100$ (*c* = 0.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.72 (s, 1H), 6.69 (d, *J* = 7.9 Hz, 1H), 6.63 (d, *J* = 7.9 Hz, 1H), 6.59 (s, 1H), 5.94 (d, *J* = 15.4 Hz, 2H), 5.92 (s, 2H), 4.08 (d, *J* = 15.4 Hz, 1H), 3.56 (t, *J* = 12.4 Hz, 2H), 3.23 (dd, *J* = 15.8, 3.7 Hz, 1H), 3.20–3.05 (m, 3H), 2.80 (dd, *J* = 15.8, 11.4 Hz, 1H), 2.69–2.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 146.2, 146.0, 145.0, 143.3, 130.7, 128.6, 127.8, 121.0, 116.9, 108.4, 106.8, 105.5, 101.0, 100.8, 59.8, 52.9, 51.2, 36.5, 29.6.

Tetrahydropseudocoptisine⁵ (**7d**, 5.5 mg, 65% yield over 2 steps) as a pale-yellow solid. 86% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 210 nm, t_R(major) = 11.5 min, t_R(minor) = 7.1 min); [α]_D²⁵ = -85 (*c* = 0.19, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.72 (s, 1H), 6.60 (s, 1H), 6.59 (s, 1H), 6.54 (s, 1H), 5.92 (s, 2H), 5.90 (s, 2H), 3.90

³ Orito, K., Satoh, Y., Nishizawa, H., Harada, R., Tokuda, M. Org. Lett. 2000, 2, 2535–2537.

⁴ Kim, J. H., Ryu, Y. B., Lee, W. S., Kim, Y. H. Bioorg. Med. Chem. 2014, 22, 6047–6052.

⁵ Gatland, A. E., Pilgrim, B. S., Procopiou, P. A., Donohoe, T. J. Angew. Chem. Int. Ed. 2014, 126, 14783–14786.

(d, J = 14.6 Hz, 1H), 3.62 (d, J = 14.7 Hz, 1H), 3.54 (dd, J = 11.2, 3.5 Hz, 1H), 3.19-3.06 (m, 3H), 2.78 (dd, J = 15.5, 11.6 Hz, 1H), 2.60 (m, 2H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 146.1, 145.9, 145.9, 145.8, 130.7, 127.7, 127.2, 108.4, 108.4, 106.0, 105.4, 100.8, 100.6, 100.0, 59.8, 58.5, 51.2, 36.9, 29.4.

Sinactine⁶ (**7e**, 5.7 mg, 70% yield over 2 steps) as a pale-yellow solid. 88% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 210 nm, t_R(major) = 14.0 min, t_R(minor) = 19.2 min); $[\alpha]_D^{25} = -136$ (*c* = 0.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.73 (s, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 6.66 (d, *J* = 7.8 Hz, 1H), 6.62 (s, 1H), 5.97 (s, 1H), 5.93 (s, 1H), 4.10 (t, *J* = 15.1 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.61–3.53 (m, 2H), 3.28 (dd, *J* = 15.3, 3.2 Hz, 1H), 3.26–3.09 (m, 2H), 2.81–2.62 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 147.5, 147.4, 145.0, 143.3, 129.6, 128.6, 126.7, 121.0, 116.9, 111.3, 108.6, 106.7, 101.0, 59.4, 56.1, 55.8, 53.0, 51.3, 36.4, 29.1.

Isosinactine⁷ (**7f**, 5.7 mg, 58% yield over 2 steps) as a pale-yellow solid. 99% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 210 nm, t_R(major) = 19.7 min, t_R(minor) = 8.9 min); [α]_D²⁵ = -30 (*c* = 0.21, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.72 (s, 1H), 6.63 (s, 1H), 6.62 (s, 1H), 6.54 (s, 1H), 5.91 (s, 2H), 3.93 (d, *J* = 16.2 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.67 (d, *J* = 14.3 Hz, 1H), 3.58 (d, *J* = 8.4 Hz, 1H), 3.23 (dd, *J* = 16.2, 3.4 Hz, 1H), 3.19–3.12 (m, 2H), 2.87–2.79 (m, 1H), 2.69–2.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 147.6, 147.5, 146.2, 145.9, 129.5, 127.2, 126.6, 111.4, 108.5, 108.4, 106.0, 100.7, 59.5, 58.5, 56.1, 55.9, 51.2, 36.7, 29.70, 28.9.

Tetrahydropalmatine⁸ (**7g**, 5.5 mg, 80% yield over 2 steps) as a pale-yellow solid. 99% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/EtOH = 80/20, 1.0 mL/min, λ = 210 nm, t_R(major) = 12.7 min, t_R(minor) = 8.0 min); $[\alpha]_D^{25} = -48$ (*c* = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.86 (d, *J* = 8.2 Hz, 1H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.73 (s, 1H), 6.61 (s, 1H), 4.23 (d, *J* = 15.3 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.84 (s, 3H), 3.83 (s, 3H), 3.55 -3.50 (m, 2H), 3.28-3.09 (m, 3H), 2.82 (dd, *J* = 15.3, 11.1 Hz, 1H), 2.85-2.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.2, 147.5, 147.4, 145.0, 129.7, 128.7, 127.6, 126.8, 123.8, 111.2, 110.9, 108.6, 60.1, 59.3, 56.0, 55.8, 55.7, 53.9, 51.5, 36.2, 29.0.

Xylopine⁹ (**7h**, 6.0 mg, 72% yield over 2 steps) as a pale-yellow solid. 90% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/EtOH = 80/20, 1.0 mL/min, λ = 210 nm, t_R(major) = 12.7 min, t_R(minor) = 8.0 min); $[\alpha]_D^{25} = -40$ (*c* = 0.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.74 (s, 1H), 6.67 (s, 1H), 6.62 (s, 1H), 6.58 (s, 1H), 3.94 (d, *J* = 14.8 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.86 (s, 3H), 3.85 (s, 3H), 3.69 (d, *J* = 14.2 Hz, 1H), 3.62 (dd, *J* = 11.3, 3.4 Hz, 1H), 3.22 (dd, *J* = 15.8, 3.5 Hz, 1H), 3.18–3.10

⁶ Seger, C., Sturm, S., Strasser, E. M., Ellmerer, E., Stuppner, H. Magn. Reson. Chem. 2004, 42, 882-886.

⁷ Orito, K., Satoh, Y., Nishizawa, H., Harada, R. & Tokuda, M. Org. lett. 2000, 2, 2535–2537.

⁸ Boudou, M., Enders, D. J. Org. Chem. 2005, 70, 9486–9494.

⁹ Mastranzo, V. M., Yuste, F., Ortiz, B., Sánchez-Obregón, R., Toscano, R. A., García Ruano, J. L. J. Org. Chem. 2011, 76, 5036–5041.

(m, 2H), 2.85 (dd, J = 15.6, 11.4 Hz, 1H), 2.69–2.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 147.6, 147.5, 147.4, 147.4, 129.8, 126.7, 126.3, 126.3, 111.3, 109.0, 108.5, 59.6, 58.2, 56.0, 55.9, 55.8, 51.3, 36.4, 29.0.

•

S-10

130.81 145.04 145.04 145.04 145.04 130.81	127.66			60.14 59.61 53.86 53.91 53.31 53.31 53.31		BRUKER YJX-canadine
	OMe OMe				PROC Date Time Time SOLV NS DS SWH FIDE AQ RG DW DE TE D1 D11	O O O O O O O O O O O O O O O O O O O
	.				SFOI NUC1 SI SF WDW SSB LB GB PC	==== CHANNEL f1 ===== 100.6228298 M 13C 9.70 u 32768 100.6127726 M EM 0 1.00 H 0 1.40
 ·····	L	·····	·····	·····		

S-28

6.61514 6.6285 6.6151 6.5473 6.5473	3.9452 3.8926 3.8926 3.8926 3.8926 3.887 3.887 3.8926 3.5980 3.5700 3.1582 3.1720 3.1931 3.1720 3.1932 3.1720 3.1922 3.17	BRUKER
		NAME YJX-isosinactine EXPNO 5 PROCNO 1 Date_ 20170824 Time 23.27 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zg30 TD 65536 SOLVENT CDC13 NS 18 DS 2 SWH 8012.820 Hz FIDRES 0.122266 Hz AQ 4.0834966 sec RG 187.77 DW 62400 usec DE 6.50 usec TE 298.1 K D1 1.0000000 sec TD0 1
		===== CHANNEL f1 ======= SF01 400.1324710 MHz NUC1 1H P1 14.50 usec SI 65536 SF 400.1300094 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00
	m_m_m_m	l
9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5	5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5	1.0 0.5 0.0 ppm

	147.58 147.50 146.17 145.90	129.49	111.38 108.54 108.61 100.65		59.45 58.49 56.10 51.24 51.24	36.70	RUKER
,						NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0	YJX-isosinactin 6 1 20170824 23.30 spect 5 mm PABBO BB/ 29030 65536 CDC13 7348 2 24038.461 0.366798 1.3631988 196.92 20.800 6.50 298.5 2.0000000 0.03000000 1
						SF01 NUC1 P1 SI SF WDW SSB LB GB PC	CHANNEL f1 ==== 100.6228298 13C 9.70 32768 100.6127703 EM 0 1.00 0 1.40
200 190 180 170 10	60 150 140	130 120	0 110 100	90 80	70 60 50	40 30 20	10 0 ppr

.....

	File Information	#	Time	Area	Height	Width	Area%	Symmetry
LC-File	1DB-0501.D		6.68	17415.9	1366.3	0.2124	52.111	0.526
File Path	C:\CHEM32\1\DATA\	2	10.954	16005.2	710.4	0.3755	47.889	0.489
Date	15-Aug-17, 03:42:35				_			
Sample	YJX834-1-1r					$\overline{}$		
Sample Info						N		
Barcode					0, 10, 1	\uparrow		
Operator	LLX					$\langle \rangle$	OMe	
Method	AD-20-50.M					Ĭ Ĭ		
Analysis Time	50 min							
Sampling Rate	0.0067 min (0.402 sec), 7501 datapoints				<i>rac</i> -car	adine	JIVIE	

Noyori

DCM

OMe HCOOH/TEA

`OMe

OMe

OMe

7a: (-)-canadine (78 ee%)

Sample Info

Barcode Operator YJX

Method AD-20-30.M

Sampling Rate 0.0067 min (0.402 sec), 4500 datapoints

Analysis Time 29.993 min

OMe

оМе

`OMe

ÓМе

7b: (+)-isocanadine (97 ee%)

Method AD-20-30.M

Sampling Rate 0.0067 min (0.402 sec), 4501 datapoints

Analysis Time 30 min

L C-File	1DE-0501 D	#	Time	Area	Height	Width	Area%	Symmetry
File Path		 1	7.540	6669.8	234.4	0.4743	51.149	0.678
rieram		 2	9.684	6370.2	391.9	0.2709	48.851	0.59
Date	21-Aug-17, 22:03:41	 					1 10:001	
Sample	ZZ-06-138-R				\circ \diamond \diamond			
Sample Info				(]		
Barcode				``	b	Ń		
Operator	ZZH							
Method	0D-20-30.M					$\sqrt{-0}$		
Analysis Time	30 min							
Sampling Rate	0.0067 min (0.402 sec), 4501 datapoints					<u> </u>		
					<i>rac</i> -stylop	oine		

			1 1110	Alca	rreigne	# IUUI	AIC0%	Symmetry
LC-File	1DB-0201.D	1	10.434	19234.1	528.8	0.5483	100.000	0.649
File Path	C:\CHEM32\1\DATA\JX_YU\		÷		20			
Date	26-Aug-17, 22:59:12		0~ <	\sim			0~~~	
Sample	YJX849-1-1a		$\langle 1 \rangle$	Ύ]	No			
Sample Info			`o~'	N_		yon	0~//	\searrow^{N}
Barcode					НСОО			
Operator	YJX							
Method	OD-20-30.M					2101		
Analysis Time	29.993 min			\sim	-0	7.	. ()	
Sampling Rate	0.0067 min (0.402 sec), 4500 datapoints					/	: (-)-stylo	ome (aa ee

7c: (-)-stylopine (87 ee%)

7c: (+)-stylopine (77 ee%)

ì

0-

rac-tetrahydropseudocoptisine

Operator YJX Method AD-20-30.M Analysis Time 29.993 min

Sampling Rate 0.0067 min (0.402 sec), 4500 datapoints

	File Information		T .			5. C M	1 01	· ·
LC-File	1DC-0701.D	#	lime	Area	Height	Width	Area%	Symmetry
File Path	C:\CHEM32\1\DATA\	1	6.633	281.7	19.2	0.2451	6.834	0.955
Date	17-Aug-17, 18:15:43	2	10.528	3840.6	171.4	0.3734	93.166	0.726
Sample	ZZ138-2			\sim			$\overline{}$	
Sample Info	3			Ļ,Ν.	Novori		N	
Barcode			0 ~	+			\uparrow	
Operator	ZZH				HCOOH/TEA			
Method	0D-20-30.M				DCM			
Analysis Time	29.993 min			γ)			ò
Sampling Rate	0.0067 min (0.402 sec), 4500 datapoints			ò_/			ò—	/
					7d: (-)-tet	trahydropseud	locoptisine	(86 ee%)

7d: (-)-tetrahydropseudocoptisine (87 ee%)

Sampling Rate 0.0067 min (0.402 sec), 4500 datapoints

S-51

7d: (+)-tetrahydropseudocoptisine (93 ee%)

Analysis Time 29.993 min

Sampling Rate 0.0067 min (0.402 sec), 4500 datapoints

c	_	1
- 2	-5	2
_	_	

	File Information	#	Time	Area	Height	Width	Area%	Symmetry
LC-File	1DB-0501.D		13.977	10084.3	270.7	0.6209	51.838	0.645
File Path	C:\CHEM32\1\DATA\JX_YU\	2	19.209	9369.3	104.1	1.4993	48.162	0.245
Date	21-Aug-17, 15:59:26			Ma	.			
Sample	YJX840-1-1r			Met				
Sample Info						1		
Barcode				Me	∑ ∽ \.			
Operator	YJX				Ĺ	-0		
Method	OD-20-30.M					$\left[\right] \left[\right] $		
Analysis Time	29.993 min					Ś~″∽o′		
Sampling Rate	0.0067 min (0.402 sec), 4500 datapoints				rac-sinacti	no		

HCOOH/TEA

DCM

7e: (-)-sinactine (99 ee%)

Barcode

Operator YJX

Method 0D-20-30.M Analysis Time 29.993 min

Sampling Rate 0.0067 min (0.402 sec), 4500 datapoints

7e: (-)-sinactine (88 ee%)

	File Information	#	Time	Area	Height	Width	Area%	Symmetry
LC-File	1DF-0401.D		8.874	982.5	25.1	0.5722	47.432	0.666
File Path	C:\CHEM32\1\DATA\JX_YU\	2	20.778	1088.8	17.8	1.0181	52.568	0.468
Date	22-Aug-17, 17:07:37				Mag			
Sample	ZZ-06-148-1				MeO	\frown		
Sample Info						<u>N</u>		
Barcode					MeO 💛	Ύ)		
Operator	XIX							
Method	OD-20-30.M							
Analysis Time	29.993 min					Ŷ		
Sampling Rate	0.0067 min (0.402 sec), 4500 datapoints					0_/		
					rac-isos	sinactine		

7f: (-)-isosinactine (99 ee%)

	File Information	 #	Time	Area	Height	Width	Area%	Symmetry
LC-File	1CF-0601.D	1	7.976	55393.4	2425.6	0.3806	47.619	0.408
File Path	C:\CHEM32\1\DATA\JX_YU\	 2	12.746	60932.8	2242.8	0.4528	52.381	0.517
Date	29-Aug-17, 01:24:36			Mac	`			
Sample	YJX881-1-1a			Mec				
Sample Info								
Barcode				MeC	$\sim \sim \sim$	· ` ` `		
Operator	YJX				Ĺ			
Method	AD-20-40_(A1+B2).M				Ť			
Analysis Time	39.993 min				Ļ			
Sampling Rate	0.0067 min (0.402 sec), 6000 datapoints					,		
	an a			ra	ac-tetranydropa	almatine		

MeO

OMe HCOOH/TEA

`OMe

DCM

OMe

`OMe

7g: (-)-tetrahydropalmatine (99 ee%)

Barcode

Operator YJX

Analysis Time 39.993 min

Method AD-20-40_(A1+B2).M

Sampling Rate 0.0067 min (0.402 sec), 6000 datapoints

	File Information	 #	Time	Area	Height	Width	Area%	Symmetry		
LC-File	SNAPSHOT.D	1	9.071	59972	2357.3	0.3533	48.926	0.439		
File Path	C:\CHEM32\1\DATA\	2	18.346	62595.2	2255.2	0.4626	51.073	0.508		
Date	29-Aug-17, 01:24:36			•		•				
Sample	YJX882-1-1r	MeO								
Sample Info										
Barcode				Μ	leO IN	7				
Operator	XIX				$\langle \rangle$	\checkmark				
Method	AD-20-40_(A1+B2).M				ļ					
	22.007 min					└OMe				
Analysis Time	22.007 1101									

	File Information	#	Time	Area	Height	Width	Area%	Symmetry
LC-File	1CF-0602.D	1	9.364	2950.3	228.9	0.2148	4.863	0.505
File Path	C:\CHEM32\1\DATA\JX_YU\	2	18.746	57719.6	2200.8	0.4371	95.137	0.531
Date	29-Aug-17, 02:34:36	e - 8						
Sample	YJX882-1-1a		MeO	\sim		MeO	\frown	
Sample Info					Novori		N	
Barcode			MeO ^{^_}			MeO ∽	Ϋ́]	
Operator	XIX				HCOOH/TE/	4		
Method	AD-20-40_(A1+B2).M				DCM			`OM-
Analysis Time	39.993 min			Ϋ́ `O	Me		Ĭ OMa	Ome
100000 Lange 1				OMe			Olvie	

	File Information	#	Time	Area	Height	Width	Area%	Symmetry
LC-File	1CF-0802.D	1	9.985	3222	238.8	0.2249	4.917	0.542
File Path	C:\CHEM32\1\DATA\JX_YU\	2	18.755	62306.9	2265	0.4585	95.083	0.52
Date	29-Aug-17, 04:17:02							· · · · ·
Sample	YJX882-1-1sa		MeO	\sim		MeO	\mathbf{i}	
Sample Info					Novori		_N_	
Barcode			MeO	\checkmark	>			
Operator	YJX				HCOOH/TEA			
Method	AD-20-40_(A1+B2).M				DCM			Mo
Analysis Time	39.993 min			Ť	OMe			-ivic
a 1040.5 120 c	0.0007			OMe		7b : () valori		