# **Supporting information**

# L-Phenylalanine Potassium Catalyzed Aymmetric Formal [3 + 3] Annulation of 2-enoyl-Pyridine *N*-Oxides with Acetone

Youguo Xu, Sheng Zhang, Lijun Li, Yukang Wang, Zhenggen Zha and Zhiyong Wang<sup>\*</sup> Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China zwang3@ustc.edu.cn

### **Table of Contents**

| Part I Experimental Section                                                   | S2                     |
|-------------------------------------------------------------------------------|------------------------|
| 1.1 General information                                                       | S2                     |
| 1.2 General procedure for the synthesis of catalyst L-phenylalanine potassium | S2                     |
| 1.3 Optimization of reaction conditions                                       | S2                     |
| 1.4 General working procedure for the asymmetric formal $[3 + 3]$ annulation  | S2-S3                  |
| 1.5 Determination of absolute configurations of the product <b>3aa'</b>       | <b>S</b> 3- <b>S</b> 4 |
| 1.6 Experimental date of asymmetric formal [3 + 3] annulation products        | S4-S11                 |
| Part II NMR Spectra                                                           | S12-S30                |
| Part III HPLC Spectra                                                         | S31-S42                |

#### **Part I Experimental Section**

#### **1.1 General information**

Commercially available compounds and solvents were used without further purification unless otherwise noted. Reactions were monitored by TLC analysis using Merck Silica Gel 60 F-254 thin layer plates. All the chromatographic separations were carried out by using silica gel (Acme's, 100–200 mesh). Optical rotations were measured on a PerKinElmer<sup>TM</sup> Polarimeter (Model 343). <sup>1</sup>H NMR and <sup>13</sup>C NMR were recorded on a Bruker-400MHz Spectrometer (<sup>1</sup>H NMR: 400MHz, <sup>13</sup>C NMR: 100MHz) and tetramethylsilane and CDCl<sub>3</sub> was used as internal standard for <sup>1</sup>H and <sup>13</sup>C NMR respectively. The chemical shifts ( $\delta$ ) and coupling constants (*J*) were expressed in ppm and Hz respectively. HPLC analysis was carried out on an Agilent 1100 series HPLC with a multiple wavelength detector. Chiralpak AD-H and IC columns were purchased form Daicel Chemical Industries, LTD. All Substrates was prepared according to the literature procedures.

#### 1.2 General procedure for the synthesis of catalyst L-phenylalanine potassium



Potassium hydroxide (20.0 mmol, 1.122 g) was dissolved in methanol (30 mL) in room temperature. L-phenylalanine (20.0 mmol, 3.304 g) were added to the solution and stirred for 30 min. The resulting mixture was filtered and concentrated in vacuo, to provide the catalyst L-phenylalanine potassium.

#### 1.3 Optimization of reaction conditions





<sup>a</sup> The dehydration process of asymmetric formal [3 + 3] annulations were conducted directly after the Michael addition and aldol condensation process of the reaction was completed (monitored by TLC). <sup>b</sup> Isolated yield. <sup>c</sup> The *ee* value was determined by chiral HPLC analysis (Chiralpak IC column).

#### 1.4 General working procedure for the asymmetric formal [3 + 3] annulation

a) Asymmetric formal [3 + 3] annulation catalyzed by L-phenylalanine potassium (3aa as an example)



A mixture of 2-alkenoyl pyridine *N*-oxide **1a** (67.5 mg, 0.3 mmol) and the L-phenylalanine potassium (12.3 mg, 0.06 mmol) was added in toluene (1.2 mL). Acetone **2a** (0.3 mL) and 5  $\mu$ L water were then added and the resulting mixture was stirred at 35 °C. After the reaction was completed (monitored by TLC), the acetone was removed under vacuum. Silica gel (540 mg) was then added and the resulting mixture was stirred at 90 °C. After the reaction was completed (monitored by TLC) the resulting mixture was purified by silica gel column chromatography with methanol / ethyl acetate (1:100) as the eluent affording the product **3aa** as a yellow solid (65.1 mg, 82% yield, 86% *ee*). The enantiomeric excess of the product was determined by chiral HPLC analysis (Chiralpak IC column).

#### b) Preparation of the racemic product (3aa as an example)



2-Alkenoyl pyridine *N*-oxide **1a** (22.5 mg, 0.1 mmol) and (D/L)-phenylalanine potassium (4.1 mg) was added in toluene (0.4 mL). Acetone **2a** (0.1 mL) were then added and the mixture was stirred at 45 °C. After the reaction was completed (monitored by TLC), silica gel (180 mg) was then added and the resulting mixture was stirred at 90 °C. After the reaction was completed (monitored by TLC), the desired racemic product **3aa** was isolated by flash column chromatography.

#### 1.5 Determination of absolute configurations of the product 3aa'

X-ray crystal structure of 3aa'



| X-ray crystal strue | ture analysis | of 3aa': |
|---------------------|---------------|----------|
|---------------------|---------------|----------|

| Chemical formula           | $C_{16}H_{16}N_2O_5$ |
|----------------------------|----------------------|
| Formula weight             | 283.31               |
| Space group                | $P2_12_12_1$         |
| Z                          | 4                    |
| a, Å                       | 6.53370(10)          |
| b, Å                       | 8.45090(10)          |
| c, Å                       | 26.0879(3)           |
| α, °                       | 90                   |
| β, °                       | 90                   |
| γ, <sup>ο</sup>            | 90                   |
| V, $Å^3$                   | 1440.46(3)           |
| T,K                        | 289(2)               |
| $\rho$ , g/cm <sup>3</sup> | 1.306                |
| Goodness of fit            | 1.068                |

Reflections collected / unique: 12842 /2674 ( $R_{int} = 0.0217$ ), number of observations [I > 2  $\sigma$  (I)] 2618, parameters 192. Final R indexes  $[I \ge 2 \sigma (I)]$ :  $R_1 = 0.0324$ ,  $wR_2 = 0.0876$ ; Final R indexes (all data):  $R_1 = 0.0349$ ,  $wR_2 = 0.0987$ , Flack parameter = 0.01(6).

#### 1.6 Experimental data of asymmetric formal [3 + 3] annulation products



2-((1R,5R)-1-hydroxy-3-oxo-5-phenylcyclohexyl)pyridine 1-oxide: yellow solid in 70% yield. mp 145-147 °C;  $[\alpha]_D^{20}$  2.72 (c = 0.565, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 75:25, flow rate = 1.0 mL/min, T = 30 °C, UV = 215 nm,  $t_R = 15.6 \text{ min (minor)}, t_R = 15.6 \text{ mi$ 17.2 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.18-8.16 (d, *J* = 6.2 Hz, 1H), 7.35-7.15 (m, 8H), 3.71-3.65 (m, 1H), 3.18-3.14 (d, J = 13.5 Hz, 1H), 2.74-2.65 (m, 3H), 2.55-2.48 (m, 1H), 2.23-2.16 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 207.0, 151.9, 143.3, 140.8, 128.7, 128.2, 126.8, 125.0, 122.5, 75.4, 49.0, 48.0, 40.9, 37.9; IR (film, v/cm<sup>-1</sup>): 3292, 3053, 2929, 1707, 1599, 1493, 1457, 1399, 759, 705; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>17</sub>NO<sub>3</sub> [M+ Na]<sup>+</sup> 306.1106, found 306.1111.



(R)-2-(5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: yellow solid in 82% yield. mp 127-128 °C;  $[\alpha]_D^{20} 0.413$  (c = 0.990, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol: hexane = 90:10, flow rate = 0.45 mL/min, T = 30 °C, UV = 231 nm,  $t_R = 22.7$  min (minor),  $t_R = 22.7$ 27.6 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.17-8.15 (d, J = 4.7 Hz, 1H), 7.28-7.15 (m, 8H), 6.27 (s, 1H), 3.48-3.40 (m, 1H), 3.10-3.00 (m, 2H), 2.78-2.67 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 197.8, 153.6, 147.9, 141.7, 139.4, 129.0, 127.7, 126.0, 125.8, 125.0, 124.9, 124.8, 43.6, 40.1, 33.8; IR (film, v/cm<sup>-1</sup>): 3051, 2949, 2884, 2360, 1663, 1606, 1493, 1455, 1375, 734, 701; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>15</sub>NO<sub>2</sub> [M+ Na]<sup>+</sup> 288.1000, found 288.1003.



(**R**)-2-(**4'-fluoro-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide:** yellow oil in 89% yield.  $[\alpha]_D^{20} 0.0817$  (c = 1.04, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol = 100%, flow rate = 0.37 mL/min, T = 30 °C, UV = 231 nm, t<sub>R</sub> = 22.8 min (minor), t<sub>R</sub>= 24.0 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.25-8.24 (d, *J* = 3.7 Hz, 1H), 7.32-7.25 (m, 5H), 7.04-7.00 (m, 2H), 6.33 (s, 1H), 3.55-3.47 (m, 1H), 3.18-3.05 (m, 2H), 2.83-2.70 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  197.5, 161.9-159.5(d, *J* = 243.7 Hz), 153.5, 147.8, 139.4, 137.5 (d, *J* = 3.2 Hz), 129.0, 127.3(d, *J* = 7.9 Hz), 125.1, 125.0, 125.0, 114.6-114.4(d, *J* = 21.1 Hz), 43.8, 39.4, 33.8; IR (film, v/cm<sup>-1</sup>): 3053, 2922, 2361, 1666, 1604, 1508, 1368, 820; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>14</sub>FNO<sub>2</sub> [M+ Na]<sup>+</sup> 306.0906, found 306.0913.





(**R**)-2-(**4'-chloro-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide:** yellow oil in 87% yield.  $[\alpha]_D^{20}$  1.37 (c = 0.925, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol: hexane = 90:10, flow rate = 0.45 mL/min, T = 30 °C, UV = 240 nm, t<sub>R</sub> = 22.2 min (minor), t<sub>R</sub>= 23.4 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.16 (s 1H), 7.24-7.14 (m, 7H), 6.25 (s, 1H), 3.46-3.38 (m, 1H), 3.10-2.97 (m, 2H), 2.75-2.61 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  197.3, 153.4, 147.8, 140.2, 139.4, 131.7, 129.0, 127.8, 127.2, 125.1, 125.0, 125.0, 43.5, 39.4, 33.5; IR (film, v/cm<sup>-1</sup>): 3050, 2923, 2360, 1664, 1491, 1366, 827; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>14</sub>ClNO<sub>2</sub> [M+ Na]<sup>+</sup> 322.0611, 324.0581, found 322.0613, 324.0588.









(**R**)-2-(4'-bromo-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: white oil in 96% yield.  $[\alpha]_D^{20}$  1.47 (c = 0.980, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol = 100%, flow rate = 0.37 mL/min, T = 30 °C, UV = 240 nm, t<sub>R</sub> = 29.4 min (minor), t<sub>R</sub>= 31.1 min (major); <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>):  $\delta$  8.18-8.17 (d, J = 4.2 Hz 1H), 7.37-7.35 (d, J = 8.2 Hz 2H), 7.25 (s, 3H), 7.10-7.08 (d, J = 8.2 Hz 1H), 6.24 (s, 1H), 3.44-3.36 (m, 1H), 3.08-2.95 (m, 2H), 2.73-2.61 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  197.3, 153.4, 147.7, 140.7, 139.4, 130.8, 129.0, 127.6, 125.3, 125.2, 125.1, 119.7, 43.4, 39.5, 33.4; IR (film, v/cm<sup>-1</sup>): 3077, 2921, 2853, 2361, 1666, 1488, 1431, 1365, 822; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>14</sub>BrNO<sub>2</sub> [M+ Na]<sup>+</sup> 366.0106, 368.0085, found 366.0112, 368.0091.







(**R**)-2-(**4'-nitro-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide:** yellow oil in 39% yield.  $[α]_D^{20}$  1.77 (c = 0.985, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 75:25, flow rate = 1.0 mL/min, T = 30 °C, UV = 240 nm, t<sub>R</sub> = 52.9 min (major), t<sub>R</sub>= 58.3 min (minor); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.19-8.13 (m, 3H), 7.43-7.41 (d, *J* = 8.4 Hz, 2H), 7.27-7.21 (m, 3H), 6.27 (s, 1H), 3.63-3.56 (m, 1H), 3.19-3.05 (m, 2H), 2.81-2.68 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 196.4, 153.1, 149.0, 147.6, 146.0, 139.4, 129.1, 126.8, 125.3, 125.2, 125.1, 123.0, 43.1, 39.8, 32.9; IR (film, v/cm<sup>-1</sup>): 3047, 2962, 2921, 2360, 1667, 1597, 1515, 1484, 1343, 856; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>14</sub>N<sub>2</sub>O<sub>4</sub> [M+ H]<sup>+</sup> 311.1032, found 311.1032.



(**R**)-2-(5-oxo-4'-(trifluoromethyl)-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide : yellow oil in 68% yield.  $[\alpha]_D^{20}$  0.550 (c = 0.917, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol = 100%, flow rate = 0.3 mL/min, T = 30 °C, UV = 240 nm, t<sub>R</sub> = 23.9 min (minor), t<sub>R</sub>= 24.8 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.18 (s, 1H), 7.53-7.51 (d, *J* = 8.0 Hz, 2H), 7.36-7.34 (d, *J* = 8.0 Hz, 2H), 7.26-7.20 (m, 3H), 6.26 (s, 1H), 3.55-3.49 (m, 1H), 3.14-3.02 (m, 2H), 2.79-2.67 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  197.0, 153.3, 147.7, 145.6, 139.4, 129.1, 128.5-128.2 (d, *J* = 32.4 Hz), 126.3, 125.2 (d, *J* = 2.7 Hz), 125.1, 124.7 (d, *J* = 3.6 Hz), 124.4-121.7(d, *J* = 270.4 Hz), 43.3, 39.8, 33.2; IR (film, v/cm<sup>-1</sup>):3052, 2921, 2360, 1670, 1618, 1485, 835; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>14</sub>F<sub>3</sub>NO<sub>2</sub> [M+ H]<sup>+</sup> 334.1055, found 334.1056.



(**R**)-2-(**4**'-methoxy-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: yellow oil in 79% yield.  $[\alpha]_D^{20}$  1.44 (c = 1.16, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 75:25, flow rate = 1.0 mL/min, T = 30 °C, UV = 240 nm, t<sub>R</sub> = 29.7 min (major), t<sub>R</sub>= 34.3 min (minor); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.26-8.24 (d, *J* = 5.0 Hz, 1H), 7.35-7.29 (m, 3H), 7.22-7.20 (d, *J* = 8.4 Hz, 2H), 6.88-6.86 (d, *J* = 8.4 Hz, 2H), 6.33 (s, 1H), 3.79 (s, 3H), 3.51-3.47 (m, 1H), 3.15-3.03 (m, 2H), 2.83-2.71 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  198.1, 157.5, 153.7, 148.0, 139.4, 133.9, 129.0, 126.8, 125.1, 125.0, 113.0, 54.3, 43.9, 39.3, 34.0; IR (film, v/cm<sup>-1</sup>): 3072, 2953, 2835, 2360, 1665, 1610, 1584, 1512, 1463, 1367, 1244, 1178, 829; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>3</sub> [M+ Na]<sup>+</sup> 318.1106, found 318.1108.





(**R**)-2-(4'-methyl-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: yellow solid in 99% yield. mp 108-109 °C;  $[\alpha]_D{}^{20}$  1.33 (c = 1.05, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol = 100%, flow rate = 0.37 mL/min, T = 30 °C, UV = 231 nm, t<sub>R</sub> = 28.2 min (minor), t<sub>R</sub>= 31.8 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.25-8.24 (d, *J* = 4.2 Hz, 1H), 7.31 (m, 3H), 7.19-7.18 (d, *J* = 7.7 Hz, 2H), 7.15-7.13 (d, *J* = 7.6 Hz, 2H), 6.34 (s, 1H), 3.52-3.44 (m, 1H), 3.15-3.05 (m, 2H), 2.84-2.72 (m, 2H), 2.33 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  198.0, 153.7, 148.0, 139.4, 138.7, 135.6, 129.0, 128.3, 125.6, 125.0, 124.8, 43.8, 39.7, 33.8, 20.0; IR (film, v/cm<sup>-1</sup>): 3050, 3016, 2920, 2360, 1661, 1614, 1514, 1431, 1366, 856; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>2</sub> [M+ Na]<sup>+</sup> 302.1157, found 302.1154.



(**R**)-2-(3'-methyl-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: yellow solid in 99% yield. mp 109-110 °C;  $[\alpha]_D^{20} 0.582$  (c = 0.913, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol = 100%, flow rate = 0.37 mL/min, T = 30 °C, UV = 231 nm, t<sub>R</sub> = 26.8 min (minor), t<sub>R</sub>= 29.2 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.25-8.24 (d, *J* = 4.2 Hz, 1H), 7.31 (s, 3H), 7.24-7.20 (m, 1H), 7.11-7.06 (m, 3H), 6.34 (s, 1H), 3.52-3.44 (m, 1H), 3.13-3.11 (d, *J* = 7.4 Hz, 2H), 2.84-2.73 (m, 2H), 2.34 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  198.0, 153.7, 148.0, 141.7, 139.4, 137.3, 129.0, 127.6, 126.8, 126.6, 125.0, 124.9, 122.8, 43.7, 40.1, 33.8, 20.4; IR (film, v/cm<sup>-1</sup>): 3068, 2961, 2360, 1666, 1607, 1483, 1370, 769, 699; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>2</sub> [M+ H]<sup>+</sup> 280.1338, found 280.1339.



(**R**)-2-(2'-fluoro-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: yellow oil in 83% yield.  $[\alpha]_D^{20}$  1.05 (c = 1.12, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol = 100%, flow rate = 0.37 mL/min, T = 30 °C, UV = 254 nm, t<sub>R</sub> = 25.7 min (minor), t<sub>R</sub>= 29.2 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.27-8.26 (d, *J* = 5.9 Hz, 1H), 7.36-7.31 (m, 4H), 7.27-7.21 (m, 1H), 7.15-7.11 (m, 1H), 7.07-7.02 (m, 1H), 6.36 (s, 1H), 3.84-3.76 (m, 1H), 3.31-3.23 (m, 1H), 3.11-3.06 (m, 1H), 2.89-2.77 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  197.5, 161.0-158.5 (d, *J* = 244.5 Hz), 153.5, 147.9, 139.4, 129.0, 128.4-128.3 (d, *J* = 13.7 Hz), 127.6 (d, *J* = 8.3 Hz), 127.0-126.9 (d, *J* = 4.6 Hz), 125.3, 125.1, 123.4 (d, *J* = 3.4 Hz), 114.8-114.6 (d, *J* = 22.3 Hz), 42.2, 33.9 (d, *J* = 1.8 Hz), 32.1; IR (film, v/cm<sup>-1</sup>): 3081, 2921, 2359, 1660, 1586, 1555, 1489, 1453, 1375, 750; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>14</sub>FNO<sub>2</sub> [M+H]<sup>+</sup> 284.1087, found 284.1089.



(**R**)-2-(2'-chloro-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: yellow oil in 88% yield.  $[\alpha]_D^{20}$  1.10 (c = 0.993, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol = 100%, flow rate = 0.37 mL/min, T = 30 °C, UV = 231 nm, t<sub>R</sub> = 26.7 min (minor), t<sub>R</sub>= 28.3 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.26-8.24 (d, *J* = 6.0 Hz, 1H), 7.40-7.28 (m, 6H), 7.21-7.18 (m, 1H), 6.37 (s, 1H), 4.03-3.95 (m, 1H), 3.29-3.22 (m, 1H), 3.11-3.06 (m, 1H), 2.86-2.73 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  197.5, 153.4, 147.8, 139.4, 138.6, 132.6, 129.0, 128.9, 127.2, 126.3, 125.3, 125.1, 125.1, 42.3, 36.4, 32.2; IR (film, v/cm<sup>-1</sup>): 3059, 2959, 2360, 1664, 1551, 1475, 1371, 759; HRMS (ESI) m/z calcd. for C<sub>17</sub>H<sub>14</sub>ClNO<sub>2</sub> [M+H]<sup>+</sup> 300.0791, 302.0762 (calcd. Cl isotopic peaks), found 300.0795, 302.0768 (found Cl isotopic peaks).







(**R**)-2-(2'-bromo-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: yellow oil in 77% yield.  $[α]_D{}^{20}$  0.703 (c = 0.925, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 75:25, flow rate = 1.0 mL/min, T = 30 °C, UV = 231 nm, t<sub>R</sub> = 17.9 min (major), t<sub>R</sub> = 21.0 min (minor); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.17-8.16 (d, *J* = 6.0 Hz, 1H), 7.48-7.46 (d, *J* = 7.9 Hz, 1H), 7.31-7.21 (m, 5H), 7.04-7.01 (m, 1H), 6.29 (s, 1H), 3.90-3.82 (m, 1H), 3.19-3.12 (m, 1H), 3.03-2.97 (m, 1H), 2.77-2.62 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 198.4, 154.3, 148.8, 141.2, 140.4, 133.3, 130.0, 128.6, 127.9, 127.4, 126.2, 126.2, 126.1, 124.3, 43.5, 40.0, 33.4; IR (film, v/cm<sup>-1</sup>): 3058, 2921, 2360, 1665, 1566, 1484, 1470, 1367, 754; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>14</sub>BrNO<sub>2</sub> [M+H]<sup>+</sup> 344.0286, 346.0085 (calcd. Br isotopic peaks), found 344.0290, 346.0272 (found Br isotopic peaks).



(**R**)-2-(2'-methyl-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: yellow oil in 99% yield.  $[\alpha]_D^{20}$ -1.46 (c = 1.05, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 75:25, flow rate = 1.0 mL/min, T = 30 °C, UV = 231 nm, t<sub>R</sub> = 17.4 min (major), t<sub>R</sub>= 24.8 min (minor); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.26-8.25 (d, J = 5.4 Hz, 1H), 7.32-7.29 (m, 4H), 7.21-7.13 (m, 3H), 6.35 (s, 1H), 3.79-3.73 (m, 1H), 3.15-3.11 (d, J = 14.8 Hz 1H), 3.03-2.96 (m, 1H), 2.80-2.72 (m, 2H), 2.39 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  198.2, 153.9, 147.9, 139.7, 139.4, 134.7, 129.8, 129.0, 125.8, 125.4, 125.1, 125.1, 125.0, 124.2, 43.1, 36.0, 33.0, 18.3; IR (film, v/cm<sup>-1</sup>): 3069, 2960, 2360, 1666, 1485, 1461, 1368, 758; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 280.1338, found 280.1340.



3na

(**R**)-2-(2'-methoxy-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: yellow oil in 83% yield.  $[α]_D^{20}$  1.35 (c = 1.01, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol = 100%, flow rate = 0.37 mL/min, T = 30 °C, UV = 231 nm, t<sub>R</sub> = 25.8 min (minor), t<sub>R</sub>= 27.5 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.26-8.24 (d, *J* = 5.8 Hz, 1H), 7.35-7.28 (m, 3H), 7.26-7.21 (m, 2H), 6.96-6.92 (m, 1H), 6.88-6.86 (d, *J* = 8.1 Hz, 1H), 6.37-6.36 (d, *J* = 1.9 Hz, 1H), 3.90-3.85 (m, 1H), 3.83-3.82 (s, 3H), 3.31-3.23 (m, 1H), 3.06-3.00 (m, 1H), 2.87-2.75 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 198.7, 156.0, 154.1, 148.2, 139.4, 129.7, 129.0, 126.9, 126.0, 125.0, 125.0, 124.9, 119.6, 109.5, 54.2, 42.4, 34.3, 32.0; IR (film, v/cm<sup>-1</sup>): 3107, 3063, 3009, 2950, 2844, 2361, 1665, 1598, 1584, 1493, 1465, 1373, 1223,753; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>3</sub> [M+H]<sup>+</sup> 296.1287, found 296.1291.



(**R**)-2-(5-(naphthalen-2-yl)-3-oxocyclohex-1-en-1-yl)pyridine 1-oxide: white solid in 67% yield. mp 175-177 °C;  $[\alpha]_D^{20}$  3.21 (c = 1.05, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 75:25, flow rate = 1.0 mL/min, T = 30 °C, UV = 254 nm, t<sub>R</sub> = 32.3 min (major), t<sub>R</sub>= 36.6 min (minor); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.25-8.24 (d, *J* = 5.3 Hz, 1H), 7.83-7.79 (m, 3H), 7.72 (s, 1H), 7.49-7.42 (m, 3H), 7.30-7.28 (m, 3H), 6.37 (s, 1H), 3.73-3.65 (m, 1H), 3.28-3.18 (m, 2H) ,2.95-2.84 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 198.8, 154.7, 149.0, 140.4, 140.2, 133.5, 132.5, 130.1, 128.4, 127.8, 127.6, 126.3, 126.1, 126.0, 125.9, 125.8, 125.4, 125.2, 44.7, 41.2, 34.6; IR (film, v/cm<sup>-1</sup>): 3051, 2885, 1663, 1507, 1480, 1351; HRMS (ESI) m/z calcd for  $C_{21}H_{17}NO_2$  $[M+H]^+$  316.1338, found 316.1342.



(R)-2-(5-(naphthalen-1-yl)-3-oxocyclohex-1-en-1-yl)pyridine 1-oxide: yellow oil in 63% yield.  $\left[\alpha\right]_{D}^{20}$ -7.44 (c = 0.900, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol = 100%, flow rate = 0.37 mL/min, T = 30 °C, UV = 240 nm,  $t_R$  = 32.6 min (minor),  $t_R$  = 34.2 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.18-8.16 (d, J = 5.6 Hz, 1H), 8.10-8.07 (d, J = 8.5 Hz, 1H), 7.79-7.77 (m, 1H), 7.70-7.66 (m, 1H), 7.49-7.45 (m, 1H), 7.42-7.35 (m, 3H), 7.26-7.18 (m, 3H), 6.32-6.31 (d, J = 2.1 Hz, 1H) 4.33-4.26 (m, 1H), 3.33-3.28 (m, 1H), 3.08-3.00 (m, 1H), 2.93-2.81 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 199.2, 155.0, 148.9, 140.4, 138.5, 134.0, 131.1, 130.1, 129.1, 127.7, 126.5, 126.2, 126.1, 126.0, 125.8, 125.4, 122.8, 122.8, 44.5, 36.3, 34.6; IR (film, v/cm<sup>-1</sup>): 3047, 2921, 2360, 1664, 1597, 1509, 1484, 1351; HRMS (ESI) m/z calcd for C<sub>21</sub>H<sub>17</sub>NO<sub>2</sub> [M+ H]<sup>+</sup> 316.1338, found 316.1339.





(R)-2-(3-oxo-5-(thiophen-2-yl)cyclohex-1-en-1-yl)pyridine 1-oxide: yellow oil in 62% yield.  $[\alpha]_D^{20}$  -1.03 (c = 1.08, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak IC, ethanol = 100%, flow rate = 0.37 mL/min, T = 30 °C, UV = 240 nm,  $t_R$  = 28.9 min (minor),  $t_R$  = 34.3 min (major); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.25 (s, 1H), 7.31 (s, 3H), 7.19-7.17 (d, J = 4.9 Hz, 1H), 6.96-6.92 (m, 2H), 6.32 (s, 1H), 3.85-3.79 (m, 1H), 3.38-3.33 (m, 1H), 3.14-3.07 (m, 1H) 3.00-2.95 (m, 1H) 2.82-2.74 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 196.8, 152.9, 147.8, 145.6, 139.4, 129.2, 125.8, 125.1, 125.1, 125.0, 122.6, 122.6, 44.5, 35.4, 34.4; IR (film, v/cm<sup>-1</sup>): 3101, 2886, 2360, 1663, 1523, 1484, 1367, 860; HRMS (ESI) m/z calcd for  $C_{15}H_{13}NO_2S [M+H]^+ 272.0745$ , found 272.0750.



(**R**)-2-(2',4'-dimethoxy-5-oxo-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)pyridine 1-oxide: yellow oil in 68 % yield.  $[\alpha]_D^{20}$  2.55 (c = 0.990, CHCl<sub>3</sub>); HPLC: Daicel Chiralpak AD-H hexane: 2-propanol = 75:25, flow rate = 1.0 mL/min, T = 30 °C, UV = 206 nm, t<sub>R</sub> = 21.3 min (major), t<sub>R</sub> = 25.2 min (minor); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.25-8.23 (d, *J* = 5.8 Hz, 1H), 7.34-7.27 (m, 3H), 7.15-7.13 (d, *J* = 9.0 Hz, 1H), 6.46-6.45 (m, 2H), 6.35 (s, 1H), 3.86-3.70 (m, 7H), 3.30-3.20 (m, 1H), 3.02-2.97 (m, 1H), 2.85-2.71 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  199.0, 158.7, 157.0, 154.2, 148.2, 139.4, 128.9, 126.5, 125.1, 125.0, 124.9, 122.3, 102.9, 97.7, 54.3, 54.2, 42.7, 33.9, 32.3; IR (film, v/cm<sup>-1</sup>): 3055, 2923, 2835, 2360, 1663, 1609, 1585, 1505, 1463, 1370, 1205, 1156, 862, 820; HRMS (ESI) m/z calcd for C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 326.1392, found 326.1392.

#### **References:**

- [1] J. Gao, H. Wu, B. Xiang, W. Yu, L. Han, and Y. Jia, J. Am. Chem. Soc., 2013, 135, 2983.
- [2] S. Rout, S. Ray, R. Unhale, V. Singh, Org. Lett., 2014, 16, 5568.
- [3] L. Li, S. Zhang, Y. Hu, Y. Li, C. Li, Z. Zha, and Z. Wang, Chem. Eur. J., 2015, 21, 12885.









3aa-<sup>13</sup>C NMR





3ba-<sup>13</sup>C NMR





3ca-<sup>13</sup>C NMR





3da-<sup>13</sup>C NMR





3ea-<sup>13</sup>C NMR





3fa-<sup>13</sup>C NMR





3ga-<sup>13</sup>C NMR





3ha-<sup>13</sup>C NMR





3ia-<sup>13</sup>C NMR





3ja-<sup>13</sup>C NMR



## 3ka-<sup>1</sup>H NMR



3ka-<sup>13</sup>C NMR





3la-<sup>13</sup>C NMR



# 3ma-<sup>1</sup>H NMR



3ma-<sup>13</sup>C NMR





3na-<sup>13</sup>C NMR





30a-<sup>13</sup>C NMR



# 3pa-<sup>1</sup>H NMR



3pa-<sup>13</sup>C NMR





3qa-<sup>13</sup>C NMR





3ra-<sup>13</sup>C NMR



# Part III HPLC Spectra 3aa' racemic mAU 450 350 300 250 200 150 100 50 Signal 2: DAD1 B, Sig=215,16 Ref=360,100 Peak RetTime Type Width Area Height Area # [min] [min] [mAU\*s] [mAU] % --- ---- ----- ------ ------- ------- 1 15.321 VV 0.4991 1.48723e4 439.13617 47.9078 2 17.320 VB 0.6142 1.61713e4 364.11127 52.0922 3.10436e4 803.24744 Totals : (R)-3aa' mAU 450



2.06325e4 468.93722



Totals :







3ba racemic



| Peak  | RetTime | Type | Width  | Area      | Height     | Area    |
|-------|---------|------|--------|-----------|------------|---------|
| #     | [min]   |      | [min]  | [mAU*s]   | [mAU]      | %       |
|       |         |      |        |           |            |         |
| 1     | 22.890  | VV   | 0.4776 | 3.27900e4 | 1046.23901 | 49.1391 |
| 2     | 24.208  | VB   | 0.5206 | 3.39389e4 | 998.34503  | 50.8609 |
| Total | .s :    |      |        | 6.67289e4 | 2044.58405 |         |









S32

```
Signal 3: DAD1 C, Sig=230,8 Ref=360,100
```

| Peak RetTime Type | Width  | Area      | Heiqht     | Area    |
|-------------------|--------|-----------|------------|---------|
| # [min]           | [min]  | [mAU*s]   | [mAU]      | %       |
| 1 22.431 VV       | 0.5082 | 4.96082e4 | 1506.26306 | 49.1938 |
| 2 23.744 VB       | 0.5531 | 5.12342e4 | 1419.52588 | 50.8062 |
| Totals :          |        | 1.00842e5 | 2925.78894 |         |





3da racemic



















| #     | [min]  |    | [min]  | [mAU*s]   | [mAU]      | 8       |
|-------|--------|----|--------|-----------|------------|---------|
|       |        |    |        |           |            |         |
| 1     | 24.124 | vv | 0.4870 | 5.32445e4 | 1683.29224 | 49.4414 |
| 2     | 25.136 | VP | 0.5205 | 5.44477e4 | 1594.15417 | 50.5586 |
|       |        |    |        |           |            |         |
| Total | ls :   |    |        | 1.07692e5 | 3277.44641 |         |

(R)-3ha











3ja racemic









Signal 4: DAD1 D, Sig=240,16 Ref=360,100

| Peak<br># | RetTime<br>[min] | Type     | Width<br>[min]   | Area<br>[mAU*s]             | Heiqht<br>[mAU]         | Area<br>%             |   |
|-----------|------------------|----------|------------------|-----------------------------|-------------------------|-----------------------|---|
| 1<br>2    | 32.654<br>34.181 | BV<br>VB | 0.7197<br>0.8525 | <br>5857.86914<br>1.10025e5 | 127.11130<br>1973.31018 | <br>5.0550<br>94.9450 |   |
| Tota.     | ls :             |          |                  | 1.15883e5                   | 2100.42148              |                       | 9 |

















3na racemic



Signal 1: DAD1 A, Sig=206,4 Ref=360,100

| Peak  | RetTime | Type | Width  | Area      | Heiqht     | Area    |
|-------|---------|------|--------|-----------|------------|---------|
| #     | [min]   |      | [min]  | [mAU*s]   | [mAU]      | %       |
|       |         |      |        |           |            |         |
| 1     | 25.738  | VV   | 0.5413 | 3.71480e4 | 1043.61462 | 49.2132 |
| 2     | 27.476  | VB   | 0.6001 | 3.83358e4 | 993.68890  | 50.7868 |
| Total | ls :    |      |        | 7.54838e4 | 2037.30353 |         |











```
Signal 3: DAD1 C, Sig=230,8 Ref=360,100
```

| Peak H | RetTime | Type | Width  | Area      | Height     | Area    |
|--------|---------|------|--------|-----------|------------|---------|
| #      | [min]   |      | [min]  | [mAU*s]   | [mAU]      | %       |
| 1      | 25.818  | BB   | 0.5567 | 3.27718e4 | 904.54584  | 49.6236 |
| 2      | 29.459  | VB   | 0.6566 | 3.32690e4 | 781.55206  | 50.3764 |
| Totals | . :     |      |        | 6.60407e4 | 1686.09790 |         |













3qa racemic











S41

Signal 1: DAD1 A, Sig=206,4 Ref=360,100

| Peak Re | tTime | Type | Width  | Area       | Height     | Area    |
|---------|-------|------|--------|------------|------------|---------|
| # [     | min]  |      | [min]  | [mAU*s]    | [mAU]      | %       |
| 1 2     | 1.254 | VB   | 0.8226 | 6.47181e4  | 1027.80640 | 93.0412 |
| 2 2     |       | VB   | 0.6480 | 4840.41650 | 93.48956   | 6.9588  |
| Totals  |       |      |        | 6.95585e4  | 1121.29596 |         |

86%