Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

- 1. General experimental methods (S2).
- 2. General experimental procedure and characterization data (S3-S10).
- 3. ¹H and ¹³C NMR spectra of compounds **3** (S11–S56).

General experimental methods:

Unless otherwise stated, all commercial reagents were used as received. All solvents were dried and distilled according to standard procedures. Flash column chromatography was performed using silica gel (60-Å pore size, 32–63µm, standard grade). Analytical thin–layer chromatography was performed using glass plates pre-coated with 0.25 mm 230–400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~20 Torr at 25–35°C. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker DRX-400 spectrometer operating at 400 MHz and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants quoted in Hz. High resolution mass spectrometry (HRMS) spectra were obtained on a micrOTOF II Instrument.

General experimental procedure for the synthesis of sulfonated naphthols through a three-component reaction of naphthols **1**, sulfur dioxide, and aryldiazonium tetrafluoroborates **2**

2-Naphthol **1** (0.2 mmol), DABCO[•](SO₂)₂ (0.16 mmol), aryldiazonium tetrafluoroborate **2** (0.3 mmol) and FeCl₃ (10 mol %) were combined in a test tube. The test tube was evacuated and backfilled with N₂ three times before the addition of MeCN (4.0 mL). The mixture was then placed in oil bath and stirred for 8 hours at 50 °C. After the conversion was completed as indicated by TLC, the solvent was evaporated under reduced pressure. The residue was purified directly by flash column chromatography (EtOAc/*n*-hexane, 1:8) to give the corresponding product **3**.

1-tosylnaphthalen-2-ol (**3a**)¹

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.10 (s, 1H), 8.30 (d, J = 8.7 Hz, 1H), 7.88 (d, J = 9.0 Hz, 1H), 7.80 (d, J = 7.8 Hz, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.22 (s, 2H), 7.14 (d, J = 9.0 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 158.9, 144.8, 137.6, 130.1, 129.7, 129.3, 129.0, 128.9, 126.8, 124.5, 123.2, 121.6, 120.4, 115.2, 21.8.

1-(phenylsulfonyl)naphthalen-2-ol (**3b**)¹

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.09 (s, 1H), 8.31 (d, J = 8.7 Hz, 1H), 7.93 (t, J = 7.9 Hz, 3H), 7.70 (d, J = 8.0 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.50 - 7.41 (m, 3H), 7.32 (t, J = 7.4 Hz, 1H), 7.17 (d, J = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.2, 142.3, 137.8, 133.8, 129.7, 129.5, 129.3, 129.0, 128.96, 126.7, 124.6, 123.2, 120.4, 111.9.

1-((4-bromophenyl)sulfonyl)naphthalen-2-ol (**3c**)¹

¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.99 (s, 1H), 8.26 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 9.0 Hz, 1H), 7.79 (d, J = 7.8 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 7.9 Hz, 2H), 7.46 (t, J = 7.8 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.0, 141.0, 137.9, 132.5, 129.2, 129.0, 128.74, 128.73, 128.0, 125.1, 124.5, 122.7, 120.2.

1-((4-chlorophenyl)sulfonyl)naphthalen-2-ol (**3d**)¹

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.00 (s, 1H), 8.27 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 9.0 Hz, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 7.3 Hz, 1H), 7.43 (d, J = 8.5 Hz, 2H), 7.34 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.2, 140.7, 140.4, 138.1, 129.8, 129.5, 129.5, 129.2, 129.0, 128.2, 124.7, 122.9, 120.4.

1-((4-fluorophenyl)sulfonyl)naphthalen-2-ol (**3e**)¹

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.03 (s, 1H), 8.29 (d, *J* = 8.7 Hz, 1H), 8.00 – 7.89 (m, 3H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.19 – 7.11 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.0, 164.4, 159.1, 138.0, 129.7, 129.6 (d, *J* = 3.9 Hz), 129.4, 129.1, 129.0, 124.7, 123.0, 120.4, 116.8 (d, *J* = 23 Hz), 111.8.

6-hydroxy-5-(phenylsulfonyl)-2-naphthonitrile (3f)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.32 (s, 1H), 8.43 (d, *J* = 9.0 Hz, 1H), 8.06 (d, *J* = 1.2 Hz, 1H), 7.98 - 7.90 (m, 3H), 7.63 - 7.55 (m, 2H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 9.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.9, 156.9, 141.4, 137.3, 134.3, 134.1, 129.6, 129.5, 129.4, 127.9, 126.5, 124.1, 122.4, 118.4. HRMS (ESI) calcd for C₁₇H₁₁N₁O₃S: 332.0352 (M + Na⁺), found: 332.0352.

7-bromo-1-(phenylsulfonyl)naphthalen-2-ol (3g)¹

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.11 (s, 1H), 8.54 (s, 1H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.86 (d, *J* = 9.0 Hz, 1H), 7.60 - 7.47 (m, 4H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.17 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.3, 137.2, 136.6, 133.9, 130.4, 129.4, 128.8, 127.9, 127.5, 127.2, 126.6, 125.5, 123.7, 120.6.

1-(phenylsulfonyl)naphthalene-2,7-diol (**3h**)¹

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.00 (s, 1H), 7.92 (d, J = 7.7 Hz, 2H), 7.83 (d, J = 8.9 Hz, 1H), 7.70 (s, 1H), 7.60 (d, J = 8.7 Hz, 1H), 7.57 - 7.43 (m, 4H), 7.00 (d, J = 9.0 Hz, 1H), 6.91 (d, J = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.9, 156.4, 142.1, 137.6, 133.8, 131.4, 129.5, 126.6, 124.1, 120.6, 117.6, 115.7, 106.8.

6-bromo-1-(phenylsulfonyl)naphthalen-2-ol (**3i**)¹

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.07 (s, 1H), 8.21 (d, J = 9.2 Hz, 1H), 7.91 (d, J = 7.8 Hz, 2H), 7.86 – 7.79 (m, 2H), 7.58 – 7.44 (m, 4H), 7.19 (d, J = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.2, 142.0, 136.6, 134.0, 132.1, 131.2, 130.2, 129.6, 128.3, 126.7, 124.9, 121.7, 118.5, 112.4.

6-bromo-1-tosylnaphthalen-2-ol (3j)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.09 (s, 1H), 8.21 (d, *J* = 9.2 Hz, 1H), 7.83 (s, 1H), 7.81 – 7.75 (m, 3H), 7.49 (d, *J* = 9.2 Hz, 1H), 7.25 (d, *J* = 8.6 Hz, 2H), 7.17 (d, *J* = 9.1 Hz, 1H), 2.35 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 158.9, 145.1, 139.0, 136.4, 132.0, 131.1, 130.2, 130.2, 128.3, 126.8, 125.0, 121.7, 118.4, 112.8, 21.8. HRMS (ESI) calcd for C₁₇H₁₃BrO₃S: 398.9661 (M + Na⁺), found: 398.9669.

6-bromo-1-((4-bromophenyl)sulfonyl)naphthalen-2-ol (3k)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.97 (s, 1H), 8.17 (d, J = 9.2 Hz, 1H), 7.89 – 7.80 (m, 2H), 7.76 (d, J = 8.1 Hz, 2H), 7.60 (d, J = 7.7 Hz, 2H), 7.52 (d, J = 9.2 Hz, 1H), 7.19 (d, J = 9.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.2, 140.9, 136.9, 132.9, 132.3, 131.3, 130.2, 129.3, 128.2, 124.7, 121.7, 120.7, 118.6, 112.0. HRMS (ESI) calcd for C₁₆H₁₀Br₂O₃S: 462.8610 (M + Na⁺), found: 462.8633.

6-bromo-1-((4-chlorophenyl)sulfonyl)naphthalen-2-ol (3l)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.98 (s, 1H), 8.17 (d, *J* = 9.2 Hz, 1H), 7.87 - 7.80 (m, 4H), 7.52 (d, *J* = 9.2 Hz, 1H), 7.44 (d, *J* = 7.4 Hz, 2H), 7.19 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.2, 140.7, 140.4, 136.9, 132.3, 131.3, 130.3, 129.9, 128.2, 124.7, 121.7, 118.6, 112.0. HRMS (ESI) calcd for C₁₆H₁₀BrClO₃S: 418.9115 (M + Na⁺), found: 418.9081.

6-bromo-1-((4-fluorophenyl)sulfonyl)naphthalen-2-ol (3m)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.98 (s, 1H), 8.17 (d, J = 9.2 Hz, 1H), 7.83 (dd, J = 9.2, 4.2 Hz, 4H), 7.52 (d, J = 9.2 Hz, 1H), 7.44 (d, J = 7.4 Hz, 2H), 7.19 (d, J = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.2, 140.5, 136.9, 132.3, 131.3, 130.2, 129.9, 128.2, 124.7, 121.7, 118.6, 112.0. HRMS (ESI) calcd for C₁₆H₁₀BrFO₃S: 402.9410 (M + Na⁺), found: 402.9426.

6-bromo-1-((4-(trifluoromethyl)phenyl)sulfonyl)naphthalen-2-ol (3n)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.95 (s, 1H), 8.18 (d, *J* = 9.2 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 9.7 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 9.2 Hz, 1H), 7.21 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.6, 145.4, 140.5, 137.2, 135.6 (t, *J* = 33 Hz), 132.5, 131.4, 130.3, 128.1, 127.3, 126.8, 124.5, 121.7, 118.4 111.4. HRMS (ESI) calcd for C₁₇H₁₁BrF₃O₃S⁺: 428.9402 (M-H⁺), found: 428.9405.

6-bromo-1-((4-(tert-butyl)phenyl)sulfonyl)naphthalen-2-ol (30)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.10 (s, 1H), 8.27 (d, *J* = 9.2 Hz, 1H), 7.85 – 7.78 (m, 4H), 7.52 (d, *J* = 9.2 Hz, 1H), 7.47 (d, *J* = 7.7 Hz, 2H), 7.18 (d, *J* = 9.0 Hz, 1H), 1.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.0, 158.0, 138.9, 136.4, 132.0, 131.1, 130.3, 128.4, 126.6, 126.6, 125.1, 121.7, 118.4, 112.8, 35.5, 31.2. HRMS (ESI) calcd for C₂₀H₂₀BrO₃S⁺: 419.0311 (M + H⁺), found: 419.0325.

6-bromo-1-((4-methoxyphenyl)sulfonyl)naphthalen-2-ol (3p)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.11 (s, 1H), 8.24 (d, *J* = 9.2 Hz, 1H), 7.87 - 7.82 (m, 3H), 7.78 (d, *J* = 9.1 Hz, 1H), 7.53 - 7.48 (m, 1H), 7.17 (d, *J* = 9.1 Hz, 1H), 6.94 - 6.89 (m, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.9, 158.7, 136.2, 133.5, 131.9, 131.1, 130.3, 129.0, 128.2, 124.9, 121.7, 118.4, 114.7, 113.2, 55.9. HRMS (ESI) calcd for C₁₇H₁₃BrO₄S: 392.9791 (M + H⁺), found: 392.9796.

6-bromo-1-((4-nitrophenyl)sulfonyl)naphthalen-2-ol (3q)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.87 (s, 1H), 8.30 (d, J = 7.7 Hz, 2H), 8.16 (d, J = 9.2 Hz, 1H), 8.08 (d, J = 7.7 Hz, 2H), 7.91 – 7.85 (m, 2H), 7.54 (d, J = 9.2 Hz, 1H), 7.22 (d, J = 9.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.8, 147.3, 137.6, 132.6, 131.6, 130.3, 128.0, 126.0, 124.9, 124.3, 121.7, 118.9, 117.2, 110.9. HRMS (ESI) calcd for C₁₆H₁₀BrN₁O₅S: 405.9379 (M-H⁺), found: 405.9391.

ethyl 4-((6-bromo-2-hydroxynaphthalen-1-yl)sulfonyl)benzoate (3r)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.98 (s, 1H), 8.19 - 8.09 (m, 3H), 7.96 (d, J = 7.7 Hz, 2H), 7.84 (d, J = 9.8 Hz, 2H), 7.50 (d, J = 9.2 Hz, 1H), 7.20 (d, J = 9.1 Hz, 1H), 4.35 (q, J = 7.0 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 164.9,

159.5, 145.5, 137.0, 135.4, 132.3, 131.3, 130.7, 130.2, 128.2, 126.7, 124.7, 121.7, 118.7, 111.7, 62.0, 14.4. HRMS (ESI) calcd for $C_{19}H_{16}BrO_5S^+$: 434.9896 (M + H⁺), found: 434.9873.

methyl 3-((6-bromo-2-hydroxynaphthalen-1-yl)sulfonyl)benzoate (3s)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.99 (s, 1H), 8.56 (s, 1H), 8.23 - 8.16 (m, 2H), 8.06 (d, J = 7.6 Hz, 1H), 7.84 (d, J = 10.1 Hz, 2H), 7.60 – 7.49 (m, 2H), 7.21 (d, J = 9.2 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.2, 159.5, 142.7, 137.0, 134.9, 132.3, 131.9, 131.4, 130.7, 130.3, 129.9, 127.8, 124.7, 121.8, 118.6, 53.0. HRMS (ESI) calcd for C₁₈H₁₃BrO₅S: 442.9559 (M + Na⁺), found: 442.9557.

6-bromo-1-(*o*-tolylsulfonyl)naphthalen-2-ol (**3t**)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.09 (s, 1H), 8.25 (d, *J* = 7.6 Hz, 1H), 7.96 (d, *J* = 9.1 Hz, 1H), 7.84 (d, *J* = 9.3 Hz, 2H), 7.49 - 7.41 (m, 3H), 7.22 - 7.16 (m, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.6, 140.0, 138.2, 136.6, 134.1, 133.3, 131.9, 131.2, 130.2, 128.9, 126.7, 124.8, 121.7, 118.4, 19.3. HRMS (ESI) calcd for C₁₇H₁₃BrO₃S: 398.9661 (M + Na⁺), found: 398.9658.

6-bromo-1-((2-chlorophenyl)sulfonyl)naphthalen-2-ol (3u)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.91 (s, 1H), 8.48 (d, J = 7.2 Hz, 1H), 7.93 (d, J =

9.2 Hz, 1H), 7.84 (d, J = 9.0 Hz, 2H), 7.59 – 7.48 (m, 2H), 7.46 - 7.37 (m, 2H), 7.18 (d, J = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.6, 139.0, 136.9, 135.1, 132.5, 131.9, 131.3, 130.9, 130.1, 127.9, 127.4, 124.4, 121.7, 118.2, 115.0. HRMS (ESI) calcd for C₁₆H₁₀BrClO₃S: 418.9115 (M + Na⁺), found: 418.9101.

6-bromo-1-(m-tolylsulfonyl)naphthalen-2-ol (3v)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.08 (s, 1H), 8.21 (d, J = 9.2 Hz, 1H), 7.86 - 7.79 (m, 2H), 7.70 (d, J = 5.5 Hz, 2H), 7.53 - 7.48 (m, 1H), 7.35 (d, J = 4.7 Hz, 2H), 7.19 (d, J = 9.1 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.1, 141.8, 140.0, 136.5, 134.9, 132.0, 131.2, 130.2, 129.4, 128.3, 126.9, 125.0, 123.9, 121.7, 118.4, 21.6. HRMS (ESI) calcd for C₁₇H₁₃BrO₃S: 398.9661 (M + Na⁺), found: 398.9644.

1-(naphthalen-1-ylsulfonyl)naphthalen-2-ol (3w)

¹H NMR (400 MHz, CDCl₃) δ = 11.30 (s, 1H), 8.48 (d, *J* = 7.4, 1H), 8.38 (d, *J* = 8.6, 1H), 8.18 (d, *J* = 8.7, 1H), 8.04 (d, *J* = 8.2, 1H), 7.91 (d, *J* = 9.1, 1H), 7.85 (d, *J* = 8.1, 1H), 7.65 (d, *J* = 8.0, 1H), 7.61 – 7.54 (m, 2H), 7.49 (t, *J* = 7.5, 1H), 7.33 (t, *J* = 7.8, 1H), 7.25 (t, *J* = 8.4, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 159.1, 137.8, 137.0, 135.5, 134.5, 129.7, 129.5, 129.3, 129.0, 128.9, 128.8, 128.6, 127.2, 124.5, 124.2, 123.3, 123.3, 120.5, 112.4. HRMS (ESI) calcd for C₂₀H₁₄O₃S: 335.0736 (M + H⁺), found: 335.0736.

Reference:

 F. Xiao, S. Chen, J. Tian, H. Huang, Y. Liu and G. Deng, *Green Chem.* 2016, 18, 1538.

