Supporting Information for

A Versatile Rhodium(III) Catalytic System for Direct Acyloxylation of Aryl and Alkenyl C-H Bonds with Carboxylic Acids

Changjun Chen, Yixiao Pan, Haoqiang Zhao, Xin Xu, Jianbin Xu, Zongyao Zhang, Siqi Xi, Lijin Xu*and Huanrong Li*

Department of Chemistry, Renmin University of China, Beijing 100872, China.

Email: 20050062@ruc.edu.cn; hrli@ruc.edu.cn

1. General information	2
2. Optimization of reaction conditions	2
3. The general procedure	3
4. Characterization of products	4
5. The mechanistic studies	29
6. References	
7. ¹ H and ¹³ C NMR spectra of products	
8. X-ray Data	142

1. General information:

Unless otherwise noted, all experiments were carried out under nitrogen atmosphere, and all commercially available chemicals were used as received without further purification. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Model Advance DMX 400 Spectrometer (¹H 400 MHz and ¹³C 100.6 MHz, respectively). Chemical shifts (δ) are given in ppm and are referenced to residual solvent peaks, and coupling constants (*J*) were reported in Hertz. 2-phenylpyridine (**1a-1**),^[1] 2-phenoxypyridine (**3o**),^[2a] *N*-phenylpyridin-2-amine (**3p**),^[2b] 2-phenylpyrimidine (**3q**),^[2c] 2-(1H-pyrrol-1-yl)pyrimidine (**3r**),^[2d] 1-phenyl-1*H*-pyrazole (**3s**),^[2d] 2-phenyl-4,5-dihydrooxazole (**3w**),^[3] 9-isopropyl-6-phenyl-9*H*-purine (**5x-z**),^[4] *N*-methyl-*N*-(1-phenylvinyl)acetamide (**9a**),^[5] 2-(1-phenylvinyl)pyridine (**9b**),^[6] (8*R*,9*S*,13*S*,14*S*)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-

cyclopenta[*a*]phenanthrene-3-carboxylic acid,^[7] 2-(phenyl- d_5)pyridine ([D₅]-1c),^[8] and [Cp*Rh(CH₃CN)₃][SbF₆]₂,^[9] were prepared according to the previous reports.

2. Optimization of reaction conditions

Entry	Catalyst	Solvent	Oxidant	Yield(%) ^b
1	[Cp*RhCl ₂] ₂	DCE	AgF	0
2	[Cp*Rh(CH ₃ CN) ₃][SbF ₆] ₂	DCE	AgF	93
3	RhCl ₃ .xH ₂ O	DCE	AgF	NR
4	Rh(acac) ₃	DCE	AgF	NR
5	[Rh(cod)Cl] ₂	DCE	AgF	NR
6	Rh(PPh ₃) ₃ Cl	DCE	AgF	NR
7	$Pd(OAc)_2$	DCE	AgF	NR
8	[Ru(<i>p</i> -cymen)Cl ₂] ₂	DCE	AgF	NR
9	[Cp*IrCl ₂] ₂	DCE	AgF	NR
10	[Cp*Rh(CH ₃ CN) ₃][SbF ₆] ₂	DME	AgF	30
11	[Cp*Rh(CH ₃ CN) ₃][SbF ₆] ₂	toluene	AgF	18
12	[Cp*Rh(CH ₃ CN) ₃][SbF ₆] ₂	MeOH	AgF	NR
13	[Cp*Rh(CH ₃ CN) ₃][SbF ₆] ₂	EtOH	AgF	NR
14	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	iPrOH	AgF	NR
15	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	CH ₃ CN	AgF	NR
16	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DMF	AgF	NR
17	[Cp*Rh(CH ₃ CN) ₃][SbF ₆] ₂	PhCl	AgF	NR
18	[Cp*Rh(CH ₃ CN) ₃][SbF ₆] ₂	DCE	Ag ₂ O	68
19	[Cp*Rh(CH ₃ CN) ₃][SbF ₆] ₂	DCE	Ag ₂ CO ₃	48

20	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	Ag_2SO_4	NR
21	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	AgNO ₃	NR
22	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	AgOAc	NR
23	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	Cu(OAc) ₂ .H ₂ O	NR
24	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	$Cu(OAc)_2$	NR
25	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	$K_2S_2O_8$	NR
26	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	$(NH_4)_2S_2O_8$	NR
27	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	PhI(OAc) ₂	NR
28	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	Oxone	NR
29	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	BQ	NR
30	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	$O_2(1am)$	NR
31°	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	AgF	60
32 ^d	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	AgF	63
33 ^e	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	AgF	84
34 ^f	[Cp*RhCl ₂] ₂ /AgSbF ₆	DCE	AgF	91
35	none	DCE	AgF	NR
36	$[Cp*Rh(CH_3CN)_3][SbF_6]_2$	DCE	none	NR

^aReaction Conditions: **1a** (0.3 mmol.), **2a** (0.6 mmol), [Rh] (1.5 mol%), oxidant (0.60 mmol), solvent (1.5 mL), 120 °C, 20 h. NR: no reaction. ^b Isolated yield. ^c [Cp*Rh(CH₃CN)₃][SbF₆]₂ (1.0 mol%) was employed. ^d Reaction temperature 110 °C. ^e Reaction temperature 130 °C. ^f [Cp*RhCl₂]₂ (0.75 mol%) and AgSbF₆ (3.00 mol%) were employed.

3. The general procedure

(a) The general procedure for direct acyloxylation of C-H bonds

To an oven-dried pressure tube were sequentially added arylpyridine **1** (0.30 mmol), carboxylic acid **2** (0.60 mmol), $[Cp*Rh(CH_3CN)_3][SbF_6]_2$ (3.79 mg, 0.0045 mmol), AgF (76.12 mg, 0.60 mmol) and 1,2-dichloroethane (1.50 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously at 120 °C for 20 h in an oil bath under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with saturated aqueous NaHCO₃ (10.0 mL) and extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give the pure product.

(b) Experimental procedures for grammar-scale transformation reaction

To an oven-dried pressure tube were sequentially added 2-(*m*-tolyl)pyridine **1a** (1.02 g, 6.0 mmol), pivalic acid **2a** (1.23 g, 12.0 mmol), [Cp*Rh(CH₃CN)₃][SbF₆]₂ (75.87 mg, 0.090 mmol), AgF (1.52 g, 12.0 mmol) and 1,2-dichloroethane (30.0 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously at 120 °C for 24 h in an oil bath under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with saturated aqueous NaHCO₃ (50.0 mL) and extracted with CH₂Cl₂ (50.0 mL × 3). The combined organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by vacuum

evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give pure **3aa** (light yellow oil, 1.42 g, 88%).

4. Characterization of products

4-Methyl-2-(pyridin-2-yl)phenyl pivalate^[10] **(3aa)**, yellow oil, 75.3 mg, yield: 93%; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dq, J = 4.9, 0.9 Hz, 1H), 7.70 (dd, J = 7.7, 1.8 Hz, 1H), 7.53-7.43 (m, 2H), 7.34-7.13 (m, 2H), 7.00 (d, J = 8.2 Hz, 1H), 2.42 (s, 3H), 1.22 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.90, 155.91, 149.53, 146.12, 135.86, 135.72, 133.18, 131.17, 130.17, 124.13, 122.66, 122.07, 38.96, 27.09, 20.88; HRMS (ESI) calcd. for C₁₇H₂₀NO₂ [M+H]⁺: 270.1489, found: 270.1483.

4-Methyl-2-(pyridin-2-yl)phenyl acetate ^[11](**3ab**), yellow oil, 58.1 mg, yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 8.69 (dd, J = 4.9, 0.9 Hz, 1H), 7.73 (d, J = 1.9 Hz, 1H), 7.55-7.48 (m, 2H), 7.25-7.18 (m, 2H), 7.04 (d, J = 8.2 Hz, 1H), 2.40 (s, 3H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.62, 155.87, 149.59, 145.85, 136.17, 136.07, 132.71, 131.25, 130.31, 123.59, 122.89, 122.11, 20.96, 20.91; HRMS (ESI) calcd. for C₁₄H₁₄NO₂ [M+H]⁺: 228.1019, found: 228.1016.

4-Methyl-2-(pyridin-2-yl)phenyl propionate (3ac), yellow oil, 58.3 mg, yield: 79%; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (dd, J = 4.8, 0.9 Hz, 1H), 7.79-7.62 (m, 1H), 7.50 (d, J = 1.1 Hz, 2H), 7.21 (d, J = 7.6 Hz, 2H), 7.04 (d, J = 8.2 Hz, 1H), 2.45 (q, J = 7.6 Hz, 2H), 2.40 (s, 3H), 1.13 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.96, 155.91, 149.55, 145.88, 136.08, 135.92, 132.77, 131.21, 130.27, 123.72, 122.87, 122.06, 27.69, 20.90, 9.00; HRMS (ESI) calcd. for C₁₅H₁₆NO₂ [M+H]⁺: 242.1176, found: 242.1172.

4-Methyl-2-(pyridin-2-yl)phenyl decanoate (3ad), yellow oil, 76.5 mg, yield: 75% ¹H NMR (600 MHz, CDCl₃) δ 8.68 (dt, *J* = 4.7, 1.4 Hz, 1H), 7.70 (td, *J* = 7.7, 1.9 Hz, 1H), 7.62-7.40 (m, 2H), 7.31-7.15 (m, 2H), 7.03 (d, *J* = 8.2 Hz, 1H), 2.44-2.35 (m, 5H), 1.60 (t, J = 7.3 Hz, 2H), 1.33-1.22 (m, 12H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.25, 155.96, 149.52, 145.91, 136.04, 135.85, 132.87, 131.22, 130.23, 123.79, 122.88, 122.03, 34.29, 31.86, 29.38, 29.23, 29.06, 24.74, 22.65, 20.86, 14.08; HRMS (ESI) calcd. for C₂₂H₃₀NO₂ [M+H]⁺: 340.2271, found: 340.2266.

4-Methyl-2-(pyridin-2-yl)phenyl isobutyrate (3ae), yellow oil, 66.8 mg, yield: 87% ¹H NMR (400 MHz, CDCl₃) δ 8.68 (dd, J = 4.9, 0.9 Hz, 1H), 7.70 (td, J = 7.7, 1.9 Hz, 1H), 7.54-7.43 (m, 2H), 7.25-7.16 (m, 2H), 7.01 (d, J = 8.2 Hz, 1H), 2.68 (p, J = 7.0 Hz, 1H), 2.40 (s, 3H), 1.16 (d, J = 7.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 175.51, 155.92, 149.53, 145.88, 136.00, 135.86, 133.00, 131.21, 130.23, 123.97, 122.77, 122.09, 34.12, 20.90, 18.83; HRMS (ESI) calcd. for C₁₆H₁₈NO₂ [M+H]⁺: 256.1332, found: 256.1328.

4-Methyl-2-(pyridin-2-yl)phenyl 2-methylbutanoate (3af), yellow oil, 63.1 mg, yield: 78%; ¹H NMR (600 MHz, CDCl₃) δ 8.69 (dd, J = 4.9, 0.9 Hz, 1H), 7.69 (td, J = 7.7, 1.8 Hz, 1H), 7.54-7.40 (m, 2H), 7.24-7.16 (m, 2H), 7.01 (d, J = 8.2 Hz, 1H), 2.49 (q, J = 7.0 Hz, 1H), 2.39 (s, 3H), 1.72-1.65 (m, 1H), 1.52-1.42 (m, 1H), 1.13 (d, J = 7.0 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.02, 155.90, 149.46, 145.90, 136.04, 135.80, 133.03, 131.23, 130.22, 124.09, 122.79, 122.10, 41.12, 26.50, 20.87, 16.47, 11.51; HRMS (ESI) calcd. for C₁₇H₂₀NO₂ [M+H]⁺: 270.1489, found: 270.1485.

4-Methyl-2-(pyridin-2-yl)phenyl 2-methylpentanoate (3ag), yellow oil, 58.7 mg, yield: 69%; ¹H NMR (600 MHz, CDCl₃) δ 8.68 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.69 (td, J = 7.7, 1.9 Hz, 1H), 7.54-7.42 (m, 2H), 7.26-7.18 (m, 2H), 7.00 (d, J = 8.2 Hz, 1H), 2.57 (q, J = 7.0 Hz, 1H), 2.39 (s, 3H), 1.73-1.58 (m, 1H), 1.44-1.33 (m, 1H), 1.28 – 1.20 (m, 2H), 1.12 (d, J = 7.0 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.17, 155.96, 149.49, 145.91, 135.97, 135.78, 133.10, 131.22, 130.18, 124.08, 122.78, 122.05, 39.39, 35.65, 20.86, 20.30, 16.88, 13.95; HRMS (ESI) calcd. for C₁₈H₂₂NO₂ [M+H]⁺: 284.1645, found: 284.1644.

4-Methyl-2-(pyridin-2-yl)phenyl 2-propylpentanoate (3ah), yellow oil, 66.4 mg,

yield: 71%; ¹H NMR (600 MHz, CDCl₃) δ 8.73-8.66 (m, 1H), 7.69 (td, *J* = 7.7, 1.8 Hz, 1H), 7.58-7.48 (m, 1H), 7.45 (d, *J* = 2.4 Hz, 1H), 7.25-7.19 (m, 2H), 7.00 (d, *J* = 8.2 Hz, 1H), 2.52-2.44 (m, 1H), 2.39 (s, 3H), 1.61-1.55 (m, 2H), 1.43-1.37 (m, 2H), 1.24-1.14 (m, 4H), 0.84 (t, *J* = 7.3 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 174.76, 156.01, 149.49, 145.86, 135.94, 135.73, 133.23, 131.27, 130.13, 124.29, 122.81, 122.02, 45.25, 34.35, 20.86, 20.51, 14.03; HRMS (ESI) calcd. for C₂₀H₂₆NO₂ [M+H]⁺: 312.1958, found: 312.1944.

4-Methyl-2-(pyridin-2-yl)phenyl cyclopropanecarboxylate (3ai), yellow oil, 68.5 mg, yield: 90%; ¹H NMR (600 MHz, CDCl₃) δ 8.70 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.71 (td, J = 7.7, 1.9 Hz, 1H), 7.59-7.43 (m, 2H), 7.25-7.16 (m, 2H), 7.05 (d, J = 8.2 Hz, 1H), 2.40 (s, 3H), 1.79-1.69 (m, 1H), 1.07-0.96 (m, 2H), 0.94-0.82 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 173.33, 155.86, 149.54, 145.90, 136.02, 135.85, 132.82, 131.18, 130.22, 123.78, 122.82, 122.01, 20.88, 13.04, 8.76; HRMS (ESI) calcd. for C₁₆H₁₆NO₂ [M+H]⁺: 254.1176, found: 254.1173.

4-Methyl-2-(pyridin-2-yl)phenyl cyclobutanecarboxylate (3aj), yellow oil, 65.9 mg, yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.73 (td, J = 7.7, 1.8 Hz, 1H), 7.54-7.47 (m, 2H), 7.28-7.21 (m, 2H), 7.05 (d, J = 8.2 Hz, 1H), 3.28 (td, J = 8.5, 1.1 Hz, 1H), 2.42 (s, 3H), 2.24-2.15 (m, 4H), 2.01-1.94 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 173.36, 152.77, 149.26, 147.44, 146.96, 135.82, 130.87, 128.78, 127.76, 125.38, 122.39, 120.19, 37.81, 29.71, 24.97, 18.39; HRMS (ESI) calcd. for C₁₇H₁₈NO₂ [M+H]⁺: 268.1332, found: 268.1326.

4-Methyl-2-(pyridin-2-yl)phenyl cyclohexanecarboxylate (3ak), yellow oil, 78.1 mg, yield: 88%; ¹H NMR (400 MHz, CDCl₃) δ 8.78-8.67 (m, 1H), 7.73 (td, *J* = 7.7, 1.8 Hz, 1H), 7.55-7.45 (m, 2H), 7.27-7.21 (m, 2H), 7.02 (d, *J* = 8.2 Hz, 1H), 2.41 (s, 3H), 1.95-1.89 (m, 2H), 1.75 (dd, *J* = 8.5, 3.1 Hz, 2H), 1.66 (s, 1H), 1.46-1.41 (m, 2H), 1.32-1.22 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 174.52, 155.77, 149.37, 145.89, 137.67,36.20, 135.80, 131.24, 130.29, 124.10, 122.79, 122.19, 43.18, 28.79, 25.66, 25.32, 20.88; HRMS (ESI) calcd. for C₁₉H₂₂NO₂ [M+H]⁺: 296.1645, found: 296.1637.

4-Methyl-2-(pyridin-2-yl)phenyl tetrahydrofuran-2-carboxylate (3al), yellow oil,

68.1 mg; yield: 80%; ¹H NMR (600 MHz, CDCl₃) δ 8.71 (dd, J = 4.9, 0.9 Hz, 1H), 7.74 (dd, J = 7.7, 1.8 Hz, 1H), 7.48 (dt, J = 7.9, 1.1 Hz, 1H), 7.44 (d, J = 2.2 Hz, 1H), 7.27 (s, 1H), 7.24-7.18 (m, 1H), 7.04 (d, J = 8.2 Hz, 1H), 3.99-3.95 (m, 2H), 3.84 (d, J = 9.1 Hz, 2H), 3.21 (ddt, J = 9.1, 8.0, 6.2 Hz, 1H), 2.40 (s, 3H), 2.17-2.10 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 172.24, 155.76, 149.22, 145.66, 137.67, 136.58, 132.53, 131.29, 130.43, 123.99, 122.69, 122.39, 70.05, 68.20, 43.81, 29.42, 20.87; HRMS (ESI) calcd. for C₁₇H₁₈NO₃ [M+H]⁺: 284.1281, found: 284.1275.

4-Methyl-2-(pyridin-2-yl)phenyl tetrahydro-2H-pyran-4-carboxylate (3am), yellow oil, 77.8 mg, yield: 87%; ¹H NMR (600 MHz, CDCl₃) δ 8.70 (d, *J* = 4.0 Hz, 1H), 7.73 (td, *J* = 7.7, 1.8 Hz, 1H), 7.49-7.42 (m, 2H), 7.31-7.18 (m, 2H), 7.02 (d, *J* = 8.2 Hz, 1H), 3.93 (s, 2H), 3.43-3.40 (m, 2H), 2.70-2.62 (m, 1H), 2.39 (s, 3H), 1.81 (d, *J* = 2.7 Hz, 2H), 1.75-1.68 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 172.83, 155.81, 149.26, 145.71, 136.38, 136.01, 132.70, 131.27, 130.35, 124.00, 122.70, 122.30, 66.91, 40.07, 28.42, 20.86; HRMS (ESI) calcd. for C₁₈H₂₀NO₃ [M+H]⁺: 298.1438, found: 298.1431.

4-Methyl-2-(pyridin-2-yl)phenyl-1-acetylpiperidine-3-carboxylate (3an), yellow oil, 82.3 mg, yield: 81%; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (dd, *J* = 4.9, 1.5 Hz, 1H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.49-7.40 (m, 2H), 7.23 (ddd, *J* = 9.9, 7.9, 2.4 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 1H), 4.34-4.28 (m, 1H), 3.73 (d, *J* = 13.7 Hz, 1H), 3.16-3.08 (m, 1H), 2.81 (t, *J* = 2.7 Hz, 1H), 2.69-2.62 (m, 1H), 2.39 (s, 3H), 2.08 (s, 3H), 1.91 (dd, *J* = 9.4, 4.2 Hz, 2H), 1.70-1.58 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.64, 169.00, 155.88, 149.33, 145.55, 136.36, 136.15, 132.80, 131.28, 130.34, 123.87, 122.68, 122.32, 45.42, 40.66, 28.10, 21.38, 20.88; HRMS (ESI) calcd. for C₂₀H₂₃N₂O₃ [M+H]⁺: 339.1703, found: 339.1764.

1-(*tert***-Butyl) 4-(4-methyl-2-(pyridin-2-yl)phenyl) Piperidine-1,4-dicarboxylate (3ao),** yellow oil, 101.2 mg, yield: 85%; ¹H NMR (600 MHz, CDCl₃) δ 8.74-8.63 (m, 1H), 7.72 (td, J = 7.7, 1.8 Hz, 1H), 7.49-7.41 (m, 2H), 7.27-7.19 (m, 2H), 7.00 (d, J = 8.2 Hz, 1H), 3.97 (s, 2H), 2.84 (d, J = 11.9 Hz, 2H), 2.64-2.54 (m, 1H), 2.39 (s, 3H), 1.88 – 1.82 (m, 2H), 1.64-1.57 (m, 2H), 1.45 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 172.97, 155.89, 154.66, 149.36, 145.67, 136.27, 136.03, 132.83, 131.26, 130.31, 123.90, 122.71, 122.25, 79.65, 62.13, 41.09, 28.43, 27.77, 20.86; HRMS (ESI) calcd. for C₂₃H₂₉N₂O₄ [M+H]⁺: 397.2122, found: 397.2121.

1-(*tert*-**Butyl) 2-**(**4-methyl-2-**(**pyridin-2-yl**)**phenyl**) **piperidine-1,2-dicarboxylate** (**3ap**), yellow oil, 92.9 mg, yield: 78%; ¹H NMR (600 MHz, CDCl₃) δ 8.68 (d, *J* = 4.8 Hz, 1H), 7.79-7.66 (m, 1H), 7.56-7.43 (m, 2H), 7.23 (dd, *J* = 7.6, 4.7 Hz, 2H), 7.03 (dd, *J* = 29.2, 8.3 Hz, 1H), 4.01-3.80 (m, 1H), 2.88 (d, *J* = 112.3 Hz, 1H), 2.40 (s, 3H), 2.24 – 2.10 (m, 1H), 1.66 (ddd, *J* = 13.7, 6.2, 3.6 Hz, 1H), 1.60-1.51 (m, 2H), 1.44 (s, 9H), 1.38 (d, *J* = 16.9 Hz, 2H), 1.07 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 170.88, 155.79, 155,61, 149.59, 145.77, 136.22, 133.01, 131.43, 131.28, 130.21, 124.16, 122.83, 122.14, 80.00, 54.87, 42.05, 28.35, 26.56, 24.79, 20.85, 20.66; HRMS (ESI) calcd. for C₂₃H₂₉N₂O₄ [M+H]⁺: 397.2122, found: 397.2118.

4-Methyl-2-(pyridin-2-yl)phenyl 2,2-dimethylbutanoate (3aq), yellow oil, 61.3 mg, yield: 72%; ¹H NMR (600 MHz, CDCl₃) δ 8.68 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.68 (dd, J = 7.7, 1.8 Hz, 1H), 7.50-7.42 (m, 2H), 7.22 (d, J = 1.1 Hz, 2H), 6.98 (d, J = 8.2 Hz, 1H), 2.39 (s, 3H), 1.59 (d, J = 7.5 Hz, 2H), 1.15 (s, 6H), 0.78 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.33, 155.97, 149.50, 146.14, 135.83, 135.64, 133.27, 131.20, 130.12, 124.25, 122.71, 122.05, 42.83, 33.14, 24.57, 20.85, 9.09; HRMS (ESI) calcd. for C₁₈H₂₂NO₂ [M+H]⁺: 284.1645, found: 284.1641.

4-Methyl-2-(pyridin-2-yl)phenyl adamantane-1-carboxylate (3ar), yellow oil, 83.2 mg, yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 4.7 Hz, 1H), 7.71 (t, J = 7.7 Hz, 1H), 7.49 (d, J = 6.8 Hz, 2H), 7.25-7.16 (m, 2H), 6.98 (d, J = 8.2 Hz, 1H), 2.41 (s, 3H), 2.03 (s, 3H), 1.91 (s, 6H), 1.72 (q, J = 12.5 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 176.09, 155.81, 149.50, 146.08, 135.90, 135.69, 133.13, 131.17, 130.21, 124.21, 122.76, 122.11, 40.90, 38.66, 36.40, 27.85, 20.89; HRMS (ESI) calcd. for C₂₃H₂₆NO₂ [M+H]⁺: 348.1958, found: 348.1954.

4-Methyl-2-(pyridin-2-yl)phenyl 3,3,3-trifluoropropanoate (3as), yellow oil, 53.2 mg, yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ 8.69 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.77 (td, J = 7.7, 1.9 Hz, 1H), 7.54-7.41 (m, 2H), 7.30-7.21 (m, 2H), 7.07 (s, 1H), 3.31 (q, J = 10.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.84, 155.57, 149.48, 145.10, 136.78, 136.49, 132.42, 131.31, 130.43, 123.52, 122.70, 122.33, 39.63,

20.94; HRMS (ESI) calcd. for C₁₅H₁₃F₃NO₂ [M+H]⁺: 296.0893, found: 296.0891.

Ethyl (4-methyl-2-(pyridin-2-yl)phenyl) malonate (3at), yellow oil, 53.3 mg, yield: 41.4%; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.76 (td, J = 7.7, 1.8 Hz, 1H), 7.49 (dt, J = 7.9, 1.1 Hz, 1H), 7.32-7.25 (m, 3H), 7.25-7.15 (m, 1H), 4.07 (q, J = 7.1 Hz, 2H), 3.79 (s, 2H), 2.41 (s, 3H), 1.17 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.08, 159.57, 148.96, 140.28, 136.97, 136.34, 131.19, 130.60, 129.43, 129.25, 123.95, 121.71, 60.52, 38.91, 21.08, 14.17; HRMS (ESI) calcd. for C₁₇H₁₈NO₄ [M+H]⁺: 300.1230, found: 300.1234.

4-Methyl-2-(pyridin-2-yl)phenyl 4-oxopentanoate (3au), yellow oil, 64.7 mg, yield: 76%; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.77 (td, J = 7.8, 1.8 Hz, 1H), 7.57-7.44 (m, 2H), 7.32-7.17 (m, 2H), 7.05 (d, J = 8.2 Hz, 1H), 2.75-2.69 (m, 4H), 2.39 (s, 3H), 2.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.90, 177.94, 157.85, 157.57, 145.85, 137.72, 132.31, 127.74, 126.27, 121.40, 118.98, 118.32, 37.71, 29.80, 27.77, 20.73; HRMS (ESI) calcd. for C₁₇H₁₈NO₃ [M+H]⁺: 284.1281, found: 284.1275.

4-Methyl-2-(pyridin-2-yl)phenyl 5-chloropentanoate (3av), yellow oil, 53.3 mg, yield: 56 %; ¹H NMR (600 MHz, CDCl₃) δ 8.68 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.72 (td, J = 7.7, 1.9 Hz, 1H), 7.52-7.46 (m, 2H), 7.28-7.20 (m, 2H), 7.03 (d, J = 8.2 Hz, 1H), 4.05 (t, J = 6.3 Hz, 2H), 2.40 (s, 3H), 2.37-2.30 (m, 2H), 1.70-1.65 (m, 2H), 1.61 (dt, J = 6.8, 1.9 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 173.15, 155.99, 149.49, 145.76, 136.21, 136.05, 132.76, 131.26, 130.32, 123.75, 122.84, 122.13, 44.44, 31.85, 27.96, 22.25, 21.24; HRMS (ESI) calcd. for C₁₇H₁₉ClNO₂ [M+H]⁺: 304.1099, found: 304.1086.

4-Methyl-2-(pyridin-2-yl)phenyl 2-phenoxyacetate (3aw), yellow oil, 49.2 mg, yield: 52%; ¹H NMR (600 MHz, CDCl₃) δ 8.50 (dd, J = 5.0, 0.9 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.85 – 7.79 (m, 1H), 7.59 (d, J = 2.1 Hz, 1H), 7.34-7.28 (m, 2H), 7.22 (ddd, J = 7.5, 5.0, 1.1 Hz, 1H), 7.12 (dd, J = 8.3, 2.1 Hz, 1H), 7.04-6.99 (m, 1H), 6.93 (t, J = 8.3 Hz, 3H), 4.68 (s, 2H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 157.89,

157.62, 157.43, 145.85, 137.73, 132.37, 129.69, 127.76, 126.29, 122.08, 121.39, 119.02, 118.38, 114.67, 64.88, 20.76; HRMS (ESI) calcd. for $C_{20}H_{18}NO_3$ [M+H]⁺: 320.1281, found: 320.1256.

4-Methyl-2-(pyridin-2-yl)phenyl 2-(4-chlorophenoxy)-2-methylpropanoate (3ax), yellow oil, 61.8 mg, yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (dt, *J* = 5.2, 1.3 Hz, 1H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.84 (td, *J* = 7.9, 1.8 Hz, 1H), 7.62 (d, *J* = 2.1 Hz, 1H), 7.28 (s, 1H), 7.22 (d, *J* = 2.2 Hz, 2H), 6.98 – 6.94 (m, 1H), 6.90 (s, 2H), 6.73 (d, *J* = 2.2 Hz, 1H), 2.36 (s, 3H), 1.62 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.95, 153.72, 153.53, 152.00, 149.39, 147.14, 146.74, 135.90, 131.25, 129.12, 128.97, 127.98, 127.47, 125.78, 122.36, 120.86, 79.83, 25.27, 16.39; HRMS (ESI) calcd. for C₂₂H₂₁ClNO₃ [M+H]⁺: 382.1204, found: 382.1217.

4-Methyl-2-(pyridin-2-yl)phenyl 3-phenylpropanoate (3ay), yellow oil, 81.8 mg, yield: 86%; ¹H NMR (400 MHz, CDCl₃) δ 8.71 (m, 1H), 7.69 (t, J = 8.0 Hz, 1H), 7.49 (m, 2H), 7.32 (m, 2H), 7.23(m, 5H), 7.01 (d, J = 8.2 Hz, 1H), 2.96 (t, J = 7.9, Hz, 2H), 2.78 (t, J = 7.48 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.54 155.59, 149.24, 145.72, 140.26, 136.54, 136.11, 132.38, 131.30, 128.57, 128.40, 128.32, 126.38, 126.29, 122.84, 35.86, 30.68, 20.93; HRMS (ESI) calcd. for C₂₁H₂₀NO₂ [M+H]⁺: 318.3884, found: 318.3421.

1-*tert*-**Butyl 3**-(**4**-methyl-2-(pyridin-2-yl)phenyl) azetidine-1,3-dicarboxylate (3az), yellow oil, 87.2 mg, yield: 79%; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (m, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.85 (td, *J* = 7.7, 1.8 Hz, 1H), 7.62 (s, 1H), 7.26 (m, 1H), 7.15 (m, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 4.15 (d, *J* = 7.4 Hz, 4H), 3.40 (m, 1H), 2.36 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 176.79, 157.92, 157.64, 156.17, 145.89, 137.70, 132.34, 127.73, 126.28, 121.39, 118.99, 118.37, 80.13, 51.60, 31.92, 28.35, 20.76; HRMS (ESI) calcd. for C₂₁H₂₅N₂O₄ [M+H]⁺: 369.4336, found: 369.3812.

2-(Pyridin-2-yl)Phenyl pivalate (3ba)^[10], yellow oil, 69.12 mg, yield: 90%; ¹H NMR (400 MHz, CDCl₃) δ 8.73-8.65 (m, 1H), 7.74-7.64 (m, 2H), 7.51 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.43 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.39-7.32 (m, 1H), 7.31-7.22 (m, 1H), 7.17-7.10

(m, 1H), 1.23 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.71, 155.87, 149.50, 148.38, 135.99, 130.76, 129.57, 126.08, 124.12, 122.99, 122.17, 120.15, 38.98, 27.07; HRMS (ESI) calcd. for C₁₆H₁₈NO₂ [M+H]⁺: 256.1332, found: 256.1330.

5-Methyl-2-(pyridin-2-yl)phenyl pivalate (3ca), yellow oil, 71.2 mg, yield: 88%; ¹H NMR (600 MHz, CDCl₃) δ 8.67 (ddd, J = 4.8, 1.9, 1.0 Hz, 1H), 7.68 (td, J = 7.7, 1.8 Hz, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.46 (dt, J = 7.9, 1.1 Hz, 1H), 7.21 (ddd, J = 7.5, 4.9, 1.2 Hz, 1H), 7.14 (ddd, J = 7.8, 1.7, 0.8 Hz, 1H), 6.91 (dd, J = 1.7, 0.8 Hz, 1H), 2.40 (s, 3H), 1.21 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.82, 155.93, 149.46, 148.21, 139.96, 135.89, 130.75, 130.50, 126.94, 124.01, 123.43, 121.91, 38.99, 27.10, 21.14; HRMS (ESI) calcd. for C₁₇H₂₀NO₂ [M+H]⁺: 270.1489, found: 270.1481.

5-Methoxy-2-(pyridin-2-yl)phenyl pivalate (3da), yellow oil, 76.3 mg, yield: 89% ¹H NMR (400 MHz, CDCl₃) δ 8.67 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.74-7.67 (m, 1H), 7.62 (d, J = 8.6 Hz, 1H), 7.52-7.41 (m, 1H), 7.21 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 6.91 (dd, J = 8.6, 2.6 Hz, 1H), 6.70-6.58 (m, 1H), 3.87 (s, 3H), 1.24 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.61, 160.57, 155.72, 149.45, 135.94, 131.45, 126.24, 123.88, 121.71, 112.17, 108.44, 106.34, 55.58, 39.03, 27.10; HRMS (ESI) calcd. for C₁₇H₂₀NO₃ [M+H]⁺: 286.1438, found: 286.1435.

4-(3,4-Dihydropyridin-2-yl)-[1,1'-biphenyl]-3-yl pivalate (3ea), yellow oil, 83.6 mg, yield: 84%; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (ddd, J = 4.8, 1.9, 1.0 Hz, 1H), 7.78-7.69 (m, 2H), 7.66-7.60 (m, 2H), 7.57 (dd, J = 8.0, 1.8 Hz, 1H), 7.54 (dt, J = 7.8, 1.0 Hz, 1H), 7.45 (dd, J = 8.4, 7.0 Hz, 2H), 7.38 (d, J = 7.4 Hz, 1H), 7.32 (d, J = 1.8 Hz, 1H), 7.29-7.21 (m, 1H), 1.24 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.69, 155.65, 149.60, 148.72, 142.87, 139.82, 136.00, 132.38, 131.13, 128.82, 127.81, 127.21, 127.22, 124.77, 124.07, 122.16, 121.67, 39.06, 27.13; HRMS (ESI) calcd. for C22H22NO2 [M+H]⁺: 332.1645, found: 332.1634.

5-Fluoro-2-(pyridin-2-yl)phenyl pivalate (3fa), yellow oil, 56.7 mg, yield: 69%; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.74 (td, J = 7.7, 1.8 Hz, 1H), 7.66 (dd, J = 8.6, 6.4 Hz, 1H), 7.48 (dt, J = 7.9, 1.1 Hz, 1H), 7.28-7.22 (m,

1H), 7.09 (ddd, J = 8.6, 7.9, 2.5 Hz, 1H), 6.90 (dd, J = 9.1, 2.5 Hz, 1H), 1.23 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.34, 149.59, 136.08, 131.80, 131.81, 129.94, 124.06, 122.25, 113.40, 113.19, 110.89, 110.65, 39.05, 27.02; HRMS (ESI) calcd. for C₁₆H₁₇FNO₂ [M+H]⁺: 274.1238, found: 274.1232.

2-(Pyridin-2-yl)-5-(trifluoromethyl)phenyl pivalate (3ga), yellow oil, 53.4 mg, yield: 55%; ¹H NMR (600 MHz, CDCl₃) δ 8.73-8.70 (m, 1H), 7.79 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.74 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.60 (ddd, *J* = 8.0, 1.7, 0.8 Hz, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 1.7 Hz, 1H), 7.26 (m, 1H), 1.21 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.29, 154.57, 149.77, 148.53, 137.15, 136.20, 135.90, 131.47, 125.38, 124.13, 122.83, 120.53, 117.60, 39.06, 27.00; HRMS (ESI) calcd. for C₁₇H₁₇F₃NO₂ [M+H]⁺: 324.1206, found: 324.1198.

5-Formyl-2-(pyridin-2-yl)phenyl pivalate (3ha), yellow oil, 50.3 mg, yield: 59%; ¹H NMR (400 MHz, CDCl₃) δ 10.07 (s, 1H), 8.75 (dd, J = 4.1, 2.7 Hz, 1H), 7.88 (s, 2H), 7.84-7.72 (m, 1H), 7.67 (d, J = 1.2 Hz, 1H), 7.56 (dd, J = 7.9, 1.2 Hz, 1H), 7.39-7.28 (m, 1H), 1.25 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 191.00, 176.48, 154.55, 149.81, 149.05, 139.35, 137.32, 136.22, 131.68, 127.31, 124.25, 124.01, 122.96, 39.08, 27.03; HRMS (ESI) calcd. forC₁₇H₁₈NO₃ [M+H]⁺: 284.1281, found: 284.1276.

2-(3,4-Dihydropyridin-2-yl)-3-methylphenyl pivalate (3ia), yellow oil, 61.5 mg, yield: 76%; ¹H NMR (600 MHz, CDCl₃) δ 8.74-8.66 (m, 1H), 7.71 (td, *J* = 7.7, 1.8 Hz, 1H), 7.30 (t, *J* = 7.9 Hz, 1H), 7.27-7.19 (m, 2H), 7.16 (dt, *J* = 7.6, 1.0 Hz, 1H), 6.95 (dt, *J* = 8.2, 1.0 Hz, 1H), 2.12 (s, 3H), 0.98 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.73, 156.10, 149.48, 148.66, 137.98, 135.93, 133.83, 128.76, 127.55, 124.97, 122.07, 119.84, 38.77, 26.78, 19.75; HRMS (ESI) calcd. for C₁₇H₂₀NO₂ [M+H]⁺: 270.1489, found: 270.1481.

3-(Pyridin-2-yl)-[1,1'-biphenyl]-4-yl pivalate (3ja), yellow oil, 89.6 mg, yield: 90%; ¹H NMR (600 MHz, CDCl₃) δ 8.71 (ddd, *J* = 4.8, 1.9, 1.0 Hz, 1H), 7.87 (d, *J* = 2.3 Hz, 1H), 7.72 (td, *J* = 7.7, 1.9 Hz, 1H), 7.63 (ddd, *J* = 8.2, 3.7, 1.8 Hz, 3H), 7.57-7.48 (m, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 7.4 Hz, 1H), 7.30-7.23 (m, 1H), 7.19 (d, J = 8.4 Hz, 1H), 1.22 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.79, 155.83, 149.56, 147.81, 140.21, 139.23, 136.03, 133.85, 129.56, 128.76, 128.19, 127.41, 127.21, 124.19, 123.36, 122.28, 39.05, 27.10; HRMS (ESI) calcd. for C₂₂H₂₂NO₂ [M+H]⁺: 332.1645, found: 332.1640.

2-(3,4-Dihydropyridin-2-yl)-4,6-difluorophenyl pivalate (3ka), yellow oil, 37.6 mg, yield: 43%; ¹H NMR (600 MHz, CDCl₃) δ 8.70 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.79-7.68 (m, 1H), 7.50 (dt, J = 7.9, 1.1 Hz, 1H), 7.29-7.25 (m, 2H), 6.97 (ddd, J = 9.7, 8.0, 3.0 Hz, 1H), 1.26 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.70, 158.86, 153.53, 149.84, 146.10, 138.24, 136.39, 136.21, 123.96, 123.03, 112.47, 104.91, 39.09, 27.02; HRMS (ESI) calcd. for C₁₆H₁₆F₂NO₂ [M+H]⁺: 292.1144, found: 292.1137.

2-(3-Methyl-3,4-dihydropyridin-2-yl)phenyl pivalate (3la), yellow oil, 65.6 mg, yield: 81%; ¹H NMR (600 MHz, CDCl₃ δ 8.54-8.44 (m, 1H), 7.55 (ddd, *J* = 7.7, 1.7, 0.9 Hz, 1H), 7.42 (ddd, *J* = 8.1, 7.1, 2.0 Hz, 1H), 7.34-7.29 (m, 2H), 7.22-7.10 (m, 2H), 2.18 (s, 3H), 1.00 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.29, 155.74, 148.37, 146.52, 137.63, 133.73, 132.48, 130.01, 129.14, 125.71, 122.76, 122.50, 38.81, 26.77, 19.03; HRMS (ESI) calcd. for C₁₇H₂₀NO₂ [M+H]⁺: 270.1489, found: 270.1484.

2-(Isoquinolin-1-yl)phenyl pivalate (3ma), yellow oil, 80.7 mg, yield: 88%; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 5.7 Hz, 1H), 7.88 (dt, J = 8.2, 1.0 Hz, 1H), 7.78 (dd, J = 8.5, 1.0 Hz, 1H), 7.74-7.66 (m, 2H), 7.62-7.51 (m, 3H), 7.43 (dd, J = 7.5, 1.2 Hz, 1H), 7.33-7.18 (m, 1H), 0.76 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.13, 157.50, 148.79, 142.14, 136.14, 132.36, 130.97, 130.16, 129.66, 127.57, 127.26, 126.66, 125.80, 122.88, 120.21, 38.65, 26.44; HRMS (ESI) calcd. for C₂₀H₂₀NO₂ [M+H]⁺: 306.1489, found: 306.1493.

Benzo[*h*]**quinolin-10-yl pivalate (3na)**^[12], yellow oil, 76.4 mg, yield: 91%; ¹H NMR (400 MHz, CDCl₃) δ 8.95 (dd, J = 4.4, 1.8 Hz, 1H), 8.16 (dd, J = 8.0, 1.8 Hz, 1H), 7.85 (dd, J = 8.5, 2.8 Hz, 2H), 7.73-7.65 (m, 2H), 7.52 (dd, J = 8.0, 4.3 Hz, 1H), 7.35 (dd, J = 7.6, 1.2 Hz, 1H), 1.60 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 177.75, 147.76, 136.01,

135.57, 128.01, 127.30, 126.55, 126.29, 122.10, 121.51, 39.43, 27.57; HRMS (ESI) calcd. for C₁₈H₁₈NO₂ [M+H]+: 280.1332, found: 280.1335.

2-Phenoxyphenyl pivalate (30a), yellow oil, 57.1 mg, yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (ddd, J = 5.0, 2.0, 0.8 Hz, 1H), 7.68 (ddd, J = 8.3, 7.2, 2.0 Hz, 1H), 7.33-7.24 (m, 3H), 7.24-7.18 (m, 1H), 7.00 – 6.96 (m, 1H), 6.96-6.87 (m, 1H), 1.14 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.05, 163.11, 147.56, 144.95, 143.22, 139.34, 126.67, 125.74, 123.67, 123.39, 118.40, 110.64, 38.97, 26.86; HRMS (ESI) calcd. for C₁₆H₁₈NO₃[M+H]⁺: 272.1281, found: 272.1287.

2-(Pyridin-2-ylamino)phenyl pivalate (3pa), yellow. oil, 60.1 mg, yield: 74%; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (ddd, J = 5.0, 1.9, 0.9 Hz, 1H), 7.72-7.65 (m, 1H), 7.49 (ddd, J = 8.4, 7.2, 1.9 Hz, 1H), 7.31-7.21 (m, 1H), 7.18-7.11 (m, 2H), 6.79-6.66 (m, 2H), 6.44 (s, 1H)., 2.49 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.50, 156.07, 148.19, 143.47, 137.74, 132.54, 126.43, 124.32, 123.51, 122.86, 115.12, 108.24, 39.23, 27.10; HRMS (ESI) calcd. for C₁₆H₁₉N₂O₂ [M+H]⁺: 271.1441, found: 271.1428.

2-(Pyrimidin-2-yl)phenyl pivalate (3qa), yellow oil, 53.9 mg, yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 4.9 Hz, 2H), 8.16 (dd, J = 7.8, 1.7 Hz, 1H), 7.51 (ddd, J = 8.1, 7.4, 1.8 Hz, 1H), 7.40 (dd, J = 7.7, 1.2 Hz, 1H), 7.23 (t, J = 4.9 Hz, 1H), 7.13 (dd, J = 8.0, 1.2 Hz, 1H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.93, 164.25, 156.93, 149.58, 131.53, 131.13, 126.03, 123.71, 119.03, 39.11, 27.29; HRMS (ESI) calcd. for C₁₅H₁₇N₂O₂ [M+H]⁺: 257.1285, found: 257.1284.

1-(Pyrimidin-2-yl)-1H-pyrrol-2-yl pivalate (3ra), yellow oil, 31.7 mg, yield: 43%; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 4.8 Hz, 2H), 7.26 (s, 1H), 7.13 (dd, J = 6.0, 1.9 Hz, 1H), 6.66 (t, J = 4.8 Hz, 1H), 6.28 (d, J = 6.0 Hz, 1H), 1.33 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 169.98, 158.33, 143.09, 129.77, 117.06, 82.28, 39.70, 27.09; HRMS (ESI) calcd. for C₁₃H₁₆N₃O₂ [M+H]⁺: 246.1237, found: 246.1233.

2-(1*H***-Pyrazol-1-yl)phenyl pivalate (3sa)**, yellow oil, 38.2 mg, yield: 52%; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (ddd, J = 10.9, 2.1, 0.6 Hz, 2H), 7.61 (dd, J = 7.8, 1.8 Hz, 1H), 7.48-7.32 (m, 2H), 7.20 (dd, J = 8.0, 1.6 Hz, 1H), 6.44 (dd, J = 2.4, 1.8 Hz, 1H), 1.25 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.41, 144.30, 140.79, 133.44, 130.70, 128.70, 126.52, 126.47, 123.78, 106.58, 39.03, 27.05; HRMS (ESI) calcd. for C₁₄H₁₇N₂O₂ [M+H]⁺: 245.1285, found: 245.1279.

(*E*)-2-(Phenyldiazenyl)phenyl pivalate (3ta), orange oil, 61.7 mg, yield: 84%; ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.86 (m, 2H), 7.82 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.56-7.48 (m, 4H), 7.36 (ddd, *J* = 8.1, 7.4, 1.4 Hz, 1H), 7.24 (dd, *J* = 8.1, 1.4 Hz, 1H), 1.45 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.94, 152.83, 149.46, 144.38, 131.94, 131.22, 129.01, 126.33, 123.43, 123.05, 117.13, 39.21, 27.35; HRMS (ESI) calcd. for C₁₇H₁₉N₂O₂ [M+H]⁺: 283.1441, found: 283.1438.

2-(1-(Methoxyimino)ethyl)phenyl pivalate (3ua), yellow oil, 60.3 mg, yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.34 (m, 2H), 7.29-7.22 (m, 1H), 7.11-7.03 (m, 1H), 3.98 (s, 3H), 2.16 (s, 3H), 1.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.69, 153.67, 148.38, 130.88, 129.62, 129.42, 125.82, 122.87, 61.84, 39.06, 27.14, 15.80; HRMS (ESI) calcd. for C₁₄H₂₀NO₃[M+H]⁺: 250.1438, found: 250.1437.

8-(Methoxyimino)-5,6,7,8-tetrahydronaphthalen-1-yl pivalate (3va), yellow oil, 65.4 mg, yield: 79%; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (t, J = 7.8 Hz, 1H), 7.10 – 7.03 (m, 1H), 6.88-6.82 (m, 1H), 3.98 (s, 3H), 2.76 (t, J = 6.8 Hz, 2H), 2.73-2.67 (m, 2H), 1.85-1.74 (m, 2H), 1.41 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.93, 153.17, 148.26, 142.98, 128.97, 125.86, 124.14, 121.70, 61.95, 38.97, 30.63, 27.24, 25.10, 21.08; HRMS (ESI) calcd. for C₁₆H₂₂NO₃ [M+H]⁺: 276.1594, found: 276.1590.

2-(4,5-Dihydrooxazol-2-yl)phenyl pivalate (3wa), yellow oil, 40.1 mg, yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (m, 1H), 7.78 (dd, J = 9.9, 1.7 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.44 (d, J = 1.8 Hz, 1H), 4.59 (t, J = 5.2 Hz, 2H), 3.90 (t, J = 5.3 Hz, 2H), 1.27 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 167.68, 134.19, 133.33, 131.62, 129.71, 126.94, 63.86, 54.69, 39.80, 27.19; HRMS (ESI) calcd. for C₁₄H₁₈NO₃ [M+H]⁺: 248.1281, found: 248.1276.

2-(9-Benzyl-9*H***-purin-6-yl)phenyl pivalate (3xa)**, yellow oil, 84.9 mg, yield: 77%; ¹H NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 8.10 (d, *J* = 1.3 Hz, 2H), 7.54 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.40-7.33 (m, 6H), 7.25-7.22 (m, 1H), 5.51 (s, 2H), 1.17 (s, 9H);¹³C NMR (101 MHz, CDCl₃) δ 155.07, 152.39, 149.09, 144.54, 135.10, 132.06, 131.11, 129.19, 128.67, 128.37, 127.86, 125.87, 123.57, 47.36, 38.99, 27.01; HRMS (ESI) calcd. for C₂₃H₂₃N₄O₂ [M+H]⁺: 387.1816, found: 387.1811.

2-(9-Isopropyl-9*H***-purin-6-yl)-5-methoxyphenyl pivalate (3ya)**, yellow oil, 81.7 mg, yield: 74%; ¹H NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 8.22 (s, 1H), 8.15 (s, 1H), 6.98 (dd, *J* = 8.7, 2.6 Hz, 1H), 6.74 (d, *J* = 2.6 Hz, 1H), 5.04-4.87 (m, 1H), 3.89(s, 3H), 1.68 (d, *J* = 6.8 Hz, 6H), 1.24 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.54, 161.80, 154.71, 151.73, 151.52, 150.49, 141.91, 133.38, 131.82, 121.01, 111.92, 109.25, 55.64, 47.23, 39.06, 27.11, 22.63; HRMS (ESI) calcd. for C₂₀H₂₅N₄O₃ [M+H]⁺: 369.1921, found: 369.1912.

4-(9-Butyl-9*H***-purin-6-yl)-[1,1'-biphenyl]-3-yl pivalate (3za)**, yellow oil, 91.4 mg, yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 8.29 (d, *J* = 2.3 Hz, 1H), 8.12 (s, 1H), 7.76 (dd, *J* = 8.4, 2.3 Hz, 1H), 7.67 (d, *J* = 7.3 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.35 (dd, *J* = 19.8, 7.9 Hz, 2H), 4.35 (t, *J* = 7.2 Hz, 2H), 1.96 (dd, *J* = 8.7, 6.4 Hz, 2H), 1.49-1.37 (m, 2H), 1.19 (s, 9H), 1.01 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.57, 154.86, 152.15, 148.47, 144.74, 138.93, 131.99, 130.78, 129.61, 128.76, 127.44, 127.28, 123.85, 43.76, 39.03, 31.98, 27.01, 19.92, 13.52; HRMS (ESI) calcd. for C₂₆H₂₉N₄O₂ [M+H]⁺: 429.2285, found: 429.2280.

4-Methyl-2-(pyridin-2-yl)phenyl benzoate (5aa)^[8], yellow oil, 79.4 mg, yield: 91%; ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 5.0 Hz, 1H), 8.13-8.04 (m, 2H), 7.63 – 7.53 (m, 4H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.31-7.24 (m, 1H), 7.19 (d, *J* = 8.2 Hz, 1H), 7.18 – 7.13 (m, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.32, 155.55, 149.54, 146.04, 136.21, 136.10, 133.42, 132.75, 130.40, 130.16, 129.97, 129.54, 128.48, 123.82, 123.00, 122.14, 20.95; HRMS (ESI) calcd. for C₁₉H₁₆NO₂ [M+H]⁺: 290.1176, found: 290.1170.

2-(Pyridin-2-yl)phenyl 4-methylbenzoate (5ab), yellow oil, 81.1 mg, yield: 89%; ¹H NMR (400 MHz, CDCl₃) δ 8.69 (ddd, J=4.9, 1.9, 0.9 Hz, 1H), 7.76-7.63 (m, 2H), 7.63-7.47 (m, 2H), 7.33-7.26 (m, 1H), 7.22 (ddd, J=7.5, 4.9, 1.2 Hz, 1H), 7.14 (d, J=8.2 Hz, 1H), 6.78 (s, 2H), 6.48 (d, J=15.9 Hz, 1H), 3.90 (s, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.58, 155.75, 153.45, 149.62, 146.49, 145.85, 136.22, 132.85, 131.33, 130.36, 129.61, 123.71, 122.89, 122.09, 116.27, 105.42, 20.94; HRMS (ESI) calcd. for C₂₀H₁₈NO₂ [M+H]⁺: 304.1332, found: 304.1330.

4-Methyl-2-(pyridin-2-yl)phenyl 4-methoxybenzoate (5ac), yellow oil, 89.2 mg, yield: 93%; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 8.06 (d, J = 8.9 Hz, 2H), 7.62 (dt, J = 4.5, 1.9 Hz, 2H), 7.58-7.53 (m, 1H), 7.33-7.27 (m, 1H), 7.20 (d, J = 8.0 Hz, 2H), 6.94 (s, 2H), 3.89 (s, 3H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.68, 164.32, 159.21, 155.53, 149.38, 145.92, 135.94, 134.03, 132.01, 131.12, 130.15, 123.86, 123.06, 121.93, 119.94, 111.90, 55.76, 20.79; HRMS (ESI) calcd. for C₂₀H₁₈NO₃ [M+H]⁺: 320.1281, found: 320.1283.

4-Methyl-2-(pyridin-2-yl)phenyl 4-fluorobenzoate (5ad), yellow oil, 75.76 mg, yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (dd, J = 4.9, 0.8 Hz, 1H), 8.12 (dd, J = 8.9, 5.4 Hz, 2H), 7.64 (d, J = 1.8 Hz, 2H), 7.58-7.48 (m, 1H), 7.35-7.27 (m, 1H), 7.22-7.05 (m, 4H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.29, 164.76, 164.40, 155.63, 149.61, 145.91, 136.14, 132.81, 131.34, 130.39, 125.80, 123.64, 122.97, 122.12, 115.80, 115.58, 20.96; HRMS (ESI) calcd. for C₁₉H₁₅FNO₂ [M+H]⁺: 308.1081, found: 308.1075.

4-Methyl-2-(pyridin-2-yl)phenyl 4-chlorobenzoate (5ae), yellow oil, 82.62 mg, yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 8.73-8.54 (m, 1H), 8.03 (d, *J* = 8.3 Hz, 2H), 7.66-7.58 (m, 2H), 7.52 (s, 1H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.29 (dd, *J* = 8.3, 2.0 Hz, 1H),

7.23-7.09 (m, 2H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.52, 155.59, 149.59, 145.88, 139.90, 136.26, 136.19, 132.77, 131.53, 131.34, 130.40, 128.86, 128.02, 123.61, 122.95, 122.15, 20.97; HRMS (ESI) calcd. for C₁₉H₁₅ClNO₂ [M+H]⁺: 324.0786, found: 324.0783.

4-Methyl-2-(pyridin-2-yl)phenyl 4-bromobenzoate (5af), white solid, mp: 150.5-153.5 °C, 96.0 mg, yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.97-7.88 (m, 2H), 7.64-7.55 (m, 4H), 7.51 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.27 (ddd, *J* = 8.1, 2.2, 0.9 Hz, 1H), 7.22-7.07 (m, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.67, 155.60, 149.61, 145.86, 136.29, 136.17, 132.76, 131.85, 131.34, 130.40, 128.63, 128.48, 123.59, 122.93, 122.14, 20.98; HRMS (ESI) calcd. for C₁₉H₁₅BrNO₂ [M+H]⁺: 368.0281, found: 368.0275.

4-Methyl-2-(pyridin-2-yl)phenyl 4-cyanobenzoate (5ag), white solid, mp: 129.5-131.5 °C, 66.15 mg, yield: 70%; ¹H NMR (600 MHz, CDCl₃) δ 8.52 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 8.25-8.10 (m, 2H), 7.83-7.70 (m, 2H), 7.64 (td, *J* = 7.7, 1.8 Hz, 1H), 7.55 (d, *J* = 2.1 Hz, 1H), 7.51 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.29 (ddd, *J* = 8.2, 2.2, 0.8 Hz, 1H), 7.22 – 7.13 (m, 2H), 2.44 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 163.84, 155.66, 149.50, 145.72, 136.57, 136.27, 133.55, 132.60, 132.27, 131.35, 130.58, 130.46, 123.45, 122.82, 122.20, 117.87, 116.75, 20.96; HRMS (ESI) calcd. for C₂₀H₁₅N₂O₂ [M+H]⁺: 315.1128, found: 315.1121.

4-Methyl-2-(pyridin-2-yl)phenyl 4-acetylbenzoate (5ah), yellow oil, 78.2 mg, yield: 81%; ¹H NMR (600 MHz, CDCl₃) δ 8.56 (ddd, J = 4.8, 1.9, 0.9 Hz, 1H), 8.16 (d, J =8.4 Hz, 2H), 8.01 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 1.8 Hz, 1H), 7.58 (dd, J = 2.1, 0.9 Hz, 1H), 7.56-7.50 (m, 1H), 7.30-7.27 (m, 1H), 7.20 (d, J = 8.2 Hz, 1H), 7.15 (ddd, J =7.5, 4.9, 1.2 Hz, 1H), 2.65 (s, 3H), 2.45 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.43, 164.52, 155.65, 149.58, 145.89, 140.56, 136.36, 136.15, 133.41, 132.73, 131.34, 130.40, 128.24, 123.57, 122.88, 122.13, 26.88, 20.96; HRMS (ESI) calcd. for C₂₁H₁₈NO₃ [M+H]⁺: 332.1281, found: 332.1276.

4-Methyl-2-(pyridin-2-yl)phenyl 4-(trifluoromethyl)benzoate (5ai), yellow oil, 78.4

mg, yield: 73%; ¹H NMR (600 MHz, CDCl₃) δ 8.56 (dt, J = 4.8, 1.3 Hz, 1H), 8.19 (d, J = 8.1 Hz, 2H), 7.71 (d, J = 8.2 Hz, 2H), 7.62 (td, J = 7.7, 1.8 Hz, 1H), 7.57 (d, J = 2.1 Hz, 1H), 7.52 (dt, J = 7.9, 1.1 Hz, 1H), 7.35-7.25 (m, 1H), 7.22-7.16 (m, 1H), 7.16-7.08 (m, 1H), 2.44 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 164.19, 155.67, 149.58, 136.43, 136.20, 134.90, 134.68, 132.93, 132.74, 131.36, 130.52, 130.42, 125.50, 123.51, 122.87, 122.16, 20.94; HRMS (ESI) calcd. for C₂₀H₁₅F₃NO₂[M+H]⁺: 358.1049, found: 358.1045.

4-Methyl-2-(pyridin-2-yl)phenyl 4-nitrobenzoate (5aj), white solid, mp: 140.5-142.5 °C, 79.4 mg, yield: 79%; ¹H NMR (400 MHz, CDCl₃) δ 8.60-8.46 (m, 1H), 8.34-8.18 (m, 4H), 7.67 (td, J = 7.7, 1.8 Hz, 1H), 7.61-7.46 (m, 2H), 7.34-7.27 (m, 1H), 7.24-7.14 (m, 2H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.61, 155.58, 150.72, 149.40, 145.66, 136.67, 136.47, 135.05, 132.45, 131.38, 131.24, 130.55, 123.61, 123.54, 122.80, 122.32, 20.99; HRMS (ESI) calcd. for C₁₉H₁₅N₂O₄ [M+H]⁺: 335.1026, found: 335.1019.

4-Methyl-2-(pyridin-2-yl)phenyl 2-iodobenzoate (5ak), yellow oil, 99.8 mg, yield: 80%; ¹H NMR (400 MHz, CDCl₃) δ 8.68-8.65 (m, 1H), 8.02 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.87 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.68 (dd, *J* = 7.7, 1.9 Hz, 1H), 7.57 (dd, *J* = 5.0, 2.9 Hz, 2H), 7.41 (td, *J* = 7.6, 1.2 Hz, 1H), 7.30 (dd, *J* = 2.2, 0.7 Hz, 1H), 7.28-7.22 (m, 2H), 7.17 (dd, *J* = 7.6, 1.8 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.07, 155.75, 149.56, 145.82, 141.45, 136.35, 134.27, 132.99, 130.43, 130.16, 128.49, 127.90, 123.79, 122.94, 122.25, 94.65, 20.98; HRMS (ESI) calcd. for C₁₉H₁₅INO₂ [M+H]⁺: 416.0142, found: 416.0133.

2-(Pyridin-2-yl)phenyl 2-methoxybenzoate (5al), yellow oil, 78.3 mg, yield: 83%; ¹H NMR (400 MHz, CDCl₃) δ 8.71-8.59 (m, 1H), 7.90-7.81 (m, 1H), 7.66-7.56 (m, 3H), 7.51-7.48 (m, 1H), 7.27 (dd, J = 6.2, 0.9 Hz, 1H), 7.23-7.15 (m, 2H), 6.98 (d, J = 7.9 Hz, 2H), 3.85 (s, 3H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.83, 164.46, 159.71, 155.67, 149.51, 146.06, 136.08, 134.18, 133.77, 132.91, 132.16, 131.74, 131.26, 130.29, 124.01, 123.20, 122.08, 120.09, 112.07, 55.91, 20.94; HRMS (ESI) calcd. for C₂₀H₁₈NO₃ [M+H]⁺: 320.1281, found: 320.1278.

4-Methyl-2-(pyridin-2-yl)phenyl 3-methoxybenzoate (5am), yellow oil, 78.7 mg, yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 4.8 Hz, 1H), 7.75-7.66 (m, 1H), 7.66-7.52 (m, 4H), 7.38 (t, J = 7.9 Hz, 1H), 7.29 (d, J = 3.1 Hz, 1H), 7.22-7.10 (m, 3H), 3.85 (s, 3H), 2.46 (s, 3H) ¹³C NMR (101 MHz, CDCl₃) δ 165.23, 159.58, 155.60, 149.63, 146.01, 136.13, 132.83, 131.34, 130.81, 130.36, 129.50, 123.75, 122.94, 122.59, 122.09, 120.12, 114.37, 55.48, 20.96; HRMS (ESI) calcd. for C₂₀H₁₈NO₃ [M+H]⁺: 320.1281, found: 320.1286.

4-Methyl-2-(pyridin-2-yl)phenyl 3,5-dimethylbenzoate (5an), yellow oil, 83.3 mg, yield: 87%; ¹H NMR (600 MHz, CDCl₃) δ 8.62 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.74-7.65 (m, 2H), 7.62-7.48 (m, 3H), 7.31-7.23 (m, 1H), 7.20 (d, J = 1.8 Hz, 1H), 7.18-7.10 (m, 2H), 2.43 (s, 3H), 2.34 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 165.63, 155.67, 149.59, 146.16, 138.15, 136.10, 135.99, 135.11, 132.90, 131.34, 130.35, 129.41, 127.89, 123.80, 122.98, 122.06, 21.14, 20.94; HRMS (ESI) calcd. for C₂₁H₂₀NO₂ [M+H]⁺: 318.1489 found: 318.1482.

4-Methyl-2-(pyridin-2-yl)phenyl 2,4-dimethoxybenzoate (5ao), yellow oil, 94.5 mg, yield: 90%; ¹H NMR (600 MHz, CDCl₃) δ 8.69-8.60 (m, 1H), 7.90 (d, *J* = 9.3 Hz, 1H), 7.60 (ddd, *J* = 5.1, 2.6, 1.5 Hz, 3H), 7.26-7.22 (m, 1H), 7.16 (d, *J* = 8.2 Hz, 2H), 6.47 (dd, *J* = 4.6, 2.4 Hz, 2H), 3.84 (s, 6H), 2.41 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 164.80, 163.76, 162.07, 155.78, 149.52, 146.19, 135.90, 135.62, 134.50, 132.93, 131.17, 130.18, 124.02, 123.34, 121.92, 111.34, 104.70, 98.95, 55.91, 55.51, 20.91; HRMS (ESI) calcd. for C₂₁H₂₀NO₄ [M+H]⁺: 350.1387, found: 350.1381.

4-Methyl-2-(pyridin-2-yl)phenyl 3,4,5-trimethoxybenzoate (5ap), yellow oil, 104.8 mg, yield: 92%; ¹H NMR (400 MHz, CDCl₃) δ 8.68-8.52 (m, 1H), 7.62 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.57 (dd, *J* = 2.2, 0.8 Hz, 1H), 7.56-7.50 (m, 1H), 7.32 (s, 2H), 7.29-7.25 (m, 1H), 7.21-7.14 (m, 2H), 3.91 (s, 3H), 3.86 (s, 6H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.89, 155.69, 152.92, 149.58, 145.99, 142.52, 136.19, 132.78, 131.29, 130.36, 124.41, 123.73, 122.93, 122.10, 107.29, 60.90, 56.22, 20.93; HRMS (ESI) calcd. for C₂₂H₂₂NO₅ [M+H]⁺: 380.1492, found: 380.1489.

4-Methyl-2-(pyridin-2-yl)phenyl 2-naphthoate (5aq), yellow oil, 81.6 mg, yield:

80%; ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 1.6 Hz, 1H), 8.67 (d, *J* = 4.8 Hz, 1H), 8.12 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.96 (d, *J* = 1.3 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.70-7.52 (m, 5H), 7.40 – 7.31 (m, 1H), 7.28 (d, *J* = 8.2 Hz, 1H), 7.21-7.09 (m, 1H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.52, 155.60, 149.51, 146.16, 136.35, 136.17, 135.76, 132.77, 132.47, 131.97, 131.42, 130.50, 129.49, 128.59, 128.31, 127.81, 126.79, 126.72, 125.51, 123.88, 123.06, 122.20, 21.00; HRMS (ESI) calcd. for C₂₃H₁₈NO₂ [M+H]⁺: 340.1332, found: 340.1320.

4-Methyl-2-(pyridin-2-yl)phenyl 3-methylthiophene-2-carboxylate (5ar), yellow oil, 81.8 mg, yield: 88%; ¹H NMR (600 MHz, CDCl₃) δ 8.68-8.59 (m, 1H), 7.70-7.58 (m, 3H), 7.44 (d, *J* = 5.0 Hz, 1H), 7.26 (d, *J* = 3.7 Hz, 1H), 7.20-7.13 (m, 2H), 6.93 (d, *J* = 5.0 Hz, 1H), 2.50 (s, 3H), 2.43 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.02, 155.44, 149.63, 147.90, 145.58, 136.00, 132.84, 131.75, 131.28, 130.98, 130.18, 125.59, 124.07, 123.14, 122.01, 20.93, 15.94; HRMS (ESI) calcd. for C₁₈H₁₆NO₂S [M+H]⁺: 310.0896, found: 310.0893.

4-Methyl-2-(pyridin-2-yl)phenyl furan-2-carboxylate (5as), yellow oil, 76.4 mg, yield: 91%; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.72-7.52 (m, 4H), 7.32-7.24 (m, 2H), 7.24-7.10 (m, 2H), 6.56 (dd, J = 3.5, 1.7 Hz, 1H), 2.45 (d, J = 0.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.01, 155.29, 149.53, 147.07, 145.20, 144.02, 136.37, 136.22, 132.66, 131.43, 130.40, 123.90, 122.86, 122.19, 119.31, 112.08, 20.96; HRMS (ESI) calcd. for C₁₇H₁₄NO₃ [M+H]⁺: 280.0968, found: 280.0960.

4-Methyl-2-(pyridin-2-yl)phenyl cinnamate (7aa), yellow oil, 85.32 mg, yield: 91%; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, J = 4.9, 1.6 Hz, 1H), 7.79 (d, J = 16.0 Hz, 1H), 7.70 (td, J = 7.7, 1.8 Hz, 1H), 7.64-7.49 (m, 4H), 7.43 (dd, J = 4.9, 1.9 Hz, 3H), 7.30-7.26 (m, 1H), 7.24-7.18 (m, 1H), 7.16 (d, J = 8.2 Hz, 1H), 6.58 (d, J = 16.0 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.59, 155.70, 149.65, 146.57, 145.84, 136.21, 136.09, 134.14, 132.84, 131.33, 130.70, 130.36, 128.98, 128.30, 123.77, 122.90, 122.13, 117.08, 20.97; HRMS (ESI) calcd. for C₂₁H₁₈NO₂ [M+H]⁺: 316.1332, found: 316.1333.

4-Methyl-2-(pyridin-2-yl)phenyl (*E*)-**3-(p-tolyl)acrylate (7ab)**, yellow oil, 88.1 mg, yield: 89%; ¹H NMR (600 MHz, CDCl₃) δ 8.67 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.73 (d, *J* = 16.0 Hz, 1H), 7.66 (td, *J* = 7.7, 1.8 Hz, 1H), 7.59-7.50 (m, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.28-7.22 (m, 1H), 7.20-7.15 (m, 3H), 7.12 (d, *J* = 8.1 Hz, 1H), 6.49 (d, *J* = 16.0 Hz, 1H), 2.42 (s, 3H), 2.37 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.74, 155.74, 149.65, 146.55, 145.94, 141.19, 136.12, 135.97, 132.88, 131.47, 131.31, 130.31, 129.70, 128.29, 123.77, 122.93, 122.06, 116.02, 21.52, 20.95; HRMS (ESI) calcd. for C₂₂H₂₀NO₂ [M+H]⁺: 330.1489, found: 330.1487.

4-Methyl-2-(pyridin-2-yl)phenyl (*E*)-**3-(4-fluorophenyl)acrylate** (**7ac**), yellow oil, 85.4 mg, yield: 80%; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.72-7.62 (m, 2H), 7.59-7.47 (m, 4H), 7.39 (d, *J* = 8.5 Hz, 2H), 7.28-7.19 (m, 2H), 7.12 (d, *J* = 8.2 Hz, 1H), 6.55 (d, *J* = 16.0 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.46, 162.74, 155.65, 149.51, 145.23, 136.36, 132.68, 131.36, 130.42, 130.11, 123.83, 122.86, 122.20, 116.79, 116.21, 115.99, 20.95; HRMS (ESI) calcd. for C₂₁H₁₇FNO₂ [M+H]⁺: 334.1238, found: 334.1238.

4-Methyl-2-(pyridin-2-yl)phenyl (E)-3-(4-chlorophenyl)acrylate (7ad), yellow oil, 80.8 mg, yield: 77%; ¹H NMR (600 MHz, CDCl₃) δ 8.66 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.71-7.64 (m, 2H), 7.60-7.53 (m, 2H), 7.46-7.42 (m, 2H), 7.36 (d, J = 8.5 Hz, 2H), 7.27-7.22 (m, 1H), 7.22-7.16 (m, 1H), 7.12 (d, J = 8.2 Hz, 1H), 6.51 (d, J = 16.0 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.30, 155.75, 149.63, 145.81, 145.00, 136.61, 136.18, 136.13, 132.82, 132.66, 131.34, 130.35, 129.42, 129.25, 123.71, 122.85, 122.11, 117.72, 20.95; HRMS (ESI) calcd. for C₂₁H₁₇ClNO₂ [M+H]⁺: 350.0942, found: 350.0938.

4-Methyl-2-(pyridin-2-yl)phenyl (*E*)-**3-(4-bromophenyl)acrylate** (**7ae**), yellow oil, 92.2 mg, yield: 78%; ¹H NMR (400 MHz, CDCl₃) δ 8.69 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.76-7.66 (m, 2H), 7.63-7.49 (m, 4H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.29-7.27 (m, 1H), 7.24-7.19 (m, 1H), 7.14 (d, *J* = 8.2 Hz, 1H), 6.55 (d, *J* = 16.0 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.33, 149.61, 145.75, 145.13, 136.28, 133.05, 132.22, 131.34, 130.38, 129.63, 123.73, 122.83, 122.14, 117.78, 20.96; HRMS (ESI) calcd. for C₂₁H₁₇BrNO₂ [M+H]⁺: 394.0437, found: 394.0439.

4-Methyl-2-(pyridin-2-yl)phenyl (*E*)-**3-(4-cyanophenyl)acrylate (7af)**, white solid, mp: 165.5-166.5°C, 79.8 mg, yield: 78%; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.77-7.67 (m, 4H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.58-7.50 (m, 2H), 7.31-7.26 (m, 1H), 7.26-7.18 (m, 1H), 7.13 (s, 1H), 6.64 (d, *J* = 16.0 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.77, 155.73, 149.61, 145.64, 143.92, 138.36, 136.33, 136.27, 132.69, 131.37, 130.40, 128.58, 123.63, 122.77, 122.18, 120.73, 118.31, 113.67, 20.96; HRMS (ESI) calcd. for C₂₂H₁₇N₂O₂ [M+H]⁺: 341.1285, found: 341.1276.

4-Methyl-2-(pyridin-2-yl)phenyl (*E*)-**3**-(**4**-nitrophenyl)acrylate (7ag), yellow solid, mp: 170.5-172.5 °C, 83.3 mg, yield: 77%; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.28 (d, *J* = 8.8 Hz, 2H), 7.80 (d, *J* = 16.0 Hz, 1H), 7.77-7.65 (m, 3H), 7.57 (d, *J* = 2.1 Hz, 2H), 7.34-7.25 (m, 2H), 7.26-7.20 (m, 1H), 7.15 (d, *J* = 8.2 Hz, 1H), 6.69 (d, *J* = 16.0 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.67, 149.59, 148.67, 145.61, 143.35, 140.19, 136.29, 131.38, 130.42, 128.84, 124.21, 123.65, 122.74, 122.19, 121.46; HRMS (ESI) calcd. for C₂₁H₁₇N₂O₄ [M+H]⁺: 361.1183, found: 361.1178.

4-Methyl-2-(pyridin-2-yl)phenyl (*E*)-**3-(o-tolyl)acrylate (7ah)**, yellow oil, 86.1 mg, yield: 87%; ¹H NMR (600 MHz, CDCl₃) δ 8.70 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 8.04 (d, *J* = 15.9 Hz, 1H), 7.68 (td, *J* = 7.7, 1.9 Hz, 1H), 7.62-7.51 (m, 3H), 7.28 (d, *J* = 1.4 Hz, 1H), 7.25 (t, *J* = 2.0 Hz, 1H), 7.20 (ddd, *J* = 7.5, 4.9, 1.2 Hz, 3H), 7.15 (d, *J* = 8.1 Hz, 1H), 6.46 (d, *J* = 15.9 Hz, 1H), 2.42 (s, 3H), 2.40 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.51, 155.71, 149.55, 145.94, 144.14, 137.91, 136.27, 136.00, 133.12, 132.69, 131.35, 130.90, 130.78, 130.41, 130.37, 126.54, 126.42, 123.90, 122.94, 122.15, 118.16, 20.95, 19.80; HRMS (ESI) calcd. for C₂₂H₂₀NO₂ [M+H]⁺: 330.1489, found: 330.1482.

4-Methyl-2-(pyridin-2-yl)phenyl (*E*)-**3-(3-methoxyphenyl)acrylate** (7ai), yellow oil, 91.3 mg, yield: 88%; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (ddd, *J* = 4.9, 1.8, 1.0 Hz, 1H), 7.80-7.68 (m, 2H), 7.64-7.53 (m, 2H), 7.39-7.27 (m, 2H), 7.23 (ddd, *J* = 7.5, 4.9, 1.2 Hz, 1H), 7.20-7.10 (m, 2H), 7.07 (dd, *J* = 2.6, 1.5 Hz, 1H), 6.98 (ddd, *J* = 8.3, 2.6, 0.9 Hz, 1H), 6.56 (d, *J* = 16.0 Hz, 1H), 3.85 (s, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.52, 159.91, 155.63, 149.54, 146.49, 145.83, 136.36, 136.09, 135.48, 132.70, 131.35, 130.42, 129.98, 123.85, 122.89, 122.20, 121.00, 117.36, 116.58,

113.06, 55.33, 20.97; HRMS (ESI) calcd. for $C_{22}H_{20}NO_3[M+H]^+$: 346.1438, found: 346.1439.

4-Methyl-2-(pyridin-2-yl)phenyl (*E*)-**3-(3-bromo-4-fluorophenyl)acrylate** (7aj), yellow oil, 101.3 mg, yield: 82%; ¹H NMR (600 MHz, CDCl₃) δ 8.67 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.73 (dd, *J* = 6.5, 2.2 Hz, 1H), 7.69 (dd, *J* = 7.8, 1.9 Hz, 1H), 7.62 (s, 1H), 7.57-7.49 (m, 2H), 7.43 (dq, *J* = 6.8, 2.3 Hz, 1H), 7.29-7.24 (m, 1H), 7.24-7.17 (m, 1H), 7.18-7.08 (m, 2H), 6.46 (d, *J* = 16.0 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.00, 161.09, 159.41, 155.71, 149.59, 145.75, 143.64, 136.24, 133.17, 132.75, 131.93, 131.35, 130.37, 129.00, 123.71, 122.81, 122.15, 118.28, 117.12, 110.00, 20.94; HRMS (ESI) calcd. for C₂₁H₁₆BrFNO₂ [M+H]⁺: 412.0343, found: 412.0341.

4-Methyl-2-(pyridin-2-yl)phenyl (*E*)-**3-(naphthalen-2-yl)acrylate (7ak)**, yellow oil, 85.6 mg, yield: 78%; ¹H NMR (600 MHz, CDCl₃) δ 8.68 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.92 (d, *J* = 15.9 Hz, 2H), 7.88-7.82 (m, 3H), 7.73-7.65 (m, 2H), 7.60-7.55 (m, 2H), 7.55-7.49 (m, 2H), 7.29-7.24 (m, 1H), 7.19 (ddd, *J* = 7.5, 4.9, 1.2 Hz, 1H), 7.15 (d, *J* = 8.1 Hz, 1H), 6.65 (d, *J* = 16.0 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.62, 155.78, 149.67, 146.56, 145.94, 136.15, 134.40, 133.27, 132.89, 131.70, 131.34, 130.33, 128.79, 128.65, 127.81, 127.46, 126.81, 123.76, 123.49, 122.92, 122.07, 117.28, 20.94; HRMS (ESI) calcd. for C₂₅H₂₀NO₂ [M+H]⁺: 366.1489, found: 366.1485.

4-Methyl-2-(pyridin-2-yl)phenyl (*E*)-**3-(thiophen-2-yl)acrylate** (**7al**), yellow oil, 79.2 mg, yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.88 (d, *J* = 15.7 Hz, 1H), 7.71 (td, *J* = 7.7, 1.9 Hz, 1H), 7.62-7.53 (m, 2H), 7.42 (d, *J* = 5.1 Hz, 1H), 7.33-7.18 (m, 3H), 7.14 (d, *J* = 8.2 Hz, 1H), 7.08 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.36 (d, *J* = 15.7 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.42, 155.60, 149.53, 145.85, 139.28, 138.96, 136.36, 136.04, 132.71, 131.61, 131.36, 130.40, 129.17, 128.25, 123.86, 122.91, 122.21, 115.68, 20.96; HRMS (ESI) calcd. for C₁₉H₁₆NO₂S [M+H]⁺: 322.0896, found: 322.0888.

4-Methyl-2-(pyridin-2-yl)phenyl 3-methyl-2-phenylbut-2-enoate (7am), yellow oil, 76.4 mg, yield: 74%; ¹H NMR (600 MHz, CDCl₃) δ 8.58 (ddd, J = 4.8, 1.9, 1.0 Hz, 1H), 7.54 (d, J = 2.3 Hz, 1H), 7.41 (td, J = 7.7, 1.8 Hz, 1H), 7.36-7.25 (m, 3H), 7.21 – 7.15 (m, 1H), 7.12 (dddd, J = 12.3, 7.5, 3.8, 2.7 Hz, 4H), 7.01 (d, J = 8.2 Hz, 1H), 2.35 (s, 3H), 2.12 (s, 3H), 1.66 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.13, 155.26, 149.44, 145.97, 137.81, 135.84, 135.68, 132.80, 131.25, 130.04, 129.18, 129.80, 128.15, 127.10, 124.10, 122.79, 121.79, 23.93, 22.61, 20.88; HRMS (ESI) calcd. for C23H22NO2 [M+H]⁺: 344.1645, found: 344.1639.

2-Acetamidophenyl pivalate (10a), yellow oil, 46.1 mg, yield: 58%; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (dd, J = 8.1, 1.6 Hz, 1H), 7.27-7.22 (m, 1H), 7.13 (ddd, J = 18.9, 7.7, 1.6 Hz, 3H), 2.17 (s, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.24, 167.95, 141.02, 129.79, 126.38, 124.95, 123.15, 121.92, 39.40, 27.16, 24.45; HRMS (ESI) calcd. for C₁₃H₁₈NO₃ [M+H]⁺: 236.1281, found: 236.1276.

2-Acetamido-5-methoxyphenyl pivalate (10b), yellow oil, 49.5 mg, yield: 62%; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.9 Hz, 1H), 6.92 (s, 1H), 6.80 (dd, *J* = 8.9, 2.8 Hz, 1H), 6.65 (d, *J* = 2.8 Hz, 1H), 3.80 (s, 3H), 2.13 (s, 3H), 1.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.36, 168.29, 157.55, 143.62, 125.89, 122.51, 111.80, 107.90, 55.65, 39.35, 27.14, 23.94; HRMS (ESI) calcd. for C₁₄H₂₀NO₄ [M+H]⁺: 266.1387, found: 266.1380.

2-Acetamido-5-chlorophenyl pivalate (10c), yellow oil, 53.3 mg, yield: 55%; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.8 Hz, 1H), 7.21 (dd, J = 8.8, 2.4 Hz, 1H), 7.17-7.05 (m, 2H), 2.16 (s, 3H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.79, 167.93, 141.23, 129.55, 128.60, 126.46, 123.73, 122.41, 39.45, 27.10, 24.42; HRMS (ESI) calcd. for C₁₃H₁₇ClNO₃ [M+H]⁺: 270.0891, found: 270.0897.

2-Acetamido-4,5-dichlorophenyl pivalate (10d), yellow oil, 51.9 mg, yield: 57%; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.24 (s, 1H), 7.16 (s, 1H), 2.17 (s, 3H), 1.41 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 179.08, 167.95, 139.18, 129.98, 129.40, 127.50, 123.64, 123.52, 38.83, 27.06, 24.45; HRMS (ESI) calcd. for C1₃H₁₆Cl₂NO₃

[M+H]⁺: 304.0502, found: 304.0507.

2-Acetamidophenyl acetate^[13] (10e), yellow oil, 34.35 mg, yield: 59%; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.1 Hz, 1H), 7.25 (dd, J = 8.4, 4.3 Hz, 1H), 7.22 (s, 1H), 7.15 (d, J = 4.3 Hz, 2H), 2.39 (s, 3H), 2.20 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.73, 168.17, 140.60, 129.65, 126.52, 124.82, 123.05, 122.04, 24.61, 21.11; HRMS (ESI) calcd. for C₁₀H₁₂NO₃ [M+H]⁺: 194.0812, found: 194.0808.

2-Acetamido-5-methoxyphenyl benzoate^[13](**10f**), yellow oil, 65.5 mg, yield: 78%; ¹H NMR (400 MHz, CDCl₃) δ 8.26-8.17 (m, 2H), 7.78 (d, *J* = 8.9 Hz, 1H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.09 (s, 1H), 6.83 (dd, *J* = 6.4, 3.0 Hz, 1H), 6.77 (d, *J* = 2.8 Hz, 1H), 3.79 (s, 3H), 2.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.74, 157.60, 143.54, 134.19, 130.34, 128.84, 126.06, 122.72, 121.90, 114.09, 112.16, 108.11, 55.68, 24.02; HRMS (ESI) calcd. for C₁₆H₁₆NO₄ [M+H]⁺: 286.1074, found: 286.1068.

2-Acetamido-5-methoxyphenyl cinnamate (10g), yellow oil, 58.9 mg, yield: 63%; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (m, 1H), 7.64-7.60 (m, 3H), 7.47-7.38 (m, 5H), 7.06 (s, 1H), 6.66 (d, *J* = 16.17, 1H), 3.82 (s, 3H), 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.36, 147.96, 133.79, 131.18, 129.12, 128.49, 125.63, 122.77, 121.89, 116.13, 112.00, 108.02, 55.66, 24.18; HRMS (ESI) calcd. for C₁₈H₁₈NO₄ [M+H]⁺: 312.1230, found: 312.1234.

(Z)-2-(*N*-Methylacetamido)-2-phenylvinyl pivalate ^[14] (11a), yellow oil, 56.3 mg, yield: 68%; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.41 (m, 5H), 3.10 (s, 3H), 1.99 (s, 3H), 1.31 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.68, 171.39, 131.65, 129.18, 128.81, 124.87, 34.25, 26.94, 21.08; HRMS (ESI) calcd. for C₁₆H₂₂NO₃ [M+H]⁺: 276.1594, found: 276.1587.

(Z)-2-(*N*-Methylacetamido)-2-phenylvinyl acetate ^[14] (11b), yellow oil, 48.4 mg, yield: 69%; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (s, 1H), 7.43-7.32 (m, 5H), 3.08 (s, 3H), 2.25 (s, 3H), 1.96 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.30, 167.17, 133.30, 131.23, 129.18, 128.87, 128.77, 125.01, 34.33, 21.16, 20.66; HRMS (ESI) calcd. for C₁₃H₁₆NO₃ [M+H]⁺: 234.1125, found: 234.1119.

(Z)-2-(*N*-Methylacetamido)-2-phenylvinyl propionate (11c), yellow oil, 49.1 mg, yield: 66%; ¹H NMR (600 MHz, CDCl₃) δ 7.78 (s, 1H), 7.45-7.32 (m, 5H), 3.08 (s, 3H), 2.53 (t, *J* = 7.5 Hz, 2H), 1.96 (s, 3H), 1.23 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.31, 170.72, 133.35, 131.28, 129.17, 128.81, 128.78, 124.97, 34.31, 27.41, 21.16, 8.84; HRMS (ESI) calcd. for C₁₄H₁₈NO₃ [M+H]⁺: 248.1281, found: 248.1286.

(Z)-2-(*N*-Methylacetamido)-2-phenylvinyl benzoate ^[14] (11d), yellow oil, 57.3 mg, yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 8.15-8.13 (m, 2H), 8.09 (s, 1H), 7.66 (d, *J* = 7.1 Hz, 1H), 7.55 (d, *J* = 7.7 Hz, 2H), 7.47-7.35 (m, 5H), 3.21 (s, 3H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.90, 162.62, 134.36, 133.43, 133.10, 131.41, 130.17, 129.26, 128.98, 128.41, 127.91, 125.01, 34.57, 29.71, 21.24; HRMS (ESI) calcd. for C₁₈H₁₈NO₃[M+H]⁺: 296.1281, found: 296.1273.

(Z)-2-(*N*-Methylacetamido)-2-phenylvinyl cinnamate (11e), yellow oil, 62.8 mg, yield: 65%; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s , 1H) , 7.88 (d , *J* = 16.0 Hz , 1H) , 7.53-7.63 (m , 4H), 7.39-7.42 (m , 6H) , 6.56 (d , *J* = 16.0 Hz , 1H) , 3.15 (s , 3H) , 2.03 (s , 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.06, 163.12, 148.29, 133.72, 133.34, 131.42, 131.26, 129.09, 128.86, 128.61, 125.00, 115.47, 114.08, 34.40, 21.27; HRMS (ESI) calcd. for C₂₀H₂₀NO₃ [M+H]+: 322.1438, found: 322.1429.

2-Phenyl-2-(pyridin-2-yl)vinyl pivalate (11f), yellow oil, 44.8 mg, yield: 53%; ¹H NMR (600 MHz, CDCl₃) δ 8.59 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 8.22 (s, 1H), 7.39 (m, 3H), 7.35 (m, 2H), 7.32 (m, 3H), 1.16 (d, J = 0.7 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.13, 157.00, 149.45, 136.49, 136.31, 130.02, 128.14, 127.61, 122.61, 122.06,

38.86, 26.79; HRMS (ESI) calcd. for C₁₈H₂₀NO₂ [M+H]⁺: 282.1489, found: 282.1477.

2-Phenyl-2-(pyridin-2-yl)vinyl acetate (11g), yellow oil, 39.6 mg, yield: 55%; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 5.0 Hz, 1H), 7.69 (dd, J = 7.6, 1.7 Hz, 1H), 7.54 (d, J = 7.7 Hz, 2H), 7.43-7.30 (m, 5H), 5.71 (s, 1H), 1.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.09, 147.76, 142.65, 137.00, 128.40, 127.65, 126.14, 124.91, 122.64, 121.01, 29.71; HRMS (ESI) calcd. for C₁₅H₁₄NO₂ [M+H]⁺: 240.1019, found: 240.1011.

4-Methyl-2-(pyridin-2-yl)phenyl 4-([1,1'-biphenyl]-4-yl)-4-oxobutanoate (12), yellow oil, 82.3 mg, yield: 65%; ¹H NMR (600 MHz, CDCl₃) δ 8.69 (d, J = 5.9 Hz, 1H), 8.19-8.13 (m, 1H), 8.11 (s, 1H), 8.06 (s, 2H), 7.70 (s, 2H), 7.62 (s, 3H), 7.55 (t, J = 6.7 Hz, 1H), 7.48 (d, J = 7.6 Hz, 2H), 7.40 (s, 1H), 7.32-7.29 (m, 1H), 7.09 (d, J = 8.4 Hz, 1H), 3.36 (d, J = 6.5 Hz, 2H), 2.85 (d, J = 6.5 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.47, 175.76, 145.03, 141.01, 140.21, 138.82, 134.87, 134.12, 127.93, 127.63, 127.25, 126.27, 126.25, 124.05, 121.63, 119.59, 119.34, 32.27, 26.86, 19.72; HRMS (ESI) calcd. for C₂₈H₂₄NO₃ [M+H]⁺: 422.1751, found: 422.1746.

4-Methyl-2-(pyridin-2-yl)phenyl(4R)-4-((8R,9S,10S,13R,14S,17R)-10,13dimethyl-3,7,12-trioxohexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17-

yl)pentanoate (13), white solid, mp: 180.5-181.5 °C, 136.8 mg, yield: 80%; ¹H NMR (600 MHz, CDCl₃) δ 8.69 (d, J = 2.2 Hz, 1H), 7.72 (tt, J = 7.8, 1.9 Hz, 1H), 7.55-7.44 (m, 2H), 7.27-7.17 (m, 2H), 7.08-6.93 (m, 1H), 2.90 (q, J = 4.3, 3.5 Hz, 3H), 2.57-2.48 (m, 1H), 2.39 (d, J = 3.0 Hz, 3H), 2.35-2.18 (m, 9H), 2.02 (s, 4H), 1.86-1.81 (m, 2H), 1.61-1.58 (m, 1H), 1.39 (d, J = 3.3 Hz, 3H), 1.38-1.28 (m, 4H), 1.03 (d, J = 2.9 Hz, 3H), 0.82 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 211.93, 209.04, 208.67, 172.42, 155.77, 149.39, 145.89, 136.22, 135.84, 132.62, 131.21, 130.25, 123.84, 122.82, 122.13, 62.15, 56.85, 51.75, 48.92, 46.75, 45.63, 45.50, 44.93, 42.74, 38.60, 36.42, 35.97, 35.30, 31.37, 30.17, 27.52, 25.07, 21.83, 20.85, 18.59, 11.82; HRMS (ESI) calcd. for C₃₆H₄₄NO₅ [M+H]⁺: 570.3214, found: 570.3215.

4-Methyl-2-(pyridin-2-yl)phenyl(2S,4aS,6aS,6bR,10S,12aS,12bR,14bS)-10hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-

1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-

carboxylate (14), yellow oil, 135.9 mg, yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.69 (td, J = 7.7, 1.8 Hz, 1H), 7.46 (dt, J = 7.8, 1.1 Hz, 1H), 7.42 (d, J = 2.1 Hz, 1H), 7.26-7.17 (m, 2H), 6.95 (d, J = 8.2 Hz, 1H), 5.56 (s, 1H), 3.18 (dd, J = 11.2, 5.0 Hz, 1H), 2.82-2.69 (m, 1H), 2.39 (s, 3H), 2.30 (s, 1H), 2.21-2.13 (m, 1H), 2.03-1.92 (m, 3H), 1.80 (d, J = 4.6 Hz, 1H), 1.69-1.55 (m, 5H), 1.46-1.28 (m, 8H), 1.21-1.08 (m, 11H), 0.98 (m, 5H), 0.78 (d, J = 5.3 Hz, 6H), 0.72-0.63 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 200.01, 174.90, 168.77, 155.86, 149.47, 145.88, 136.11, 135.76, 133.43, 131.33, 130.21, 128.53, 124.26, 122.49, 122.20, 78.41, 62.16, 61.75, 54.88, 47.92, 45.32, 44.05, 43.12, 40.96, 39.09, 37.57, 37.02, 32.70, 31.77, 31.02, 28.51, 28.11, 27.87, 27.20, 26.37, 26.30, 23.41, 20.87, 18.64, 17.46, 16.34, 15.65; HRMS (ESI) calcd. for C₄₂H₅₆NO₄ [M+H]⁺: 638.4204, found: 638.4193.

4-Methyl-2-(pyridin-2-yl)phenyl(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthrene-3-

carboxylate (15), yellow oil, 109.0 mg, yield: 78%; ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 4.7 Hz, 1H), 7.90-7.79 (m, 2H), 7.63-7.52 (m, 3H), 7.38 (d, J = 8.0 Hz, 1H), 7.32 – 7.24 (m, 1H), 7.17 (d, J = 8.4 Hz, 2H), 3.05-2.88 (m, 2H), 2.59-2.51 (m, 1H), 2.44 (s, 3H), 2.36 (d, J = 4.1 Hz, 1H), 2.18 (d, J = 9.3 Hz, 1H), 2.10-1.97 (m, 4H), 1.66-1.57 (m, 2H), 1.57-1.45 (m, 4H), 0.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 220.52, 165.39, 155.56, 149.57, 146.06, 145.80, 136.92, 136.14, 136.00, 132.81, 131.33, 130.82, 130.35, 127.42, 126.91, 125.57, 123.81, 123.00, 122.07, 50.50, 47.87, 44.72, 37.76, 35.82, 31.54, 29.20, 26.24, 25.56, 21.59, 20.96, 13.82; HRMS (ESI) calcd. for C₃₁H₃₂NO₃ [M+H]⁺: 466.2377, found: 466.2365.

5. The mechanistic studies

a) H/D exchange experiment

To an oven-dried pressure tube were sequentially added 2-(*m*-tolyl)pyridine (**1a**) (50.77 mg, 0.30 mmol), $[Cp*Rh(CH_3CN)_3][SbF_6]_2$ (3.74 mg, 0.0045 mmol), AgF (76.12 mg, 0.60 mmol), D₂O (60.06 mg, 3.0 mmol) and 1,2-dichloroethane (1.50 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously

at 120 °C for 20 h in an oil bath under nitrogen atmosphere. The ratio of H/D was determined on the basis of ¹H NMR analysis.

To an oven-dried pressure tube were sequentially added 2-(*m*-tolyl)pyridine (**1a**) (50.77 mg, 0.30 mmol), [Cp*Rh(CH₃CN)₃][SbF₆]₂ (3.74 mg, 0.0045 mmol), pivalic acid (**2a**) (61.28 mg, 0.60 mmol), AgF (76.12 mg, 0.60 mmol), D₂O (60.06 mg, 3.0 mmol) and 1,2-dichloroethane (1.50 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously at 120 °C for 5 h in an oil bath under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with saturated aqueous NaHCO₃ (10.0 mL) and extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give the pure products **3ca** as an inseparable mixture (37.8 mg, 47%) and [Dn]-**1a**(25.9 mg, 51%). The ratio of H/D was determined on the basis of ¹H NMR analysis.

b) Kinetic isotope effect

To an oven-dried pressure tube were sequentially added d^5 -2-Phenylpyridine ([D5]-1c) (48.10 mg, 0.30 mmol), 2-phenylpyridine (1c) (46.56 mg, 0.30 mmol), pivalic acid (2a) (61.28 mg, 0.60 mmol), [Cp*Rh(CH₃CN)₃][SbF₆]₂ (7.49 mg, 0.009 mmol), AgF (76.12 mg, 0.60 mmol) and 1,2-dichloroethane (1.5 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously at 120 °C for 0.5 h in an oil bath under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with saturated aqueous NaHCO₃ (10.0 mL) and extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give the pure products **3ca** and [D4]-**3ca** as an inseparable mixture (18.5 mg, 23%). KIE value ($k_{H'}/k_D = 2.1$) was determined on the basis of ¹H NMR analysis.

To an oven-dried pressure tube were sequentially added d^5 -2-Phenylpyridine ([D5]-1c) (48.10 mg, 0.30 mmol) or 2-phenylpyridine (1c) (46.56 mg, 0.30 mmol), pivalic acid (2a) (61.28 mg, 0.60 mmol), [Cp*Rh(CH₃CN)₃][SbF₆]₂ (7.49 mg, 0.009 mmol), AgF (76.12 mg, 0.60 mmol) and 1,2-dichloroethane (1.5 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously at 120 °C for designated time (10, 20, 30, 40, 50 min) in an oil bath under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with saturated aqueous NaHCO₃ (10.0 mL) and extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give the pure products **3ca** or [D4]**-3ca**. KIE value ($k_H/k_D = 1.44$) was determined on the basis of ¹H NMR analysis.

[D₄]-**3ca**

[D₅]-**1c**

2a

Time(min)	10	20	30	40	50
3ca(%)	10	15	19	25	31
[D4] -3ca (%)	6	9	11	15	21

KIE=0.52/0.36=1.44

c) Competition experiments

To an oven-dried pressure tube were sequentially added 2-(*m*-tolyl)pyridine (**1a**) (50.77 mg, 0.30 mmol), pivalic acid (**2a**) (61.28 mg, 0.6 mmol), benzoic acid (**4a**) (73.27 mg, 0.6 mmol), [Cp*Rh(CH₃CN)₃][SbF₆]₂ (3.74 mg, 0.0045 mmol), AgF (76.12 mg, 0.60 mmol) and 1,2-dichloroethane (1.50 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously at 120 °C for 20 h in an oil bath under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with saturated aqueous NaHCO₃ (10.0 mL) and extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give the pure products **3aa**(47.67 mg, 59%) and **5aa**(19.96 mg, 23%), respectively.

To an oven-dried pressure tube were sequentially added 2-(*m*-tolyl)pyridine (**1a**) (50.77 mg, 0.30 mmol), pivalic acid (**2a**) (61.28 mg, 0.6 mmol), cinnamic acid (**6a**) (88.90 mg, 0.6 mmol), [Cp*Rh(CH₃CN)₃][SbF₆]₂ (3.74 mg, 0.0045 mmol), AgF (76.12 mg, 0.60 mmol) and 1,2-dichloroethane (1.50 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously at 120 °C for 20 h in an oil bath under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with saturated aqueous NaHCO₃ (10.0 mL) and extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give the pure products **3aa**(54.14 mg, 67%) and **7aa**(25.54 mg, 27%), respectively.

To an oven-dried pressure tube were sequentially added 2-(*p*-tolyl)pyridine (1c) (50.77 mg, 0.30 mmol), 2-(4-(trifluoromethyl)phenyl)pyridine (1g) (66.96 mg, 0.30 mmol), pivalic acid (2a) (61.28 mg, 0.6 mmol), $[Cp*Rh(CH_3CN)_3][SbF_6]_2$ (3.74 mg, 0.0045 mmol), AgF (76.12 mg, 0.60 mmol) and 1,2-dichloroethane (1.50 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously at 120 °C for 20 h in an oil bath under nitrogen atmosphere. After cooling to ambient temperature,

the reaction mixture was diluted with saturated aqueous NaHCO₃ (10.0 mL) and extracted with CH_2Cl_2 (5.0 mL \times 3). The combined organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give the pure products **3ca** (63.83 mg, 79%).

To an oven-dried pressure tube were sequentially added 2-(p-tolyl)pyridine (1c) (25.35

mg, 0.15 mmol), **19** (110.50 mg, 0.15 mmol), pivalic acid (**2a**) (30.63 mg, 0.3 mmol), AgF (38.05 mg, 0.30 mmol) and 1,2-dichloroethane (1.50 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously at 120 °C for 20 h in an oil bath under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with saturated aqueous NaHCO₃ (10.0 mL) and extracted with CH₂Cl₂ (5.0 mL \times 3). The combined organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give the pure products **3ca** (22.20 mg, 55%) and 3**ga** (7.26 mg, 15%).

To an oven-dried pressure tube were sequentially added **19** (110.50 mg, 0.15 mmol), pivalic acid (**2a**) (30.63 mg, 0.3 mmol), AgF (38.05 mg, 0.30 mmol) and 1,2dichloroethane (1.50 mL). After being degassed three times, the reaction mixture was heated and stirred vigorously at 120 °C for 3 h in an oil bath under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with saturated aqueous NaHCO₃ (10.0 mL) and extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give the pure products 3**ga** (29.05 mg, 60%).

d) Preparation of rhodacycle complexes

<u>Preparation of 16</u>^[15]: A mixture of $[Cp*RhCl_2]_2$ (62.0 mg, 0.1 mmol), NaOAc (20.0 mg, 0.23 mmol), 2-(*m*-tolyl)pyridine (**1a**) (33.85 mg, 0.2 mmol) were stirred at room temperature in dichloromethane (10.0 mL) for 24 h. Then the mixture was filtered through a pad of celite and evaporated to dryness and purified by column chromatography on silica gel using a mixture of dichloromethane and hexane to afford the desire product as a red-orange solid (86.43 mg, 98%).

<u>Preparation of 17</u>: A mixture of [Cp*Rh(CH₃CN)₃][SbF₆]₂ (83.40 mg, 0.1mmol), 2-(*m*-tolyl)pyridine (**1a**) (25.40 mg, 0.15 mmol) were stirred at room temperature in dichloromethane (5.0 mL) and acetonitrile (0.50 mL) for 36 h. Then the mixture was filtered through a pad of celite and evaporated to dryness and purified by column chromatography on silica gel using a mixture of dichloromethane and methanol to afford the desire product as an orange solid (56.70 mg, 83%); ¹H NMR (400 MHz, (CD₃)₂CO) δ 8.96 (d, *J* = 5.6 Hz, 1H), 8.17 (t, *J* = 7.9 Hz, 1H), 8.09-8.04 (m, 1H), 7.77-7.72 (m, 2H), 7.50 (ddd, *J* = 7.2, 5.6, 1.4 Hz, 1H), 7.20 (dd, *J* = 7.7, 1.9 Hz, 1H), 2.38 (s, 3H), 2.35 (s, 3H), 1.72 (s, 15H); ¹³C NMR (101 MHz, (CD₃)₂CO) δ 165.39, 152.20, 139.25, 136.26, 133.53, 131.95, 129.57, 124.91, 123.55, 119.85, 101.37, 98.18, 20.03, 8.47, 2.47; HRMS (ESI) calcd. for C₂₂H₂₅NRh [Cp*RhAr]⁺: 406.1042, found: 406.1027.

Preparation of 18: A mixture of $[Cp*Rh(CH_3CN)_3][SbF_6]_2$ (125.12 mg, 0.15 mmol), 2-(4-(trifluoromethyl)phenyl)pyridine (**1g**) (33.45 mg, 0.15 mmol) were stirred at room temperature in dichloromethane (5.0 mL) and acetonitrile (0.50 mL) for 36 h. Then the mixture was filtered through a pad of celite and evaporated to dryness and purified by column chromatography on silica gel using a mixture of dichloromethane and methanol to afford the desire product as an brown solid (88.44 mg, 80%); ¹H NMR (400 MHz, (CD₃)₂CO) δ 9.04 (d, *J* = 5.5 Hz, 1H), 8.31 (d, *J* = 8.0 Hz, 1H), 8.21 (m, 1H), 8.10 (m, 2H), 7.95 (m, 1H), 7.55 (m, 1H), 2.33 (s, 3H), 1.73 (s, 15H); ¹³C NMR (101 MHz, (CD₃)₂CO) δ 174.08, 163.65, 152.73, 148.64, 139.83, 132.76, 128.90, 128.54, 125.13, 124.24, 120.98, 118.49, 98.72, 98.66, 8.25, 2.30; HRMS (ESI) calcd. for C₂₂H₂₂F₃NRh [Cp*RhAr]⁺: 460.3174, found: 406.2744.

Preparation of 19: A mixture of $[Cp*Rh(OAc)_2]_2$ (71.24 mg, 0.10 mmol), 2-(*m*-tolyl)pyridine (**1a**) (33.85 mg, 0.20 mmol) were stirred at room temperature in dichloromethane (5.0 mL) for 24 h. Then the mixture was filtered through a pad of celite and evaporated to dryness and purified by column chromatography on silica gel using a mixture of dichloromethane and hexane to afford the desire product as a redorange solid (81.86 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 5.7 Hz, 1H), 7.86 (d, *J* = 7.0 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.45 (s, 1H), 7.12 (d, *J* = 9.5 Hz, 2H), 2.36 (s, 3H), 1.67 (s, 3H), 1.65 (s, 15H); ¹³C NMR (151 MHz, CDCl₃) δ 164.50, 150.29, 142.51, 135.90, 135.55, 130.78, 128.89, 123.17, 120.75, 117.94, 94.82, 94.78, 30.88, 19.99, 8.36; HRMS (ESI) calcd. for C₂₂H₂₅NRh [Cp*RhAr]⁺: 406.1042, found: 406.1031.

6. References:

- 1. J. Park, S. Chang, Angew. Chem. Int. Ed. 2015, 54, 14103
- a) D. Maiti, S. L. Buchwald, J. Org. Chem. 2010, 75, 1791; b) C. S. Cho, H. S. Kim, T. J. Kim, S. C. Shim, Synth. Commun. 2001, 31, 3791; c) K. M, A. Kirschning, Tetrahedron. 2005, 61, 12121; d) R. Cano, D. J. Ramon, M. Yus, J. Org. Chem. 2011, 76, 654.
- 3. Q. Xu, Z. Li, Tetrahedron Lett. 2009, 50, 6838.
- 4. I. Cerna, R.Pohl, B. Klepetarova, M. Hocek, J. Org. Chem. 2008, 73, 9048.
- 5. M. N. Zhao, Z. H. Ren, Y. Y. Wang, Z. H. Guan, *Chem. Commun.* **2012**, *48*, 8105.
- 6. B. A. Andersson, P. G. Pamies, O. Dieguez, J. Am. Chem. Soc. 2009, 131, 12344.
- 7. C. Feng, T.-P. Loh, Angew. Chem. Int. Ed. 2014, 53, 2722.
- 8. S. I. Kozhushkov, D. S. Yufit, L. Ackermann, Org. Lett. 2008, 10, 3409.
- 9. P. Lu, C. Feng, T. Loh, Org. Lett. 2015, 17, 3210.
- 10. Q. Zhang, Y. Wang, T. Yang, L. Li, D. Li, Tetrahedron Lett. 2015, 56, 6136.
- 11. D. Kalyani, M. S. Sanford, Org. Lett. 2005, 7, 1523.
- 12. K. Yoo, H. Park, S. Kim, M. Kim, Tetrahedron Lett. 2016, 57, 781.
- 13. K. Padala, M. Jeganmohan, Chem. Commun. 2013, 49, 9651.
- 14. W. Yu, J. Chen, K. Gao, Z. Liu, Y. Zhang, Org. Lett. 2014, 16, 4870.
- 15. L. Li, W. W. Brennessel, W. D. Jones, Organometallics. 2009, 28, 3492.

7. ¹H and ¹³C NMR spectra of products

8.7041 8.7018 8.8097 8.8097 8.8098 8.8098 8.8097 8.8097 8.8098 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8098 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8097 8.8018 8.8018 8.8017 8.8017 8.8018 8.8018 8.8017 8.8017 8.8017 8.8017 8.8017 8.8017 8.8017 8.8017 8.8017 8.

8. X-ray Data

Identification code	1		
Empirical formula	C2.44 H1.78 N0.22 O0.22		
Formula weight	37.82		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 7.1832(10) Å	$\alpha = 99.499(6)^{\circ}$.	
	b = 10.3531(16) Å	β=102.356(6)°.	
	c = 12.7041(18) Å	$\gamma = 98.881(5)^{\circ}$.	
Volume	892.4(2) Å ³		
Z	18		
Density (calculated)	1.267 mg/m ³		
Absorption coefficient	0.082 mm ⁻¹		
F(000)	356		
Crystal size	0.20 x 0.20 x 0.20 mm ³		
Theta range for data collection	2.89 to 26.43°.		
Index ranges	-8<=h<=8, -12<=k<=12, -15<=l<=15		
Reflections collected	15137		
Independent reflections	3627 [R(int) = 0.0323]		
Completeness to theta = 26.43°	99.2 %;		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9837 and 0.9837		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3627 / 0 / 236		
Goodness-of-fit on F ²	1.052		
Final R indices [I>2sigma(I)]	R1 = 0.0369, WR2 = 0.0949		
R indices (all data)	R1 = 0.0429, $wR2 = 0.0987$		
Largest diff. peak and hole	0.234 and -0.187 e.Å ⁻³		

Table 1. Crystal data and structure refinement for zzyccj5.

	Х	у	Z	U(eq)
O(1)	1160(1)	2998(1)	7601(1)	22(1)
O(2)	1290(1)	1594(1)	6070(1)	24(1)
C(1)	-9615(2)	-3222(1)	5808(1)	23(1)
N(1)	-11076(2)	-3890(1)	5754(1)	30(1)
C(2)	-7340(2)	-1076(1)	6506(1)	22(1)
C(3)	-4699(2)	-2034(1)	5419(1)	22(1)
C(4)	4478(2)	3274(1)	8610(1)	22(1)
C(5)	-5578(2)	-262(1)	6587(1)	21(1)
C(6)	-4226(2)	-733(1)	6053(1)	19(1)
C(7)	3134(2)	3556(1)	7755(1)	21(1)
C(8)	-7774(2)	-2379(1)	5888(1)	20(1)
C(9)	6410(2)	3934(1)	8810(1)	25(1)
C(10)	-2333(2)	88(1)	6116(1)	19(1)
N(2)	2729(2)	1158(1)	8786(1)	28(1)
C(11)	-6456(2)	-2860(1)	5334(1)	23(1)
C(12)	3680(2)	4420(1)	7104(1)	24(1)
C(13)	420(2)	1926(1)	6746(1)	19(1)
C(14)	-1524(2)	1267(1)	6785(1)	21(1)
C(15)	7004(2)	4821(1)	8179(1)	26(1)
C(16)	5619(2)	5042(1)	7311(1)	26(1)
C(17)	9088(2)	5561(2)	8456(1)	37(1)
C(18)	4656(2)	2654(1)	10444(1)	30(1)
C(19)	2267(2)	300(1)	9413(1)	35(1)
C(20)	3927(2)	2328(1)	9306(1)	23(1)
C(21)	4133(2)	1751(2)	11070(1)	38(1)
C(22)	2920(2)	547(2)	10547(1)	39(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{iJ} tensor.

O(1)-C(13)	1.3664(14)		
O(1)-C(7)	1.4048(14)		
O(2)-C(13)	1.2014(15)		
C(1)-N(1)	1.1462(16)		
C(1)-C(8)	1.4417(16)		
C(2)-C(5)	1.3818(16)		
C(2)-C(8)	1.3964(17)		
C(3)-C(11)	1.3832(17)		
C(3)-C(6)	1.4004(17)		
C(4)-C(7)	1.3923(17)		
C(4)-C(9)	1.3987(17)		
C(4)-C(20)	1.4885(17)		
C(5)-C(6)	1.4001(16)		
C(6)-C(10)	1.4675(16)		
C(7)-C(12)	1.3833(17)		
C(8)-C(11)	1.3975(17)		
C(9)-C(15)	1.3913(19)		
C(10)-C(14)	1.3322(17)		
N(2)-C(19)	1.3373(18)		
N(2)-C(20)	1.3471(16)		
C(12)-C(16)	1.3909(18)		
C(13)-C(14)	1.4711(16)		
C(15)-C(16)	1.3941(19)		
C(15)-C(17)	1.5109(18)		
C(18)-C(21)	1.383(2)		
C(18)-C(20)	1.3923(18)		
C(19)-C(22)	1.383(2)		
C(21)-C(22)	1.378(2)		
C(13)-O(1)-C(7)	115.47(9)		
N(1)-C(1)-C(8)	179.35(13)		
C(5)-C(2)-C(8)	119.69(11)		
C(11)-C(3)-C(6)	120.96(11)		
C(7)-C(4)-C(9)	117.27(11)		
C(7)-C(4)-C(20)	122.69(11)		
C(9)-C(4)-C(20)	120.04(11)		

Table 3.Bond lengths [Å] and angles [°] for 1.
C(2)-C(5)-C(6)	120.52(11)
C(5)-C(6)-C(3)	119.05(11)
C(5)-C(6)-C(10)	122.66(11)
C(3)-C(6)-C(10)	118.28(11)
C(12)-C(7)-C(4)	121.86(11)
C(12)-C(7)-O(1)	119.71(11)
C(4)-C(7)-O(1)	118.32(11)
C(2)-C(8)-C(11)	120.61(11)
C(2)-C(8)-C(1)	119.33(11)
C(11)-C(8)-C(1)	120.05(11)
C(15)-C(9)-C(4)	122.34(12)
C(14)-C(10)-C(6)	126.80(11)
C(19)-N(2)-C(20)	116.97(12)
C(3)-C(11)-C(8)	119.15(11)
C(7)-C(12)-C(16)	119.48(12)
O(2)-C(13)-O(1)	122.79(10)
O(2)-C(13)-C(14)	126.26(11)
O(1)-C(13)-C(14)	110.95(10)
C(10)-C(14)-C(13)	118.81(11)
C(9)-C(15)-C(16)	118.40(12)
C(9)-C(15)-C(17)	120.60(12)
C(16)-C(15)-C(17)	120.97(12)
C(12)-C(16)-C(15)	120.61(12)
C(21)-C(18)-C(20)	119.11(13)
N(2)-C(19)-C(22)	124.28(14)
N(2)-C(20)-C(18)	122.46(12)
N(2)-C(20)-C(4)	117.17(11)
C(18)-C(20)-C(4)	120.36(11)
C(22)-C(21)-C(18)	118.99(13)
C(21)-C(22)-C(19)	118.18(13)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	17(1)	21(1)	23(1)	-1(1)	4(1)	-1(1)
O(2)	21(1)	25(1)	24(1)	0(1)	8(1)	-1(1)
C(1)	23(1)	22(1)	24(1)	6(1)	6(1)	4(1)
N(1)	24(1)	29(1)	37(1)	6(1)	10(1)	-2(1)
C(2)	19(1)	24(1)	23(1)	6(1)	6(1)	4(1)
C(3)	19(1)	22(1)	26(1)	4(1)	7(1)	4(1)
C(4)	23(1)	20(1)	19(1)	-1(1)	5(1)	2(1)
C(5)	20(1)	19(1)	21(1)	3(1)	4(1)	3(1)
C(6)	17(1)	20(1)	19(1)	6(1)	2(1)	3(1)
C(7)	18(1)	19(1)	21(1)	-2(1)	4(1)	-1(1)
C(8)	17(1)	21(1)	22(1)	8(1)	3(1)	1(1)
C(9)	22(1)	28(1)	22(1)	2(1)	2(1)	3(1)
C(10)	17(1)	22(1)	20(1)	7(1)	4(1)	4(1)
N(2)	31(1)	25(1)	28(1)	4(1)	9(1)	1(1)
C(11)	22(1)	18(1)	27(1)	3(1)	5(1)	1(1)
C(12)	25(1)	24(1)	20(1)	2(1)	2(1)	1(1)
C(13)	19(1)	18(1)	19(1)	4(1)	2(1)	3(1)
C(14)	18(1)	23(1)	22(1)	4(1)	6(1)	3(1)
C(15)	22(1)	27(1)	26(1)	-1(1)	6(1)	-1(1)
C(16)	28(1)	25(1)	24(1)	4(1)	8(1)	-2(1)
C(17)	24(1)	42(1)	40(1)	6(1)	5(1)	-6(1)
C(18)	33(1)	30(1)	24(1)	5(1)	4(1)	9(1)
C(19)	38(1)	28(1)	42(1)	10(1)	15(1)	3(1)
C(20)	22(1)	24(1)	24(1)	4(1)	7(1)	7(1)
C(21)	47(1)	44(1)	27(1)	13(1)	9(1)	16(1)
C(22)	47(1)	39(1)	42(1)	23(1)	20(1)	14(1)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 1.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + \dots + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	Х	у	Z	U(eq)	
H(2)	-8252	-751	6870	26	
H(3)	-3801	-2353	5041	26	
H(5)	-5283	625	7007	25	
H(9)	7350	3771	9397	30	
H(10)	-1608	-255	5629	23	
H(11)	-6762	-3742	4905	27	
H(12)	2737	4587	6520	29	
H(14)	-2190	1674	7278	25	
H(16)	6002	5623	6856	32	
H(17A)	9222	6427	8943	56	
H(17B)	9454	5702	7777	56	
H(17C)	9941	5034	8827	56	
H(18)	5502	3487	10786	35	
H(19)	1436	-533	9056	42	
H(21)	4602	1957	11848	45	
H(22)	2543	-97	10954	47	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 1.

Identification code	1		
Empirical formula	C3.80 H2.80 Br0.20 N0.20 O0.40		
Formula weight	73.64		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 17.1209(10) Å	α=90°.	
	b = 6.8257(5) Å	β= 100.200(3)°.	
	c = 14.2218(10) Å	$\gamma = 90^{\circ}$.	
Volume	1635.72(19) Å ³		
Z	20		
Density (calculated)	1.495 mg/m ³		
Absorption coefficient	2.522 mm ⁻¹		
F(000)	744		
Crystal size	0.35 x 0.20 x 0.20 mm ³		
Theta range for data collection	2.91 to 26.38°.		
Index ranges	-21<=h<=21, -7<=k<=8, -17<=	=1<=17	
Reflections collected	12488		
Independent reflections	3326 [R(int) = 0.0370]		
Completeness to theta = 26.38°	98.9 %;		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.6325 and 0.4723		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3326 / 0 / 209		
Goodness-of-fit on F ²	1.016		
Final R indices [I>2sigma(I)]	R1 = 0.0357, wR2 = 0.0917		
R indices (all data)	R1 = 0.0480, wR2 = 0.0987		
Largest diff. peak and hole	0.332 and -0.708 e.Å ⁻³		

 Table 1.
 Crystal data and structure refinement for zzyccj4

	Х	у	Z	U(eq)
Br(1)	11282(1)	3567(1)	4424(1)	65(1)
O(1)	7660(1)	-456(2)	2897(1)	40(1)
O(2)	8377(1)	-3212(3)	2857(2)	56(1)
C(7)	8349(1)	-1493(3)	3007(2)	38(1)
C(14)	6561(1)	-850(3)	1607(2)	37(1)
C(15)	6848(1)	800(3)	1074(2)	34(1)
C(8)	6953(1)	-1432(3)	2504(2)	37(1)
N(1)	6876(1)	496(3)	152(1)	46(1)
C(4)	9040(1)	-213(3)	3344(2)	38(1)
C(12)	5863(1)	-1841(4)	1228(2)	48(1)
C(9)	6652(2)	-2864(4)	3028(2)	47(1)
C(16)	7048(2)	2589(3)	1516(2)	44(1)
C(2)	10456(2)	56(4)	3825(2)	54(1)
C(3)	9794(2)	-1057(4)	3505(2)	50(1)
C(5)	8970(2)	1777(4)	3493(2)	50(1)
C(10)	5955(2)	-3776(4)	2634(2)	55(1)
C(1)	10370(1)	2027(4)	3981(2)	45(1)
C(11)	5551(2)	-3296(4)	1726(2)	56(1)
C(19)	7122(2)	1987(4)	-328(2)	55(1)
C(17)	7289(2)	4105(4)	997(2)	50(1)
C(18)	7333(2)	3803(4)	60(2)	52(1)
C(6)	9636(2)	2902(4)	3818(2)	56(1)
C(13)	4793(2)	-4333(6)	1301(3)	93(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{iJ} tensor.

Br(1)-C(1)	1.897(2)
O(1)-C(7)	1.361(3)
O(1)-C(8)	1.407(3)
O(2)-C(7)	1.195(3)
C(7)-C(4)	1.481(3)
C(14)-C(8)	1.390(3)
C(14)-C(12)	1.396(3)
C(14)-C(15)	1.489(3)
C(15)-N(1)	1.336(3)
C(15)-C(16)	1.389(3)
C(8)-C(9)	1.383(3)
N(1)-C(19)	1.335(3)
C(4)-C(5)	1.383(3)
C(4)-C(3)	1.395(3)
C(12)-C(11)	1.381(4)
С(12)-Н(12)	0.9500
C(9)-C(10)	1.375(4)
C(9)-H(9)	0.9500
C(16)-C(17)	1.376(3)
С(16)-Н(16)	0.9500
C(2)-C(3)	1.372(4)
C(2)-C(1)	1.376(4)
C(2)-H(2)	0.9500
C(3)-H(3)	0.9500
C(5)-C(6)	1.385(4)
C(5)-H(5)	0.9500
C(10)-C(11)	1.392(4)
C(10)-H(10)	0.9500
C(1)-C(6)	1.372(4)
C(11)-C(13)	1.508(4)
C(19)-C(18)	1.379(4)
С(19)-Н(19)	0.9500
C(17)-C(18)	1.364(4)
С(17)-Н(17)	0.9500
C(18)-H(18)	0.9500
C(6)-H(6)	0.9500

Table 3.Bond lengths [Å] and angles [°] for 1.

0.9800
0.9800
0.9800
117.78(17)
123.5(2)
125.6(2)
110.93(18)
117.2(2)
122.3(2)
120.4(2)
122.2(2)
117.02(19)
120.77(19)
122.1(2)
119.8(2)
118.04(19)
116.9(2)
118.9(2)
122.9(2)
118.2(2)
122.2(2)
118.9
118.9
118.7(2)
120.7
120.7
119.4(2)
120.3
120.3
119.2(2)
120.4
120.4
120.8(2)
119.6
119.6
120.5(2)
119.8

C(6)-C(5)-H(5)	119.8
C(9)-C(10)-C(11)	121.6(2)
C(9)-C(10)-H(10)	119.2
С(11)-С(10)-Н(10)	119.2
C(6)-C(1)-C(2)	121.3(2)
C(6)-C(1)-Br(1)	119.4(2)
C(2)-C(1)-Br(1)	119.35(19)
C(12)-C(11)-C(10)	118.2(2)
C(12)-C(11)-C(13)	121.0(3)
C(10)-C(11)-C(13)	120.8(3)
N(1)-C(19)-C(18)	124.4(2)
N(1)-C(19)-H(19)	117.8
C(18)-C(19)-H(19)	117.8
C(18)-C(17)-C(16)	118.9(2)
С(18)-С(17)-Н(17)	120.5
С(16)-С(17)-Н(17)	120.5
C(17)-C(18)-C(19)	118.1(2)
C(17)-C(18)-H(18)	120.9
C(19)-C(18)-H(18)	120.9
C(1)-C(6)-C(5)	119.3(2)
C(1)-C(6)-H(6)	120.3
C(5)-C(6)-H(6)	120.3
С(11)-С(13)-Н(13А)	109.5
C(11)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
С(11)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	57(1)	70(1)	66(1)	-14(1)	9(1)	-19(1)
O(1)	40(1)	37(1)	42(1)	-2(1)	2(1)	3(1)
O(2)	51(1)	40(1)	75(1)	-12(1)	5(1)	4(1)
C(7)	43(1)	40(1)	32(1)	0(1)	6(1)	5(1)
C(14)	36(1)	35(1)	41(1)	0(1)	9(1)	2(1)
C(15)	29(1)	38(1)	35(1)	1(1)	4(1)	2(1)
C(8)	38(1)	35(1)	40(1)	-2(1)	10(1)	3(1)
N(1)	55(1)	48(1)	34(1)	-3(1)	5(1)	-9(1)
C(4)	41(1)	39(1)	32(1)	1(1)	6(1)	3(1)
C(12)	39(1)	48(1)	55(2)	3(1)	2(1)	-4(1)
C(9)	54(1)	41(1)	49(1)	7(1)	16(1)	5(1)
C(16)	58(1)	39(1)	38(1)	-4(1)	13(1)	2(1)
C(2)	42(1)	54(2)	65(2)	-4(1)	5(1)	5(1)
C(3)	46(1)	41(1)	62(2)	-4(1)	4(1)	6(1)
C(5)	45(1)	42(1)	62(2)	-1(1)	8(1)	6(1)
C(10)	55(2)	43(1)	72(2)	10(1)	27(1)	-2(1)
C(1)	46(1)	51(1)	40(1)	-4(1)	9(1)	-7(1)
C(11)	41(1)	49(2)	78(2)	2(1)	14(1)	-6(1)
C(19)	68(2)	64(2)	33(1)	2(1)	8(1)	-12(1)
C(17)	60(2)	34(1)	56(2)	-1(1)	7(1)	-4(1)
C(18)	56(1)	49(2)	48(1)	13(1)	6(1)	-10(1)
C(6)	55(2)	39(1)	73(2)	-7(1)	14(1)	-3(1)
C(13)	63(2)	90(3)	122(3)	11(2)	4(2)	-34(2)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 1.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + \dots + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	х	у	Z	U(eq)
H(12)	5593	-1502	607	57
H(9)	6922	-3211	3648	56
H(16)	7020	2765	2172	53
H(2)	10968	-529	3936	65
H(3)	9850	-2417	3393	60
H(5)	8461	2376	3373	60
H(10)	5743	-4758	2991	66
H(19)	7154	1783	-981	66
H(17)	7422	5343	1287	60
H(18)	7505	4814	-315	62
H(6)	9587	4265	3927	67
H(13A)	4516	-3582	755	140
H(13B)	4452	-4447	1784	140
H(13C)	4917	-5643	1088	140

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 1.

Table 6. Torsion angles [°] for 1.

C(8)-O(1)-C(7)-O(2)	-5.8(3)
C(8)-O(1)-C(7)-C(4)	174.78(17)
C(8)-C(14)-C(15)-N(1)	133.4(2)
C(12)-C(14)-C(15)-N(1)	-48.7(3)
C(8)-C(14)-C(15)-C(16)	-48.7(3)
C(12)-C(14)-C(15)-C(16)	129.1(2)
C(12)-C(14)-C(8)-C(9)	-3.0(3)
C(15)-C(14)-C(8)-C(9)	174.9(2)
C(12)-C(14)-C(8)-O(1)	179.80(19)
C(15)-C(14)-C(8)-O(1)	-2.3(3)
C(7)-O(1)-C(8)-C(9)	69.9(3)
C(7)-O(1)-C(8)-C(14)	-112.8(2)
C(16)-C(15)-N(1)-C(19)	1.2(3)
C(14)-C(15)-N(1)-C(19)	179.0(2)
O(2)-C(7)-C(4)-C(5)	179.1(2)
O(1)-C(7)-C(4)-C(5)	-1.5(3)
O(2)-C(7)-C(4)-C(3)	-0.2(4)
O(1)-C(7)-C(4)-C(3)	179.2(2)
C(8)-C(14)-C(12)-C(11)	2.1(4)
C(15)-C(14)-C(12)-C(11)	-175.9(2)
C(14)-C(8)-C(9)-C(10)	1.9(3)
O(1)-C(8)-C(9)-C(10)	179.0(2)
N(1)-C(15)-C(16)-C(17)	-0.4(4)
C(14)-C(15)-C(16)-C(17)	-178.1(2)
C(1)-C(2)-C(3)-C(4)	-0.3(4)
C(5)-C(4)-C(3)-C(2)	1.2(4)
C(7)-C(4)-C(3)-C(2)	-179.5(2)
C(3)-C(4)-C(5)-C(6)	-1.4(4)
C(7)-C(4)-C(5)-C(6)	179.3(2)
C(8)-C(9)-C(10)-C(11)	0.2(4)
C(3)-C(2)-C(1)-C(6)	-0.4(4)
C(3)-C(2)-C(1)-Br(1)	179.9(2)
C(14)-C(12)-C(11)-C(10)	-0.1(4)
C(14)-C(12)-C(11)-C(13)	179.6(3)
C(9)-C(10)-C(11)-C(12)	-1.1(4)
C(9)-C(10)-C(11)-C(13)	179.2(3)

C(15)-C(16)-C(17)-C(18) -0.8(4)	
0.0(4)	
C(16)-C(17)-C(18)-C(19) 0.9(4)	
N(1)-C(19)-C(18)-C(17) 0.0(4)	
C(2)-C(1)-C(6)-C(5) 0.2(4)	
Br(1)-C(1)-C(6)-C(5) 179.9(2)
C(4)-C(5)-C(6)-C(1) 0.7(4)	

Table 7.	Hydrogen bonds for 1	[Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

Table 1. Crystal data and structure refinement for ccJ-OMeRh.

Identification code	1			
Empirical formula	C24 H28 N O2 Rh			
Formula weight	465.38			
Temperature	194(2) K			
Wavelength	0.72010 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 8.5810(17) Å	$\alpha = 93.19(3)^{\circ}$.		
	b = 10.888(2) Å	β=106.92(3)°.		
	c = 11.352(2) Å	$\gamma = 90.49(3)^{\circ}$.		
Volume	1012.8(3) Å ³			
Ζ	2			
Density (calculated)	1.526 mg/m ³			
Absorption coefficient	0.863 mm ⁻¹			
F(000)	480			
Crystal size	0.15 x 0.12 x 0.10 mm ³			
Theta range for data collection	1.90 to 25.00°.			
Index ranges	-9<=h<=0, -12<=k<=12	, -12<=l<=13		
Reflections collected	3146			
Independent reflections	3146 [R(int) = 0.0000]			
Completeness to theta = 25.00°	91.7 %;			
Max. and min. transmission	0.9187 and 0.8815			
Refinement method	Full-matrix least-square	s on F ²		
Data / restraints / parameters	3146 / 0 / 260			
Goodness-of-fit on F ²	1.105			
Final R indices [I>2sigma(I)]	R1 = 0.0601, wR2 = 0.1	R1 = 0.0601, $wR2 = 0.1666$		
R indices (all data)	R1 = 0.0697, wR2 = 0.1	R1 = 0.0697, wR2 = 0.1888		
Largest diff. peak and hole	1.193 and -1.693 e.Å-3			

	X	у	Z	U(eq)
C(1)	-352(9)	1688(6)	2673(6)	14(1)
C(2)	-1906(9)	1201(6)	2439(6)	15(1)
C(3)	-2805(9)	882(6)	1200(6)	18(2)
C(4)	-2094(8)	1075(6)	284(6)	17(2)
C(5)	-514(8)	1601(5)	569(6)	11(1)
C(6)	399(8)	1839(5)	-306(6)	13(1)
C(7)	1947(8)	2419(6)	201(6)	11(1)
C(8)	2886(9)	2645(6)	-611(6)	16(2)
C(9)	2254(8)	2316(5)	-1877(6)	14(2)
C(10)	719(9)	1768(5)	-2375(5)	13(1)
C(11)	-190(8)	1522(6)	-1574(6)	15(2)
C(12)	53(9)	1434(6)	-3750(6)	18(2)
C(13)	4505(8)	4240(6)	2458(5)	11(1)
C(14)	2954(8)	4783(5)	2013(6)	11(1)
C(15)	2049(8)	4546(6)	2885(6)	13(1)
C(16)	3107(8)	3926(6)	3896(5)	11(1)
C(17)	4585(8)	3735(6)	3626(6)	12(1)
C(18)	5894(8)	4330(6)	1906(6)	14(1)
C(19)	2399(9)	5552(6)	917(6)	19(2)
C(20)	363(9)	4965(6)	2795(7)	20(2)
C(21)	2758(10)	3567(7)	5059(6)	21(2)
C(22)	6028(8)	3096(6)	4442(6)	15(2)
C(23)	3778(9)	470(7)	3093(6)	20(2)
C(24)	4738(11)	-720(7)	3183(8)	32(2)
N(1)	327(7)	1919(5)	1765(5)	11(1)
O(1)	3755(5)	1056(4)	2196(4)	14(1)
O(2)	3072(7)	748(5)	3896(5)	29(1)
Rh(1)	2605(1)	2811(1)	2065(1)	8(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{iJ} tensor.

C(1)-N(1)	1.356(8)
C(1)-C(2)	1.377(10)
C(1)-H(1)	0.9500
C(2)-C(3)	1.415(9)
C(2)-H(2)	0.9500
C(3)-C(4)	1.375(10)
C(3)-H(3)	0.9500
C(4)-C(5)	1.408(10)
C(4)-H(4)	0.9500
C(5)-N(1)	1.363(8)
C(5)-C(6)	1.465(9)
C(6)-C(11)	1.402(9)
C(6)-C(7)	1.412(9)
C(7)-C(8)	1.418(9)
C(7)-Rh(1)	2.044(6)
C(8)-C(9)	1.404(9)
C(8)-H(8)	0.9500
C(9)-C(10)	1.388(9)
C(9)-H(9)	0.9500
C(10)-C(11)	1.394(10)
C(10)-C(12)	1.519(8)
C(11)-H(11)	0.9500
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-C(14)	1.426(9)
C(13)-C(17)	1.447(9)
C(13)-C(18)	1.505(9)
C(13)-Rh(1)	2.176(6)
C(14)-C(15)	1.457(9)
C(14)-C(19)	1.501(9)
C(14)-Rh(1)	2.172(6)
C(15)-C(16)	1.445(9)
C(15)-C(20)	1.498(10)
C(15)-Rh(1)	2.178(6)
C(16)-C(17)	1.403(10)

Table 3.Bond lengths [Å] and angles [°] for 1.

C(16)-C(21)	1.507(8)
C(16)-Rh(1)	2.274(6)
C(17)-C(22)	1.515(9)
C(17)-Rh(1)	2.249(6)
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-O(1)	1.227(9)
C(23)-O(2)	1.259(9)
C(23)-C(24)	1.533(11)
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
N(1)-Rh(1)	2.103(6)
O(1)-Rh(1)	2.150(4)
N(1)-C(1)-C(2)	122.8(6)
N(1)-C(1)-H(1)	118.6
C(2)-C(1)-H(1)	118.6
C(1)-C(2)-C(3)	118.4(6)
C(1)-C(2)-H(2)	120.8
C(3)-C(2)-H(2)	120.8
C(4)-C(3)-C(2)	118.7(6)
C(4)-C(3)-H(3)	120.7
C(2)-C(3)-H(3)	120.7
C(3)-C(4)-C(5)	120.7(6)

C(3)-C(4)-H(4)	119.7
C(5)-C(4)-H(4)	119.7
N(1)-C(5)-C(4)	119.8(6)
N(1)-C(5)-C(6)	113.6(6)
C(4)-C(5)-C(6)	126.5(6)
C(11)-C(6)-C(7)	120.6(6)
C(11)-C(6)-C(5)	123.4(6)
C(7)-C(6)-C(5)	115.9(5)
C(6)-C(7)-C(8)	117.8(6)
C(6)-C(7)-Rh(1)	115.2(4)
C(8)-C(7)-Rh(1)	127.0(5)
C(9)-C(8)-C(7)	120.0(6)
C(9)-C(8)-H(8)	120.0
C(7)-C(8)-H(8)	120.0
C(10)-C(9)-C(8)	122.0(6)
C(10)-C(9)-H(9)	119.0
C(8)-C(9)-H(9)	119.0
C(9)-C(10)-C(11)	118.0(6)
C(9)-C(10)-C(12)	121.1(6)
C(11)-C(10)-C(12)	120.9(6)
C(10)-C(11)-C(6)	121.6(6)
C(10)-C(11)-H(11)	119.2
C(6)-C(11)-H(11)	119.2
C(10)-C(12)-H(12A)	109.5
C(10)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(10)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(14)-C(13)-C(17)	107.7(6)
C(14)-C(13)-C(18)	126.0(6)
C(17)-C(13)-C(18)	125.8(6)
C(14)-C(13)-Rh(1)	70.7(3)
C(17)-C(13)-Rh(1)	73.7(4)
C(18)-C(13)-Rh(1)	127.5(4)
C(13)-C(14)-C(15)	107.1(5)
C(13)-C(14)-C(19)	126.8(6)
C(15)-C(14)-C(19)	125.9(6)

C(13)-C(14)-Rh(1)	71.0(3)
C(15)-C(14)-Rh(1)	70.6(3)
C(19)-C(14)-Rh(1)	127.5(4)
C(16)-C(15)-C(14)	108.1(6)
C(16)-C(15)-C(20)	126.0(6)
C(14)-C(15)-C(20)	125.7(6)
C(16)-C(15)-Rh(1)	74.7(3)
C(14)-C(15)-Rh(1)	70.2(3)
C(20)-C(15)-Rh(1)	124.5(5)
C(17)-C(16)-C(15)	107.4(5)
C(17)-C(16)-C(21)	124.8(6)
C(15)-C(16)-C(21)	127.8(6)
C(17)-C(16)-Rh(1)	71.0(3)
C(15)-C(16)-Rh(1)	67.5(3)
C(21)-C(16)-Rh(1)	128.2(4)
C(16)-C(17)-C(13)	109.5(6)
C(16)-C(17)-C(22)	124.6(6)
C(13)-C(17)-C(22)	125.9(6)
C(16)-C(17)-Rh(1)	72.9(4)
C(13)-C(17)-Rh(1)	68.2(3)
C(22)-C(17)-Rh(1)	125.3(4)
C(13)-C(18)-H(18A)	109.5
C(13)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(13)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
С(14)-С(19)-Н(19А)	109.5
C(14)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(14)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(15)-C(20)-H(20A)	109.5
C(15)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
С(15)-С(20)-Н(20С)	109.5
H(20A)-C(20)-H(20C)	109.5

H(20B)-C(20)-H(20C)	109.5
C(16)-C(21)-H(21A)	109.5
C(16)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(16)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(17)-C(22)-H(22A)	109.5
C(17)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(17)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
O(1)-C(23)-O(2)	126.1(7)
O(1)-C(23)-C(24)	114.7(7)
O(2)-C(23)-C(24)	119.2(7)
C(23)-C(24)-H(24A)	109.5
C(23)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(23)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(1)-N(1)-C(5)	119.4(6)
C(1)-N(1)-Rh(1)	124.2(4)
C(5)-N(1)-Rh(1)	116.3(4)
C(23)-O(1)-Rh(1)	117.5(4)
C(7)-Rh(1)-N(1)	78.7(2)
C(7)-Rh(1)-O(1)	85.5(2)
N(1)-Rh(1)-O(1)	89.92(18)
C(7)-Rh(1)-C(14)	96.7(2)
N(1)-Rh(1)-C(14)	124.4(2)
O(1)-Rh(1)-C(14)	145.5(2)
C(7)-Rh(1)-C(13)	106.2(2)
N(1)-Rh(1)-C(13)	161.6(2)
O(1)-Rh(1)-C(13)	108.0(2)
C(14)-Rh(1)-C(13)	38.3(2)
C(7)-Rh(1)-C(15)	122.5(2)
N(1)-Rh(1)-C(15)	97.8(2)

O(1)-Rh(1)-C(15)	151.9(2)
C(14)-Rh(1)-C(15)	39.1(2)
C(13)-Rh(1)-C(15)	64.4(2)
C(7)-Rh(1)-C(17)	142.1(3)
N(1)-Rh(1)-C(17)	139.2(2)
O(1)-Rh(1)-C(17)	94.3(2)
C(14)-Rh(1)-C(17)	63.3(2)
C(13)-Rh(1)-C(17)	38.1(2)
C(15)-Rh(1)-C(17)	62.5(2)
C(7)-Rh(1)-C(16)	159.5(2)
N(1)-Rh(1)-C(16)	106.3(2)
O(1)-Rh(1)-C(16)	114.1(2)
C(14)-Rh(1)-C(16)	63.8(2)
C(13)-Rh(1)-C(16)	63.0(2)
C(15)-Rh(1)-C(16)	37.8(2)
C(17)-Rh(1)-C(16)	36.2(2)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	18(4)	16(3)	7(3)	-4(2)	5(3)	2(3)
C(2)	15(4)	14(3)	20(3)	-7(3)	12(3)	-2(3)
C(3)	12(4)	15(3)	27(4)	-3(3)	5(3)	-5(3)
C(4)	9(4)	17(3)	22(3)	-9(3)	2(3)	-7(3)
C(5)	13(4)	5(3)	16(3)	0(2)	5(3)	-2(2)
C(6)	17(4)	8(3)	16(3)	-5(2)	8(3)	2(3)
C(7)	14(4)	10(3)	11(3)	3(2)	8(3)	-2(3)
C(8)	15(4)	18(3)	16(3)	0(3)	7(3)	-7(3)
C(9)	25(5)	7(3)	15(3)	-1(2)	15(3)	0(3)
C(10)	24(4)	8(3)	10(3)	2(2)	6(3)	3(3)
C(11)	10(4)	13(3)	22(3)	-4(3)	3(3)	-2(3)
C(12)	21(4)	14(3)	18(3)	-2(3)	6(3)	-4(3)
C(13)	11(4)	12(3)	10(3)	-2(2)	1(3)	-3(3)
C(14)	11(4)	7(3)	16(3)	-4(2)	5(3)	-6(2)
C(15)	11(4)	12(3)	18(3)	-6(2)	9(3)	-5(3)
C(16)	11(4)	12(3)	11(3)	-5(2)	7(3)	-2(3)
C(17)	6(4)	17(3)	11(3)	-2(2)	-1(3)	-4(2)
C(18)	9(4)	20(3)	17(3)	1(3)	7(3)	-8(3)
C(19)	22(5)	18(3)	17(3)	0(3)	6(3)	-3(3)
C(20)	18(5)	17(4)	26(4)	-1(3)	10(3)	0(3)
C(21)	29(5)	27(4)	11(3)	-4(3)	11(3)	-11(3)
C(22)	12(4)	16(3)	18(3)	4(3)	2(3)	2(3)
C(23)	7(4)	24(4)	26(4)	-8(3)	2(3)	-8(3)
C(24)	39(6)	20(4)	34(4)	9(3)	4(4)	5(4)
N(1)	13(3)	8(3)	13(3)	2(2)	5(2)	2(2)
O(1)	4(3)	14(2)	20(2)	-11(2)	4(2)	-3(2)
O(2)	31(4)	28(3)	29(3)	6(2)	9(2)	1(2)
Rh(1)	7(1)	10(1)	10(1)	-1(1)	4(1)	-2(1)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 1.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + \dots + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	X	у	Z	U(eq)
H(1)	272	1871	3506	16
H(2)	-2363	1082	3093	18
H(3)	-3880	542	1006	22
H(4)	-2675	851	-550	20
H(8)	3942	3018	-298	19
H(9)	2898	2474	-2408	17
H(11)	-1233	1130	-1895	18
H(12A)	-282	2182	-4189	26
H(12B)	-888	868	-3902	26
H(12C)	900	1036	-4046	26
H(18A)	6663	4985	2358	22
H(18B)	5471	4520	1038	22
H(18C)	6453	3545	1961	22
H(19A)	1211	5611	682	29
H(19B)	2724	5168	226	29
H(19C)	2901	6377	1127	29
H(20A)	425	5750	3275	30
H(20B)	-210	4347	3123	30
H(20C)	-230	5071	1930	30
H(21A)	2949	2687	5159	32
H(21B)	1620	3735	5005	32
H(21C)	3478	4044	5770	32
H(22A)	6619	3667	5128	23
H(22B)	6757	2833	3959	23
H(22C)	5642	2376	4768	23
H(24A)	5178	-822	2479	48
H(24B)	4013	-1423	3176	48
H(24C)	5635	-676	3952	48

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 1.

Table 6. Torsion angles [°] for 1.

N(1)-C(1)-C(2)-C(3)	2.6(10)
C(1)-C(2)-C(3)-C(4)	-0.2(10)
C(2)-C(3)-C(4)-C(5)	-1.2(10)
C(3)-C(4)-C(5)-N(1)	0.3(10)
C(3)-C(4)-C(5)-C(6)	178.9(6)
N(1)-C(5)-C(6)-C(11)	176.4(6)
C(4)-C(5)-C(6)-C(11)	-2.3(10)
N(1)-C(5)-C(6)-C(7)	-3.6(8)
C(4)-C(5)-C(6)-C(7)	177.7(6)
C(11)-C(6)-C(7)-C(8)	-1.2(9)
C(5)-C(6)-C(7)-C(8)	178.8(6)
C(11)-C(6)-C(7)-Rh(1)	-179.9(5)
C(5)-C(6)-C(7)-Rh(1)	0.1(7)
C(6)-C(7)-C(8)-C(9)	1.3(9)
Rh(1)-C(7)-C(8)-C(9)	179.9(5)
C(7)-C(8)-C(9)-C(10)	-0.1(10)
C(8)-C(9)-C(10)-C(11)	-1.3(9)
C(8)-C(9)-C(10)-C(12)	179.3(6)
C(9)-C(10)-C(11)-C(6)	1.4(9)
C(12)-C(10)-C(11)-C(6)	-179.2(6)
C(7)-C(6)-C(11)-C(10)	-0.2(9)
C(5)-C(6)-C(11)-C(10)	179.9(6)
C(17)-C(13)-C(14)-C(15)	-3.1(7)
C(18)-C(13)-C(14)-C(15)	-175.3(6)
Rh(1)-C(13)-C(14)-C(15)	61.8(4)
C(17)-C(13)-C(14)-C(19)	172.0(6)
C(18)-C(13)-C(14)-C(19)	-0.2(10)
Rh(1)-C(13)-C(14)-C(19)	-123.2(6)
C(17)-C(13)-C(14)-Rh(1)	-64.9(4)
C(18)-C(13)-C(14)-Rh(1)	122.9(6)
C(13)-C(14)-C(15)-C(16)	3.6(7)
C(19)-C(14)-C(15)-C(16)	-171.5(6)
Rh(1)-C(14)-C(15)-C(16)	65.6(4)
C(13)-C(14)-C(15)-C(20)	179.1(6)
C(19)-C(14)-C(15)-C(20)	4.0(10)

C(13)-C(14)-C(15)-Rh(1)	-62.0(4)
C(19)-C(14)-C(15)-Rh(1)	122.9(6)
C(14)-C(15)-C(16)-C(17)	-2.7(7)
C(20)-C(15)-C(16)-C(17)	-178.2(6)
Rh(1)-C(15)-C(16)-C(17)	60.0(4)
C(14)-C(15)-C(16)-C(21)	175.6(6)
C(20)-C(15)-C(16)-C(21)	0.2(10)
Rh(1)-C(15)-C(16)-C(21)	-121.6(6)
C(14)-C(15)-C(16)-Rh(1)	-62.7(4)
C(20)-C(15)-C(16)-Rh(1)	121.8(6)
C(15)-C(16)-C(17)-C(13)	0.8(7)
C(21)-C(16)-C(17)-C(13)	-177.6(6)
Rh(1)-C(16)-C(17)-C(13)	58.6(4)
C(15)-C(16)-C(17)-C(22)	-179.2(6)
C(21)-C(16)-C(17)-C(22)	2.3(10)
Rh(1)-C(16)-C(17)-C(22)	-121.4(6)
C(15)-C(16)-C(17)-Rh(1)	-57.8(4)
C(21)-C(16)-C(17)-Rh(1)	123.8(6)
C(14)-C(13)-C(17)-C(16)	1.5(7)
C(18)-C(13)-C(17)-C(16)	173.7(6)
Rh(1)-C(13)-C(17)-C(16)	-61.5(4)
C(14)-C(13)-C(17)-C(22)	-178.5(6)
C(18)-C(13)-C(17)-C(22)	-6.3(10)
Rh(1)-C(13)-C(17)-C(22)	118.6(6)
C(14)-C(13)-C(17)-Rh(1)	62.9(4)
C(18)-C(13)-C(17)-Rh(1)	-124.8(6)
C(2)-C(1)-N(1)-C(5)	-3.6(9)
C(2)-C(1)-N(1)-Rh(1)	174.1(5)
C(4)-C(5)-N(1)-C(1)	2.0(9)
C(6)-C(5)-N(1)-C(1)	-176.7(5)
C(4)-C(5)-N(1)-Rh(1)	-175.8(4)
C(6)-C(5)-N(1)-Rh(1)	5.4(7)
O(2)-C(23)-O(1)-Rh(1)	6.4(9)
C(24)-C(23)-O(1)-Rh(1)	-175.2(5)
C(6)-C(7)-Rh(1)-N(1)	2.1(4)
C(8)-C(7)-Rh(1)-N(1)	-176.5(6)
C(6)-C(7)-Rh(1)-O(1)	92.9(5)
C(8)-C(7)-Rh(1)-O(1)	-85.6(6)

C(6)-C(7)-Rh(1)-C(14)	-121.7(5)
C(8)-C(7)-Rh(1)-C(14)	59.8(6)
C(6)-C(7)-Rh(1)-C(13)	-159.6(4)
C(8)-C(7)-Rh(1)-C(13)	21.8(6)
C(6)-C(7)-Rh(1)-C(15)	-90.0(5)
C(8)-C(7)-Rh(1)-C(15)	91.4(6)
C(6)-C(7)-Rh(1)-C(17)	-175.8(4)
C(8)-C(7)-Rh(1)-C(17)	5.6(8)
C(6)-C(7)-Rh(1)-C(16)	-104.3(8)
C(8)-C(7)-Rh(1)-C(16)	77.1(10)
C(1)-N(1)-Rh(1)-C(7)	178.0(5)
C(5)-N(1)-Rh(1)-C(7)	-4.3(4)
C(1)-N(1)-Rh(1)-O(1)	92.6(5)
C(5)-N(1)-Rh(1)-O(1)	-89.7(4)
C(1)-N(1)-Rh(1)-C(14)	-91.5(5)
C(5)-N(1)-Rh(1)-C(14)	86.2(5)
C(1)-N(1)-Rh(1)-C(13)	-74.4(8)
C(5)-N(1)-Rh(1)-C(13)	103.3(7)
C(1)-N(1)-Rh(1)-C(15)	-60.2(5)
C(5)-N(1)-Rh(1)-C(15)	117.5(4)
C(1)-N(1)-Rh(1)-C(17)	-3.9(7)
C(5)-N(1)-Rh(1)-C(17)	173.8(4)
C(1)-N(1)-Rh(1)-C(16)	-22.5(5)
C(5)-N(1)-Rh(1)-C(16)	155.2(4)
C(23)-O(1)-Rh(1)-C(7)	-147.0(5)
C(23)-O(1)-Rh(1)-N(1)	-68.3(5)
C(23)-O(1)-Rh(1)-C(14)	117.7(5)
C(23)-O(1)-Rh(1)-C(13)	107.4(5)
C(23)-O(1)-Rh(1)-C(15)	38.3(7)
C(23)-O(1)-Rh(1)-C(17)	71.0(5)
C(23)-O(1)-Rh(1)-C(16)	39.6(5)
C(13)-C(14)-Rh(1)-C(7)	-107.7(4)
C(15)-C(14)-Rh(1)-C(7)	135.5(4)
C(19)-C(14)-Rh(1)-C(7)	14.6(6)
C(13)-C(14)-Rh(1)-N(1)	171.4(3)
C(15)-C(14)-Rh(1)-N(1)	54.6(4)
C(19)-C(14)-Rh(1)-N(1)	-66.3(7)
C(13)-C(14)-Rh(1)-O(1)	-15.9(5)

C(15)-C(14)-Rh(1)-O(1)	-132.7(4)
C(19)-C(14)-Rh(1)-O(1)	106.4(6)
C(15)-C(14)-Rh(1)-C(13)	-116.8(5)
C(19)-C(14)-Rh(1)-C(13)	122.3(7)
C(13)-C(14)-Rh(1)-C(15)	116.8(5)
C(19)-C(14)-Rh(1)-C(15)	-120.9(8)
C(13)-C(14)-Rh(1)-C(17)	38.4(4)
C(15)-C(14)-Rh(1)-C(17)	-78.4(4)
C(19)-C(14)-Rh(1)-C(17)	160.7(7)
C(13)-C(14)-Rh(1)-C(16)	79.0(4)
C(15)-C(14)-Rh(1)-C(16)	-37.8(4)
C(19)-C(14)-Rh(1)-C(16)	-158.7(7)
C(14)-C(13)-Rh(1)-C(7)	80.1(4)
C(17)-C(13)-Rh(1)-C(7)	-163.9(4)
C(18)-C(13)-Rh(1)-C(7)	-41.0(6)
C(14)-C(13)-Rh(1)-N(1)	-23.1(8)
C(17)-C(13)-Rh(1)-N(1)	93.0(7)
C(18)-C(13)-Rh(1)-N(1)	-144.1(6)
C(14)-C(13)-Rh(1)-O(1)	170.6(3)
C(17)-C(13)-Rh(1)-O(1)	-73.4(4)
C(18)-C(13)-Rh(1)-O(1)	49.5(6)
C(17)-C(13)-Rh(1)-C(14)	116.0(5)
C(18)-C(13)-Rh(1)-C(14)	-121.1(7)
C(14)-C(13)-Rh(1)-C(15)	-38.7(4)
C(17)-C(13)-Rh(1)-C(15)	77.4(4)
C(18)-C(13)-Rh(1)-C(15)	-159.7(6)
C(14)-C(13)-Rh(1)-C(17)	-116.0(5)
C(18)-C(13)-Rh(1)-C(17)	122.9(7)
C(14)-C(13)-Rh(1)-C(16)	-81.0(4)
C(17)-C(13)-Rh(1)-C(16)	35.0(4)
C(18)-C(13)-Rh(1)-C(16)	157.9(6)
C(16)-C(15)-Rh(1)-C(7)	-171.9(4)
C(14)-C(15)-Rh(1)-C(7)	-55.7(5)
C(20)-C(15)-Rh(1)-C(7)	64.7(6)
C(16)-C(15)-Rh(1)-N(1)	106.6(4)
C(14)-C(15)-Rh(1)-N(1)	-137.2(4)
C(20)-C(15)-Rh(1)-N(1)	-16.9(6)
C(16)-C(15)-Rh(1)-O(1)	1.9(7)

C(14)-C(15)-Rh(1)-O(1)	118.1(5)
C(20)-C(15)-Rh(1)-O(1)	-121.6(6)
C(16)-C(15)-Rh(1)-C(14)	-116.2(6)
C(20)-C(15)-Rh(1)-C(14)	120.4(7)
C(16)-C(15)-Rh(1)-C(13)	-78.3(4)
C(14)-C(15)-Rh(1)-C(13)	37.8(4)
C(20)-C(15)-Rh(1)-C(13)	158.2(6)
C(16)-C(15)-Rh(1)-C(17)	-35.6(4)
C(14)-C(15)-Rh(1)-C(17)	80.6(4)
C(20)-C(15)-Rh(1)-C(17)	-159.0(6)
C(14)-C(15)-Rh(1)-C(16)	116.2(6)
C(20)-C(15)-Rh(1)-C(16)	-123.5(7)
C(16)-C(17)-Rh(1)-C(7)	145.7(4)
C(13)-C(17)-Rh(1)-C(7)	25.8(6)
C(22)-C(17)-Rh(1)-C(7)	-93.6(7)
C(16)-C(17)-Rh(1)-N(1)	-31.2(5)
C(13)-C(17)-Rh(1)-N(1)	-151.1(4)
C(22)-C(17)-Rh(1)-N(1)	89.5(6)
C(16)-C(17)-Rh(1)-O(1)	-126.1(4)
C(13)-C(17)-Rh(1)-O(1)	114.0(4)
C(22)-C(17)-Rh(1)-O(1)	-5.4(6)
C(16)-C(17)-Rh(1)-C(14)	81.4(4)
C(13)-C(17)-Rh(1)-C(14)	-38.6(4)
C(22)-C(17)-Rh(1)-C(14)	-157.9(7)
C(16)-C(17)-Rh(1)-C(13)	119.9(5)
C(22)-C(17)-Rh(1)-C(13)	-119.4(7)
C(16)-C(17)-Rh(1)-C(15)	37.2(4)
C(13)-C(17)-Rh(1)-C(15)	-82.8(4)
C(22)-C(17)-Rh(1)-C(15)	157.9(7)
C(13)-C(17)-Rh(1)-C(16)	-119.9(5)
C(22)-C(17)-Rh(1)-C(16)	120.7(7)
C(17)-C(16)-Rh(1)-C(7)	-99.2(8)
C(15)-C(16)-Rh(1)-C(7)	19.9(9)
C(21)-C(16)-Rh(1)-C(7)	141.1(7)
C(17)-C(16)-Rh(1)-N(1)	159.3(4)
C(15)-C(16)-Rh(1)-N(1)	-81.6(4)
C(21)-C(16)-Rh(1)-N(1)	39.6(7)
C(17)-C(16)-Rh(1)-O(1)	61.9(4)

-179.0(4)
-57.8(7)
-79.9(4)
39.2(4)
160.4(7)
-36.9(4)
82.2(4)
-156.6(7)
-119.1(6)
121.2(8)
119.1(6)
-119.7(8)

Table 7. Hydrogen bonds for 1 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)