Supporting information

A Highly Diastereoselective One-Pot Three-Component 1,3-Dipolar Cycloaddition of Cyclopropenes with Azomethine Ylides Generated from 11*H*-Indeno[1,2-*b*]-quinoxalin-11-ones

Alexander S. Filatov,^a Nickolay A. Knyazev,^{b,c} Mikhail N. Ryazantsev,^{a,b} Vitalii V. Suslonov,^a

Anna G. Larina,^a Alexander P. Molchanov,^a Rafael R. Kostikov,^a

Vitali M. Boitsov,^{*,b,d} Alexander V. Stepakov^{*,a,e}

^a Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russian Federation

^b Saint-Petersburg Academic University – Nanotechnology Research and Education Centre RAS, ul. Khlopina 8/3, St. Petersburg, 194021, Russian Federation

^c Institute of Cytology of the Russian Academy of Science, Tikhoretsky pr. 4, St. Petersburg 194064, Russian Federation

^d Pavlov First Saint Petersburg State Medical University, ul. L'va Tolstogo 6/8, St. Petersburg 197022, Russian Federation

^e Voeikov Main Geophysical Observatory, ul. Karbysheva 7, St. Petersburg 194021, Russian Federation

*Corresponding authors: A. V. Stepakov (alstepakov@yandex.ru) and V. M. Boitsov (bovitali@yandex.ru)

Table of contents

1.	Experimental data	S2-S29
2.	Copies of NMR spectra	\$30-\$93
3.	Bioassay details	S94-S108
4.	X-ray crystallographic data for compounds 4faa, 7aaq, 11baa, 12a, 12c	S109-S113
5.	Computational data	S114-S146
6.	References	S147

1. Experimental data

Ph + + + + + + + + + + + + + + + + + + +						
Entry	Solvent	<i>T</i> [°C]	Time, h	Yield 4aaa ,% ^b		
1	methanol	reflux	12	80		
2	ethanol	reflux	12	76		
3	THF	reflux	12	49 ^c		
4	acetonitrile	reflux	12	61°		
5	DMF	80	10	73		
6	1,4-dioxane	80	12	43 ^c		
7	DMSO	80	12	67		
8	ethanol	RT	72	54 ^c		
9	methanol	RT	72	51°		

Table S1. Optimization of the reaction conditions^a

^{*a*} Reaction conditions: **1a** (1 equiv.), **2a** (1 equiv.), **3a** (2 equiv.), solvent. ^{*b*} Isolated yield. ^{*c*} Unreacted **1a** and **2a** are present in the reaction mixture.

General procedure A for the one-pot three-component reaction of cyclopropenes, 11*H*-indeno[1,2-*b*]quinoxalin-11-ones, and secondary α -amino acids: A mixture of corresponding cyclopropene 1 (0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one 2 (0.3 mmol), and secondary α -amino acid 3 (0.6 mmol) was refluxed in methanol (6 mL) for 12 h until complete consumption of 1 as monitored by TLC. After cooling, the solvent was evaporated under reduced pressure. The residue was transferred into a separatory funnel using CH₂Cl₂ (5 mL), washed twice with water and brine. The washed organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated on the rotary evaporator. The resulting crude product **4** was purified by recrystallization from MeOH or by preparative thin layer chromatography (PTLC) on alumina using a mixture of hexane–CH₂Cl₂ (2:1, **4haa**, **4aac**).

(±)-(1R,1aR,2S,6aR,6bS)-1,1a,6b-Triphenyl-1a,4,5,6,6a,6b-hexahydro-1H-

spiro[cyclopropa[a]pyrrolizine-2,11'-indeno[1,2-b]quinoxaline] (*4aaa*). Prepared following the general procedure **A** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11one (**2a**) (70 mg, 0.3 mmol), and *L*-proline (**3a**) (69 mg, 0.6 mmol). Purified by recrystallization from MeOH. Yellow solid; yield: 133 mg (80%); mp 205–207 °C (MeOH); TLC (R_f = 0.58, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.39 (d, *J* = 7.5 Hz, 1H), 8.20 (d, *J* = 7.6 Hz, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 8.01 (d, *J* = 7.8 Hz, 1H), 7.82–7.71 (m, 4H), 7.66–7.58 (m, 1H), 7.56–7.48 (t, *J* = 7.5 Hz, 1H), 7.36–7.31 (m, 2H), 7.30–7.25 (m, 1H), 7.05–6.98 (m, 1H), 6.95–6.90 (m, 2H), 6.68–6.62 (m, 1H), 6.55–6.44 (m, 6H), 5.06 (t, *J* = 6.9 Hz, 1H), 3.58 (s, 1H), 3.51–3.46 (m, 1H), 2.61–2.57 (m, 1H), 2.26–2.13 (m, 1H), 2.05–1.88 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.1, 153.0, 145.2, 142.1, 141.9, 138.7, 137.4, 135.6, 132.5 (4C), 132.2, 131.0, 130.8 (2C), 129.8, 129.5, 129.1, 129.0, 128.6, 127.7 (2C), 126.6 (4C), 126.4, 126.2 (2C), 125.1, 122.3, 76.6, 75.0, 57.9, 48.3, 47.5, 32.7, 27.0, 26.1. IR (KBr): 3091, 3047, 2962, 2822, 1602, 1497, 1337, 1107, 758, 701 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₄₀H₃₂N₃: 554.2591; found: 554.2602.

Methyl (±)-(1R,1aR,2S,6aR,6bS)-1a,6b-Diphenyl-1a,4,5,6,6a,6b-hexahydro-1Hspiro[cyclopropa[a]pyrrolizine-2,11'-indeno[1,2-b]quinoxaline]-1-carboxylate (4baa). Prepared following the general procedure A from cyclopropene 1b (75 mg, 0.3 mmol), 11H-indeno[1,2b]quinoxalin-11-one (2a) (70 mg, 0.3 mmol), and L-proline (3a) (69 mg, 0.6 mmol). Purified by recrystallization from MeOH. Yellow solid; yield: 111 mg (69%); mp 228-230 °C (MeOH); TLC $(R_f = 0.40, SiO_2, hexane-EtOAc, 7:2)$. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.33$ (dd, J = 8.2, 1.1 Hz, 1H), 8.16 (d, *J* = 7.7 Hz, 1H), 8.05–8.00 (m, 2H), 7.85 (d, *J* = 7.2 Hz, 2H), 7.81–7.66 (m, 3H), 7.61–7.56 (m, 1H), 7.46–7.40 (m, 2H), 7.33–7.28 (m, 1H), 6.73 (d, J = 7.8 Hz, 1H), 6.69 (d, J = 7.4 Hz, 2H), 6.58 (d, J = 7.8 Hz, 2H), 4.97 (t, J = 7.0 Hz, 1H), 3.38 (s, 3H), 3.35–3.30 (m, 1H,), 3.28 (s, 1H), 2.52–2.48 (m, 1H), 2.17–2.07 (m, 1H), 1.98–1.83 (m, 3H). ¹³C NMR (101 MHz, $CDCl_3$): $\delta = 170.2, 164.2, 152.9, 144.3, 142.2, 141.8, 138.7, 135.3, 132.7, 131.2, 131.0 (2C), 130.7$ (2C), 129.9, 129.7, 129.2, 129.1, 128.7, 127.9 (2C), 126.9, 126.6 (2C), 126.5, 126.4, 122.4, 75.7, 74.5, 58.5, 51.2, 50.1, 47.2, 29.9, 26.8, 26.1. IR (KBr): 3077, 2947, 1746, 1605, 1446, 1327, 1162, 1136, 764, 698 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₆H₂₉N₃NaO₂: 558.2152; found: 558.2159.

spiro[cyclopropa[a]pyrrolizine-2,11'-indeno[1,2-b]quinoxaline]-1-carboxamide] (4caa). Prepared following the general procedure **A** from cyclopropene **1c** (83 mg, 0.3 mmol), 11*H*indeno[1,2-b]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-proline (**3a**) (69 mg, 0.6 mmol). Purified by recrystallization from MeOH. Yellow solid; yield: 128 mg (76%); mp 240–241 °C (MeOH); TLC (R_f = 0.54, SiO₂, hexane–EtOAc, 1:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.34–8.25 (m, 2H), 8.06–8.00 (m, 4H), 7.79–7.66 (m, 3H), 7.62–7.56 (m, 1H), 7.50–7.44 (m, 2H), 7.39–7.33 (m, 1H), 6.92–6.84 (m, 2H), 6.79–6.73 (m, 1H), 6.68–6.61 (m, 2H), 4.98–4.90 (m, 1H), 3.75–3.65 (m, 1H), 3.49–3.40 (m, 2H), 3.18 (s, 1H), 2.56–2.47 (m, 1H), 2.16–1.80 (m, 4H), 0.56 (d, J = 6.5 Hz, 3H), 0.23 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 168.3$, 164.4, 152.9, 144.1, 142.2, 141.8, 138.6, 134.6, 132.1 (2C), 131.6 (2C), 131.4, 130.0, 129.9, 129.6, 129.2, 129.1, 129.0, 128.7, 128.2, 127.6, 127.4 (2C), 127.2, 127.0, 122.3, 76.2, 75.0, 56.0, 48.9, 48.2, 40.8, 32.7, 26.8, 26.4, 21.7, 21.5. IR (KBr): 3429, 3051, 2967, 2863, 1646, 1526, 1465, 1444, 1366, 1338, 1180, 1155, 1124, 760, 746, 699 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₈H₃₅N₄O: 563.2805; found: 563.2830.

(\pm) -(1R, 1aR, 2S, 6aR, 6bS)-1a, 6b-Diphenyl-1a, 4, 5, 6, 6a, 6b-hexahydro-1H-spiro[cyclopropa[a]-

pyrrolizine-2,11'-indeno[1,2-b]quinoxaline]-1-carbonitrile (*4daa*). Prepared following the general procedure **A** from cyclopropene **1d** (65 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11one (*2a*) (70 mg, 0.3 mmol), and *L*-proline (*3a*) (69 mg, 0.6 mmol). Purified recrystallization from MeOH. Yellow solid; yield: 133 mg (88%); mp 249–250 °C (MeOH); TLC ($R_f = 0.36$, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.28$ (d, J = 7.6 Hz, 1H), 8.04 (d, J = 7.6 Hz, 2H), 8.00–7.91 (m, 3H), 7.81–7.66 (m, 3H), 7.63–7.57 (m, 1H), 7.49–7.42 (m, 2H), 7.38–7.32 (m, 1H), 6.85–6.76 (m, 3H), 6.74–6.66 (m, 2H), 5.07 (dd, J = 9.1, 5.2 Hz, 1H), 3.40 (s, 1H), 2.98–2.90 (m, 1H), 2.38–2.30 (m, 1H), 2.22–2.10 (m, 1H), 2.05–1.92 (m, 2H), 1.77–1.64 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 162.5$, 153.1, 143.9, 142.2, 141.4, 138.3, 134.0, 131.6 (3C), 130.2, 130.1, 130.0 (2C), 129.7, 129.6, 129.2, 128.9, 128.4 (2C), 127.7, 127.6, 127.3 (2C), 125.3, 122.6, 118.8, 72.1, 71.8, 57.0, 45.5, 43.3, 26.5, 25.0, 15.1. IR (KBr): 3058, 2976, 2827, 2236, 1604, 1576, 1505, 1466, 1446, 1367, 1337, 1233, 1201, 1129, 1103, 1052, 1017, 772, 762, 747, 700 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₅H₂₇N₄: 503.2230; found: 503.2251.

$(\pm)-(1R, 1aR, 2S, 6aR, 6bS)-1-Ethyl-1a, 6b-diphenyl-1a, 4, 5, 6, 6a, 6b-hexahydro-1H-$

spiro[cyclopropa[a]pyrrolizine-2,11'-indeno[1,2-b]quinoxaline] (*4eaa*). Prepared following the general procedure **A** from cyclopropene **1e** (66 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11one (**2a**) (70 mg, 0.3 mmol), and *L*-proline (**3a**) (69 mg, 0.6 mmol). Purified by recrystallization from MeOH. Yellow solid; yield: 137 mg (90%); mp 219–220 °C (MeOH); TLC (R_f = 0.64, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.20 (dd, *J* = 7.9, 1.6 Hz, 1H), 8.13–8.07 (m, 2H), 7.99 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.85–7.80 (m, 2H), 7.73–7.57 (m, 4H), 7.43–7.37 (m, 2H), 7.32–7.27 (m, 1H), 6.76–6.70 (m, 1H), 6.68–6.58 (m, 4H), 4.97 (t, *J* = 7.1 Hz, 1H), 3.28–3.21 (m, 1H), 2.47–2.41 (m, 1H), 2.31 (t, *J* = 6.9 Hz, 1H), 2.16–2.05 (m, 2H), 2.03–1.81 (m, 2H), 1.58–1.39 (m, 2H), 1.11 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.0, 153.0, 146.4, 142.0, 141.9, 138.7, 138.6, 134.0, 131.3 (2C), 131.0, 130.6 (3C), 129.8, 129.5, 128.9, 128.8, 128.4, 127.8 (2C), 126.6 (2C), 126.3, 126.0, 122.3, 73.7, 73.6, 54.0, 46.8, 44.2, 30.4, 27.1, 27.0, 20.0, 14.6. IR (KBr): 3055, 2957, 2929, 2862, 1600, 1507, 1496, 1465, 1444, 1336, 1228, 1206, 1182, 1127, 1102, 761, 744, 701 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₆H₃₂N₃⁺: 506.2591; found 506.2600.

(±)-(1R,1aR,2S,6aR,6bS)-1a,6b-Diphenyl-1-vinyl-1a,4,5,6,6a,6b-hexahydro-1H-

spiro[cyclopropa[a]pyrrolizine-2,11'-indeno[1,2-b]quinoxaline] (*4faa*). Prepared following the general procedure **A** from cyclopropene **1f** (65 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11one (**2a**) (70 mg, 0.3 mmol), and *L*-proline (**3a**) (69 mg, 0.6 mmol). Purified by recrystallization from MeOH. Yellow solid; yield: 125 mg (83%); mp > 260 °C (MeOH); TLC (R_f = 0.56, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.36 (d, *J* = 7.4 Hz, 1H), 8.11 (d, *J* = 7.6 Hz, 1H), 8.07–8.01 (m, 4H), 7.81–7.63 (m, 3H), 7.59–7.53 (m, 1H), 7.46–7.39 (m, 2H), 7.31–7.26 (m, 1H), 6.82–6.76 (m, 2H), 6.73–6.67 (m, 1H), 6.63–6.57 (m, 2H), 5.51 (dd, *J* = 16.7, 2.2 Hz, 1H), 5.19–5.00 (m, 3H), 3.40–3.33 (m, 1H), 3.15 (d, *J* = 10.2 Hz, 1H), 2.56–2.50 (m, 1H), 2.18– 2.08 (m, 1H), 2.02–1.85 (m, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 164.8, 153.1, 145.3, 142.1, 141.9, 138.6, 138.4, 137.5, 133.4, 132.2 (2C), 131.6 (3C), 131.1, 129.7, 129.6, 129.1, 128.6, 128.0 (2C), 126.7 (2C), 126.6 (2C), 126.2, 122.3, 113.1, 75.3, 74.5, 55.5, 47.5, 46.9, 32.1, 27.0, 26.1. IR (KBr): 3057, 2947, 2834, 1600, 1505, 1466, 1444, 1367, 1338, 1224, 1128, 1104, 1027, 990, 905, 762, 744, 696 cm⁻¹. HRMS (ESI): *m/z* [M + H]⁺ calcd for C₃₆H₃₀N₃⁺: 504.2434; found 504.2446.

(\pm) -(1aR, 2S, 6aR, 6bS)-1a, 6b-Diphenyl-1a, 4, 5, 6, 6a, 6b-hexahydro-1H-

spiro[cyclopropa[a]pyrrolizine-2,11'-indeno[1,2-b]quinoxaline] (*4gaa*). Prepared following the general procedure **A** from cyclopropene **1g** (58 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11one (*2a*) (70 mg, 0.3 mmol), and *L*-proline (*3a*) (69 mg, 0.6 mmol). Purified recrystallization from MeOH. Yellow solid; yield: 130 mg (91%); mp 181–182 °C (MeOH); TLC ($R_f = 0.56$, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.31$ (d, J = 8.1, 1.4 Hz, 1H), 8.11 (d, J = 7.7 Hz, 1H), 8.06–8.01 (m, 2H), 7.79–7.60 (m, 5H), 7.57–7.52 (m, 1H), 7.38–7.32 (m, 2H), 7.25–7.19 (m, 1H), 6.72–6.65 (m, 3H), 6.62–6.53 (m, 2H), 5.33–5.21 (m, 1H), 3.27–3.17 (m, 1H), 2.52–2.41 (m, 1H), 2.34 (d, J = 4.9 Hz, 1H), 2.16–1.94 (m, 3H), 1.86–1.74 (m, 1H), 1.64 (d, J = 4.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 164.5$, 153.2, 142.1, 141.8, 139.0, 138.1, 136.0, 131.7 (3C), 131.0, 129.8, 129.5, 129.1 (3C), 129.0, 128.5, 128.1 (2C), 126.8 (2C), 126.2 (3C), 122.3, 73.5, 71.1, 53.2, 46.6, 41.6, 27.1, 26.3, 18.7. IR (KBr): 3049, 2950, 2826, 1599, 1498, 1444, 1337, 1156, 1019, 759, 742, 696 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₄H₂₈N₃: 478.2278; found: 478.2296.

(±)-(1aR,2R,6aR,6bS)-1,1-Diphenyl-1a,4,5,6,6a,6b-hexahydro-1H-

spiro[cyclopropa[a]pyrrolizine-2,11'-indeno[1,2-b]quinoxaline] (*4haa*). Prepared following the general procedure **A** from cyclopropene **1h** (58 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11one (**2a**) (70 mg, 0.3 mmol), and *L*-proline (**3a**) (69 mg, 0.6 mmol). Purified by PTLC (Al₂O₃, hexane–CH₂Cl₂, 5:2) and subsequent crystallization from MeOH. Yellow solid; yield: 87 mg (61%); mp 196–197 °C (MeOH); TLC (R_f = 0.60, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.19 (d, *J* = 7.6 Hz, 1H), 8.15–8.08 (m, 2H), 7.75–7.64 (m, 4H), 7.53–7.48 (m, 1H), 7.36–7.23 (m, 6H), 7.16–7.09 (m, 2H), 7.04–7.01 (m, 1H), 6.85 (d, *J* = 7.7 Hz, 1H), 4.97–4.90 (m, 1H), 2.59 (d, *J* = 7.5 Hz, 1H), 2.42 (dd, *J* = 7.4, 4.1 Hz, 1H), 2.33–2.24 (m, 1H), 2.18–2.12 (m, 1H), 2.01–1.91 (m, 3H), 1.89–1.82 (m, 1H).¹³C NMR (101 MHz, CDCl₃): δ = 164.9, 153.1, 149.3, 146.8, 142.2, 141.5, 140.1, 137.9, 132.0 (2C), 130.4, 129.9, 129.2 (2C), 129.1, 129.0, 128.5, 128.3 (2C), 128.0 (2C), 127.2 (2C), 126.4, 125.8, 121.8, 68.4, 66.2, 46.4, 44.8, 40.0, 30.0, 27.3, 23.6. IR (KBr): 3053, 2957, 2819, 1642, 1600, 1575, 1492, 1445, 1368, 1337, 1202, 1129, 1099, 772, 753, 706 cm⁻¹. HRMS (ESI): *m*/_z [M + H]⁺ calcd for C₃₄H₂₈N₃⁺: 478.2278; found 478.2290.

$(\pm)-(1R, 1aR, 2S, 6aR, 6bS)-7', 8'-Dimethyl-1, 1a, 6b-triphenyl-1a, 4, 5, 6, 6a, 6b-hexahydro-1H-byl-1a, 4, 5, 6a, 6b-hexahydro-1H-byl-1a, 4, 5, 6a, 6b-hexahydro-1H-byl-1a, 4, 5, 6b-hexahydro-1H-byl-1a,$

spiro[cyclopropa[a]pyrrolizine-2,11'-indeno[1,2-b]quinoxaline] (*4aba*). Prepared following the general procedure **A** from cyclopropene **1a** (81 mg, 0.3 mmol), 7,8-dimethyl-11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2b**) (78 mg, 0.3 mmol), and *L*-proline (69 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 131 mg (75%); mp 259–260 °C (MeOH); TLC (R_f = 0.52, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.17 (d, *J* = 7.6 Hz, 1H), 8.12 (s, 1H), 7.97 (d, *J* = 7.5 Hz, 1H), 7.79 (s, 1H), 7.77–7.72 (m, 2H), 7.62–7.56 (m, 1H), 7.53–7.47 (m, 1H), 7.39–7.32 (m, 2H), 7.29–7.24 (m, 1H), 7.04–6.96 (m, 1H), 6.95–6.90 (m, 2H), 6.67–6.61 (m, 1H), 6.52–6.46 (m, 6H), 5.09–5.02 (m, 1H), 3.60 (s, 1H), 3.50–3.41 (m, 1H), 2.62 (s, 3H), 2.63–2.54 (m, 1H), 2.52 (s, 3H), 2.24–2.14 (m, 1H), 2.04–1.85 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 164.1, 152.2, 145.0, 140.9, 140.8, 139.2, 139.0, 138.8, 137.6, 135.7, 132.6 (4C), 132.3, 130.9 (2C), 130.5, 129.4, 129.1, 128.4, 127.7 (3C), 126.6 (2C), 126.5 (2C), 126.3, 126.1, 125.0, 121.9, 76.5, 74.8, 57.9, 48.1, 47.2, 32.6, 27.0, 26.0, 20.3 (2C). IR (KBr): 3051, 3025, 2970, 2828, 1601, 1496, 1444, 1333, 1203, 1000, 745, 702 cm⁻¹. HRMS (ESI): *m/z* [M + H]⁺ calcd for C₄₂H₃₆N₃⁺: 582.2904; found 582.2927.

(±)-(1R,1aR,2S,6aR,6bS)-7',8'-Dimethyl-1a,6b-diphenyl-1a,4,5,6,6a,6b-hexahydro-1Hspiro[cyclopropa[a]pyrrolizine-2,11'-indeno[1,2-b]quinoxaline]-1-carbonitrile (**4dba**). Prepared following the general procedure **A** from cyclopropene **1d** (65 mg, 0.3 mmol), 7,8-dimethyl-11Hindeno[1,2-b]quinoxalin-11-one (**2b**) (78 mg, 0.3 mmol), and L-proline (**3a**) (69 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 132 mg (83%); mp > 260 °C (MeOH); TLC (R_f = 0.40, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.01–7.97 (m, 2H), 7.95–7.91 (m, 3H), 7.78 (s, 1H), 7.68–7.63 (m, 1H), 7.59–7.55 (m, 1H), 7.49–7.42 (m, 2H), 7.37–7.32 (m, 1H), 6.85–6.76 (m, 3H), 6.72–6.68 (m, 2H), 5.05 (dd, *J* = 9.2, 5.3 Hz, 1H), 3.42 (s, 1H), 2.93–2.87 (m, 1H), 2.58 (s, 3H), 2.51 (s, 3H), 2.35–2.28 (m, 1H), 2.21–2.11 (m, 1H), 2.03–1.91 (m, 2H), 1.75–1.65 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 161.4, 152.2, 143.7, 140.9, 140.2, 139.9, 139.3, 138.6, 134.1, 131.6 (2C), 131.1, 130.2, 130.1, 130.0, 129.0, 128.5, 128.4 (3C), 127.6, 127.5, 127.2 (2C), 125.2, 122.2, 118.9, 71.9, 71.6, 57.0, 45.2, 43.0, 26.5, 24.9, 20.3 (2C), 15.0. IR (KBr): 3032, 2967, 2873, 2233, 1604, 1575, 1497, 1445, 1295, 1203, 1157, 1108, 1055, 746, 700 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₃₇H₃₁N₄⁺: 531.2543; found 531.2560.

$(\pm)-(5S,5aR,6R,6aS,6bS)-5a,6,6a-Triphenyl-1,3,5a,6,6a,6b-$

hexahydrospiro[cyclopropa[3,4]pyrrolo[1,2-c]thiazole-5,11'-indeno[1,2-b]quinoxaline] (4aab). Prepared following the general procedure **A** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-thiaproline (**3b**) (80 mg, 0.6 mmol). Purification of the crude by recrystallization from MeOH afforded an inseparable mixture of two diastereomers in ratio 10:1. Data for the mixture of diastereomers: light yellow solid; yield: 120 mg (77%). IR (KBr): 3055, 3027, 2957, 2856, 1601, 1495, 1444, 1337, 1212, 1201, 1104, 761, 746, 701 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₉H₃₀N₃S: 572.2155; found: 572.2181. NMR data for the major diastereomer **4aab**: ¹H NMR (400 MHz, CDCl₃): δ = 8.40 (dd, *J* = 8.2, 1.1 Hz, 1H), 8.17 (d, *J* = 7.7 Hz, 1H), 8.04 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.95 (d, *J* = 7.5 Hz, 1H), 7.86–7.61 (m, 6H), 7.55–7.49 (m, 1H), 7.40–7.24 (m, 4H), 7.04–6.90 (m, 3H), 6.71–6.65 (m, 1H), 6.58–6.45 (m, 4H), 5.18 (dd, *J* = 9.9, 5.0 Hz, 1H), 4.22 (s, 1H), 3.57 (d, *J* = 4.7 Hz, 1H), 3.37 (d, *J* = 4.7 Hz, 1H), 2.97 (t, *J* = 9.3 Hz, 1H), 2.70 (dd, *J* = 8.7, 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 162.5, 153.4, 145.3, 142.1, 141.3, 137.9, 137.0, 134.6, 132.5 (3C), 132.4, 131.8, 131.0 (2C), 129.9, 129.8, 129.6, 129.2, 128.9, 128.0 (2C), 127.0, 126.7 (2C), 126.6 (4C), 125.4, 125.3, 122.2, 76.7, 72.2, 57.9, 44.0, 43.6, 31.2, 29.2.

(±)-(1R,2S,5S,6R)-3-Methyl-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-b]quinoxaline] (4aac). Prepared following the general procedure **A** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-b]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and sarcosine (**3c**) (53 mg, 0.6 mmol). Purified by PTLC (Al₂O₃, hexane–CH₂Cl₂, 2:1) and subsequent crystallization from MeOH. Yellow solid; yield: 78 mg (49%); mp 218–220 °C (MeOH); TLC (R_f= 0.62, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (d, *J* = 7.2 Hz, 1H), 8.13 (d, *J* = 7.6

Hz, 1H), 8.04 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.86–7.71 (m, 4H), 7.67–7.61 (m, 1H), 7.53–7.47 (m, 1H), 7.37–7.24 (m, 4H), 7.02–6.88 (m, 3H), 6.68–6.60 (m, 1H), 6.51–6.40 (m, 5H), 4.34 (d, J = 9.0 Hz, 1H), 4.16 (s, 1H), 3.71 (d, J = 9.1 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 163.5$, 153.7, 147.2, 141.9, 141.3, 138.2, 137.6, 135.6, 132.9 (3C), 132.5, 132.1, 131.8, 130.9 (2C), 129.7, 129.5, 129.3, 129.2, 128.7, 127.7 (2C), 126.7, 126.6 (2C), 126.4 (2C), 126.2, 125.3, 125.0, 121.9, 78.0, 67.4, 53.8, 43.3, 34.2, 33.7. IR (KBr): 3057, 3026, 2923, 1675, 1601, 1576, 1495, 1447, 1368, 1336, 1203, 1031, 759, 700 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₈H₃₀N₃: 528.2434; found: 528.2434.

(*E*)-2,3-*Diphenylacrylaldehyde* (**5**). Obtained as a ring-opening product from cyclopropene **1j** (71 mg, 0.3 mmol). Purified by PTLC (Al₂O₃, hexane–CH₂Cl₂, 3:1) and subsequent crystallization from hexane. White solid; yield: 35 mg (56%); mp 91–92 °C (hexane) (Lit. data¹ mp 95 °C); TLC (R_f = 0.58, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 9.80 (s, 1H), 7.47–7.39 (m, 4H), 7.34–7.18 (m, 7H). ¹³C NMR (101 MHz, CDCl₃): δ = 193.9, 150.1, 141.9, 134.1, 133.4, 130.7 (2C), 130.2, 129.4 (2C), 128.9 (2C), 128.5 (2C), 128.3. IR (KBr): 3054, 2848, 1688, 1626, 1597, 1446, 1414, 1198, 1094, 1070, 761, 714, 692 cm⁻¹. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₅H₁₂NaO⁺: 231.0780; found 231.0778. The NMR data are in agreement with previously reported.¹

General procedure B for the one-pot three-component reaction of cyclopropenes, 11*H*-indeno[1,2-*b*]quinoxalin-11-ones, and primary α -amino acids: A mixture of corresponding cyclopropene 1 (0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (2a) (0.3 mmol), and primary α -amino acid 6 (0.6 mmol) was refluxed in a mixture of MeOH–H₂O (3:1, 8 mL) for 24 h until TLC showed the absence either of the starting cyclopropene 1 or of any further changes. In case of *L*-histidine (6n), the reaction was carried out in the presence of AcOH (0.17 mL, 3 mmol). After completion of the reaction, all volatiles were removed *in vacuo*. The residue was transferred into a separatory funnel using EtOAc (10 mL), washed twice with water and brine. The washed organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The resulting crude product 6 was purified by recrystallization using an appropriate solvent (MeOH or a mixture of CH₂Cl₂–hexane (2:1, 7aao) or a mixture of CH₂Cl₂–MeOH (20:1, 7aan, 7aar).

(±)-(1R,2S,4R,5S,6R)-4-Methyl-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'indeno[1,2-b]quinoxaline] (**7aaa**). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11H-indeno[1,2-b]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and L- alanine (**6a**) (53 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 101 mg (64%); mp 240–241 °C (MeOH); TLC (R_f = 0.30, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.37 (d, J = 7.5 Hz, 1H), 8.14 (d, J = 7.6 Hz, 1H), 8.04 (d, J = 7.5 Hz, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.88–7.68 (m, 5H), 7.67–7.60 (m, 1H), 7.53–7.47 (m, 1H), 7.40–7.32 (m, 2H), 7.31–7.25 (m, 1H), 7.05–6.97 (m, 1H), 6.97–6.90 (m, 2H), 6.69–6.63 (m, 1H), 6.53–6.45 (m, 5H), 5.01 (q, J = 6.1 Hz, 1H), 3.70 (s, 1H), 1.95 (br s, 1H, exchanges with H₂O), 1.26 (d, J = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.3, 153.2, 147.5, 142.2, 141.6, 137.7, 137.3, 135.0, 133.1 (2C), 131.9, 131.8, 130.8 (3C), 129.6 (2C), 129.3, 129.1, 128.8, 127.7 (2C), 126.7 (3C), 126.6 (3C), 126.3, 125.1, 124.5, 122.1, 74.5, 64.1, 53.6, 48.9, 29.8, 15.7. IR (KBr): 3296, 3056, 3023, 2970, 2861, 1601, 1497, 1444, 1370, 1336, 1133, 1102, 760, 741, 699 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₈H₃₀N₃: 528.2434; found: 528.2430.

(±)-(1*R*,2*S*,4*R*,5*S*,6*R*)-4-*Ethyl*-1,5,6-*triphenyl*-3-*azaspiro*[*bicyclo*[3.1.0]*hexane*-2,11'-*indeno*[1,2-*b*]*quinoxaline*] (**7***aab*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-2-aminobutyric acid (**6b**) (62 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 120 mg (74%); mp > 260 °C (MeOH); TLC (R_f = 0.34, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.39 (dd, *J* = 8.2, 1.1 Hz, 1H), 8.15 (d, *J* = 7.7 Hz, 1H), 8.04 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.85–7.71 (m, 5H), 7.66–7.60 (m, 1H), 7.52–7.47 (m, 1H), 7.39–7.31 (m, 2H), 7.31–7.24 (m, 1H), 7.04–6.96 (m, 1H), 6.96–6.90 (m, 2H), 6.69–6.63 (m, 1H), 6.53–6.44 (m, 5H), 4.83 (dd, *J* = 7.4, 5.3 Hz, 1H), 3.79 (s, 1H), 1.98 (br s, 1H, exchanges with H₂O), 1.74–1.63 (m, 2H), 0.97 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.5, 153.2, 147.7, 142.2, 141.6, 137.7, 137.4, 135.3, 133.2 (2C), 131.9, 131.7, 130.9 (3C), 129.6 (2C), 129.3, 129.1, 128.7, 127.6 (2C), 126.7 (3C), 126.5 (3C), 126.2, 125.1, 124.7, 122.1, 74.2, 69.9, 53.0, 48.2, 30.3, 24.0, 11.6. IR (KBr): 3291, 3026, 2954, 2870, 1602, 1498, 1445, 1369, 1332, 1100, 1042, 762, 741, 698 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₉H₃₂N₃: 542.2591; found: 542.2601.

(±)-(1R,2S,4R,5S,6R)-1,5,6-Triphenyl-4-propyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-

indeno[1,2-*b*]*quinoxaline*] (*7aac*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *DL*norvaline (**6c**) (70 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 137 mg (82%); mp > 260 °C (MeOH); TLC (R_f = 0.52, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.39 (d, *J* = 8.1 Hz, 1H), 8.14 (d, *J* = 7.6 Hz, 1H), 8.03 (d, *J* = 8.1 Hz, 1H), 7.94 (d, *J* = 7.5 Hz, 1H), 7.85–7.69 (m, 5H), 7.66–7.59 (m, 1H), 7.53–7.46 (m, 1H), 7.39–7.24 (m, 3H), 7.05–6.96 (m, 1H), 6.96–6.89 (m, 2H), 6.70–6.62 (m, 1H), 6.53–6.41 (m, 5H), 4.89 (dd, J = 9.0, 3.4 Hz, 1H), 3.78 (s, 1H), 2.40 (br s, 1H, exchanges with H₂O), 1.70–1.22 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 165.4, 153.3, 147.7, 142.2, 141.6,$ 137.7, 137.4, 135.2, 133.2 (2C), 131.9, 131.7, 130.9 (3C), 129.6 (2C), 129.2, 129.1, 128.7, 127.6 (2C), 126.6 (3C), 126.5 (3C), 126.2, 125.1, 124.7, 122.1, 74.3, 68.4, 53.0, 48.2, 33.4, 30.3, 20.4, 14.4. IR (KBr): 3310, 3056, 2921, 2854, 1601, 1577, 1496, 1465, 1444, 1366, 1337, 757, 744, 701 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₀H₃₄N₃: 556.2747; found: 556.2766.

(±)-(1*R*,2*S*,4*R*,5*S*,6*R*)-4-*Butyl*-1,5,6-*triphenyl*-3-*azaspiro*[*bicyclo*[3.1.0]*hexane*-2,11'-*indeno*[1,2-*b*]*quinoxaline*] (7*aad*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *DL*-norleucine (**6d**) (79 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 149 mg (87%); mp > 260 °C (MeOH); TLC (R_f = 0.40, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.39 (dd, *J* = 8.2, 1.1 Hz, 1H), 8.15 (d, *J* = 7.7 Hz, 1H), 8.04 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.94 (d, *J* = 7.5 Hz, 1H), 7.85–7.71 (m, 5H), 7.66–7.59 (m, 1H), 7.52–7.47 (m, 1H), 7.38–7.25 (m, 3H), 7.04–6.90 (m, 3H), 6.69–6.61 (m, 1H), 6.55–6.43 (m, 5H), 4.88 (dd, *J* = 8.5, 4.1 Hz, 1H), 3.77 (s, 1H), 2.14 (br s, 1H, exchanges with H₂O), 1.73–1.55 (m, 2H), 1.48–1.19 (m, 4H), 0.84 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.4, 153.3, 147.7, 142.2, 141.6, 137.7, 137.4, 135.2, 133.2 (2C), 131.9, 131.7, 130.9 (3C), 129.6 (2C), 129.2, 129.1, 128.7, 127.6 (2C), 126.7 (3C), 126.5 (3C), 126.2, 125.1, 124.7, 122.1, 74.3, 68.5, 53.0, 48.3, 30.9, 30.3, 29.5, 23.1, 14.1. IR (KBr): 3286, 3058, 3026, 2959, 2923, 2873, 1601, 1497, 1465, 1337, 1102, 759, 744, 699 cm⁻¹. HRMS (ESI): *m*/z [M + H]⁺ calcd for C₄₁H₃₆N₃: 570.2904; found: 570.2902.

(±)-(1R,2S,4R,5S,6R)-4-Hexyl-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-

indeno[*1*,2-*b*]*quinoxaline*] (*7aae*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *DL*-2aminocaprylic acid (**6e**) (96 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 142 mg (79%); mp 200–201 °C (MeOH); TLC ($R_f = 0.24$, SiO₂, hexane– EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.39$ (d, J = 8.1 Hz, 1H), 8.18–8.13 (m, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.86–7.72 (m, 5H), 7.66–7.60 (m, 1H), 7.52–7.47 (m, 1H), 7.38–7.25 (m, 3H), 7.04–6.91 (m, 3H), 6.69–6.63 (m, 1H), 6.52–6.45 (m, 5H), 4.89 (dd, J = 8.4, 3.9 Hz, 1H), 3.78 (s, 1H), 2.37 (br s, 1H, exchanges with H₂O), 1.71–1.56 (m, 2H), 1.48– 1.38 (m, 1H), 1.34–1.15 (m, 7H), 0.85 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 165.4$, 153.3, 147.7, 142.2, 141.6, 137.7, 136.8, 137.4, 135.3, 133.2 (2C), 131.9, 131.7, 130.9 (2C), 129.6

S10

(2C), 129.2 (2C), 128.7, 127.6 (3C), 126.7 (3C), 126.5 (2C), 126.2, 125.1, 124.7, 122.1, 74.3, 68.6, 53.0, 48.3, 31.8, 31.3, 30.3, 29.7, 27.3, 22.6, 14.0. IR (KBr): 3290, 3052, 2954, 2925, 2855, 1602, 1497, 1465, 1443, 1336, 1202, 1178, 1133, 1103, 1044, 758, 742, 700 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₃H₄₀N₃⁺: 598.3217; found 598.3229.

(±)-(1R,2S,4R,5S,6R)-4-Isopropyl-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-

indeno[*1*,2-*b*]*quinoxaline*] (*7aaf*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-valine (**6f**) (70 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 143 mg (86%); mp > 260 °C (MeOH); TLC (R_f = 0.50, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.40 (dd, *J* = 8.2, 1.2 Hz, 1H), 8.14 (d, *J* = 7.7 Hz, 1H), 8.03 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.93 (d, *J* = 7.5 Hz, 1H), 7.84–7.72 (m, 4H), 7.65–7.60 (m, 1H), 7.51–7.47 (m, 1H), 7.35–7.22 (m, 4H), 7.06–6.92 (m, 3H), 6.68–6.62 (m, 1H), 6.53–6.45 (m, 5H), 4.98 (d, *J* = 4.4 Hz, 1H), 4.04 (s, 1H), 2.30 (br s, 1H), 1.99–1.87 (m, 1H), 1.21 (d, *J* = 6.8 Hz, 3H), 0.92 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.7, 153.3, 148.2, 142.1, 141.6, 137.6, 137.3, 135.8, 133.1 (2C), 131.9, 131.7, 131.1 (3C), 129.6, 129.5, 129.2, 129.1, 128.7 (2C), 127.5 (2C), 126.6 (5C), 126.2, 125.2, 124.9, 122.0, 73.3, 72.4, 51.6, 46.5, 31.2, 29.5, 21.3, 17.8. IR (KBr): 3060, 2957, 2869, 1601, 1497, 1466, 1330, 1109, 752, 742, 696 cm⁻¹. HRMS (ESI): *m*/z [M + H]⁺ calcd for C₄₀H₃₄N₃: 556.2747; found: 556.2769.

(±)-(1R,2S,4R,5S,6R)-4-Isobutyl-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-

indeno[*1*,*2-b*]*quinoxaline*] (*7aag*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-leucine (**6g**) (79 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 144 mg (84%); mp > 260 °C (MeOH); TLC (R_f = 0.44, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (dd, *J* = 8.2, 1.3 Hz, 1H), 8.14 (d, *J* = 7.7 Hz, 1H), 8.04 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.84–7.71 (m, 4H), 7.65–7.60 (m, 1H), 7.52–7.47 (m, 1H), 7.37–7.24 (m, 4H), 7.04–6.90 (m, 3H), 6.68–6.63 (m, 1H), 6.52–6.45 (m, 5H), 4.98 (dd, *J* = 9.5, 3.1 Hz, 1H), 3.74 (s, 1H), 2.27 (br s, 1H, exchanges with H₂O), 1.71–1.58 (m, 2H), 1.44–1.32 (m, 1H), 0.91 (d, *J* = 6.3 Hz, 3H), 0.80 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.5, 153.2, 147.7, 142.2, 141.7, 137.7, 137.5, 135.1, 133.2 (2C), 132.0, 131.7, 130.9 (3C), 129.7, 129.6, 129.2, 129.1, 128.7, 127.6 (2C), 126.6 (3C), 126.5 (3C), 126.2, 125.1, 124.6, 122.1, 74.4, 66.4, 52.9, 48.4, 40.1, 30.2, 25.6, 24.0, 21.7. IR (KBr): 3308, 3058, 2957, 2916, 2871, 1601, 1496, 1464, 1443, 1367, 1338, 1132, 1103, 758, 742, 701 cm⁻¹. HRMS (ESI): *m/z* [M + H]⁺ calcd for C₄₁H₃₆N₃: 570.2904; found: 570.2917. (±)-(*1R*,2*S*,4*R*,5*S*,6*R*)-4-(2-(*Methylthio*)*ethyl*)-1,5,6-*triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-b]quinoxaline]* (*7aah*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-methionine (**6h**) (90 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 157 mg (89%); mp > 260 °C (MeOH); TLC (R_f = 0.38, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.39 (d, *J* = 8.1, 1.0 Hz, 1H), 8.15 (d, *J* = 7.6 Hz, 1H), 8.04 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.84–7.72 (m, 5H), 7.66–7.61 (m, 1H), 7.52–7.48 (m, 1H), 7.39–7.25 (m, 3H), 7.05–7.00 (m, 1H), 6.97–6.91 (m, 2H), 6.69–6.64 (m, 1H), 6.52–6.46 (m, 5H), 5.01 (t, *J* = 5.8 Hz, 1H), 3.83 (s, 1H), 2.75–2.43 (m, 3H), 2.04 (s, 3H), 2.02–1.95 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.4, 153.2, 147.5, 142.2, 141.6, 137.7, 137.1, 134.7, 137.1, 134.8, 133.2 (2C), 131.8, 131.7, 129.7, 129.6 (2C), 129.3, 129.2, 128.8, 127.8 (2C), 126.9, 126.7 (2C), 126.6 (3C), 126.3, 125.2, 124.8, 122.1, 74.2, 67.7, 52,8, 47.9, 31.9, 30.7, 30.4, 15.6. IR (KBr): 3295, 3058, 3024, 2913, 1602, 1508, 1498, 1444, 1430, 1336, 1133, 1102, 758, 740, 702 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₄₀H₃₄N₃S⁺: 588.2568; found 588.2495.

(±)-(1R,2S,4R,5S,6R)-4-Benzyl-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-

indeno[*1,2-b*]*quinoxaline*] (*7aai*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*phenylalanine (**6i**) (99 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 147 mg (81%); mp > 260 °C (MeOH); TLC (R_f = 0.52, SiO₂, hexane–EtOAc, 7:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.38 (d, *J* = 7.4 Hz, 1H), 8.10 (d, *J* = 7.7 Hz, 1H), 8.01 (d, *J* = 7.4 Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.86–7.77 (m, 4H), 7.75–7.70 (m, 1H), 7.65–7.59 (m, 1H), 7.50–7.45 (m, 1H), 7.43–7.36 (m, 2H), 7.35–7.15 (m, 6H), 7.05–6.91 (m, 3H), 6.69–6.63 (m, 1H), 6.53–6.42 (m, 5H), 5.20 (dd, *J* = 8.4, 3.8 Hz, 1H), 3.87 (s, 1H), 3.00–2.86 (m, 2H), 2.33 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.6, 153.2, 147.9, 142.1, 141.5, 139.4, 137.5, 137.3, 135.0, 133.3 (2C), 131.8, 131.7, 131.0 (3C), 129.6, 129.5, 129.4 (2C), 129.2, 129.1, 128.7, 128.4 (2C), 127.8 (3C), 126.8, 126.7, 126.5 (3C), 126.3, 126.1, 125.1, 124.9, 121.9, 73.6, 68.8, 52.7, 47.5, 37.1, 30.5. IR (KBr): 3339, 3055, 2871, 1601, 1579, 1495, 1337, 1107, 1043, 758, 701 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₄H₃₄N₃: 604.2747; found: 604.2747.

(±)-(1R,2S,4R,5S,6R)-1,4,5,6-Tetraphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-

b]quinoxaline] (*7aaj*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *DL*-2-phenylglycine (**6j**) (91 mg, 0.6 mmol). Purified by recrystallization from MeOH. Light yellow solid; yield: 163 mg (92%); mp > 260 °C (MeOH); TLC (R_f = 0.54, SiO₂, hexane–EtOAc, 7:2). ¹H

NMR (400 MHz, CDCl₃): δ = 8.44 (dd, J = 8.2, 1.2 Hz, 1H), 8.32 (d, J = 7.7 Hz, 1H), 8.05 (dd, J = 8.2, 1.2 Hz, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.87–7.82 (m, 1H), 7.79–7.74 (m, 1H), 7.71–7.66 (m, 1H), 7.56–7.50 (m, 3H), 7.35–7.23 (m, 11H), 6.97–6.83 (m, 3H), 6.71–6.65 (m, 1H), 6.54–6.40 (m, 3H), 6.13 (s, 1H), 4.16 (s, 1H), 2.63 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 166.0, 153.3, 148.1, 142.2, 141.6, 139.5, 137.6, 137.1, 134.6, 133.7 (2C), 131.8 (2C), 130.9 (3C), 129.6 (2C), 129.3, 129.2, 128.8, 127.8 (2C), 127.4 (6C), 126.8, 126.7, 126.4 (4C), 125.2, 125.1, 122.0, 73.6, 70.5, 52.6, 48.9, 30.4. IR (KBr): 3344, 3054, 3025, 1600, 1494, 1445, 1336, 1107, 756, 697 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₃H₃₂N₃: 590.2591; found: 590.2594.

(±)-4-(((1R,2S,4R,5S,6R)-1,5,6-Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-

b]quinoxalin]-4-yl)methyl)phenol (*7aak*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-tyrosine (**6k**) (109 mg, 0.6 mmol). Purified by recrystallization from hexane–CH₂Cl₂. Beige solid; yield: 147 mg (79%); mp > 260 °C (hexane–CH₂Cl₂); TLC (R_f = 0.24, SiO₂, hexane–EtOAc, 5:2). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.05 (s, 1H), 8.38 (d, *J* = 7.8 Hz, 1H), 8.32 (d, *J* = 7.7 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.89–7.68 (m, 8H), 7.57–7.51 (m, 1H), 7.44–7.38 (m, 2H), 7.32–7.27 (m, 1H), 7.00–6.85 (m, 5H), 6.69–6.53 (m, 3H), 6.52–6.40 (m, 4H), 4.83–4.75 (m, 1H), 3.99 (s, 1H), 3.72 (d, *J* = 7.4 Hz, 1H), 2.87 (dd, *J* = 13.8, 9.8 Hz, 1H), 2.68–2.60 (m, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ = 165.8, 155.9, 153.4, 148.1, 141.8, 141.2, 137.9, 137.5, 135.7, 133.2 (2C), 132.9, 132.3, 131.0 (2C), 131.0 (3C), 130.3, 130.2, 130.1, 130.0, 129.8, 129.7, 129.2, 128.3 (2C), 127.2, 126.9 (4C), 126.6, 126.0, 125.5, 121.9, 115.3 (2C), 74.8, 70.8, 52.7, 48.3, 35.7, 29.6. IR (KBr): 3326, 3055, 3026, 2908, 2862, 1604, 1511, 1495, 1449, 1369, 1337, 1236, 1109, 760, 701 cm⁻¹. HRMS (ESI): *m/z* [M + H]⁺ calcd for C_{44H34}N₃O: 620.2696; found: 620.2694.

(±)-2,6-Diiodo-4-(((1R,2S,4R,5S,6R)-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'indeno[1,2-b]quinoxalin]-4-yl)methyl)phenol (7aal). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-b]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and 3,5-diiodo-*L*-tyrosine (**6l**) (281 mg, 0.6 mmol). Purified by recrystallization from hexane–CH₂Cl₂. Light grey solid; yield: 170 mg (65%); mp > 260 °C (hexane–CH₂Cl₂); TLC (R_f = 0.28, SiO₂, hexane–EtOAc, 5:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.39 (d, *J* = 8.2 Hz, 1H), 8.12 (d, *J* = 7.6 Hz, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.84–7.69 (m, 5H), 7.66–7.61 (m, 1H), 7.54 (s, 2H), 7.51–7.45 (m, 1H), 7.41–7.28 (m, 3H), 7.05–6.99 (m, 1H), 6.97–6.91 (m, 2H), 6.69–6.63 (m, 1H), 6.52–6.40 (m, 5H), 5.76 (br s, 1H), 5.09 (dd, *J* = 7.7, 4.5 Hz, 1H), 3.83 (s, 1H), 2.85–2.72 (m, 2H), 2.28 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.4, 153.1, 152.0, 147.7, 142.1, 141.5, 139.9 (2C), 137.5, 137.0, 135.6 134.7, 133.2 (2C), 131.8, 131.5, 130.9 (2C), 129.6 (3C), 129.3, 129.1, 128.8, 127.9 (2C), 127.0, 126.7, 126.6 (4C), 126.4, 125.2, 125.0, 122.0, 82.3 (2C), 73.6, 68.6, 52.7, 47.3, 35.7, 30.5. IR (KBr): 3457, 3337, 3044, 2915, 2850, 1601, 1495, 1457, 1398, 1338, 1310, 1237, 1149, 1122, 756, 702 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₄H₃₂I₂N₃O: 872.0629; found: 872.0643.

(±)-(1R,2S,4R,5S,6R)-4-((1H-Indol-3-yl)methyl)-1,5,6-triphenyl-3-

azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-b]quinoxaline] (7aam). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11one (**2a**) (70 mg, 0.3 mmol), and *L*-tryptophan (**6m**) (123 mg, 0.6 mmol). Purified by recrystallization from hexane–CH₂Cl₂. Light yellow solid; yield: 112 mg (58%); mp > 260 °C (hexane–CH₂Cl₂); TLC (R_f = 0.46, SiO₂, hexane–EtOAc, 5:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.34 (d, *J* = 7.4 Hz, 1H), 8.08 (d, *J* = 7.7 Hz, 1H), 7.99–7.93 (m, 2H), 7.90–7.67 (m, 4H), 7.62–7.56 (m, 2H), 7.48–7.37 (m, 3H), 7.35–7.26 (m, 4H), 7.18–6.91 (m, 6H), 6.68–6.62 (m, 1H), 6.52–6.42 (m, 5H), 5.28 (dd, *J* = 7.7, 4.4 Hz, 1H), 3.94 (s, 1H), 3.14–3.03 (m, 2H), 2.41 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.6, 153.2, 147.9, 142.1, 141.5, 137.5, 136.3, 135.3, 133.3 (2C), 131.9, 131.7, 130.9 (2C), 129.9, 129.6, 129.5, 129.2, 129.0, 128.8, 128.6, 128.1, 127.9, 127.8 (2C), 126.8, 126.6, 126.5 (2C), 126.2, 125.8, 125.1, 124.9, 122.4, 121.9 (2C), 119.3 (2C), 113.7, 111.0, 73.8, 68.5, 52.9, 47.7, 30.3, 26.5. IR (KBr): 3425, 3056, 3026, 2920, 1602, 1495, 1455, 1365, 1337, 1104, 1032, 758, 742, 701 cm⁻¹. HRMS (ESI): *m/z* [M + H]⁺ calcd for C₄₆H₃₅N₃⁺: 643.2856; found 643.2828.

$(\pm)-(1R,2S,4R,5S,6R)-4-((1H-Imidazol-4-yl)methyl)-1,5,6-triphenyl-3-$

azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-b]quinoxaline] (7aan). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11one (**2a**) (70 mg, 0.3 mmol), and *L*-histidine (**6n**) (93 mg, 0.6 mmol). Purified by PTLC (Al₂O₃, CH₂Cl₂–MeOH, 20:1) and subsequent crystallization from hexane–Et₂O. Light yellow solid; yield: 61 mg (34%); mp > 260 °C (hexane–Et₂O); TLC (R_f= 0.30, SiO₂, MeOH–CH₂Cl₂, 10:1). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.38 (d, *J* = 8.1 Hz, 1H), 8.25 (d, *J* = 7.5 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.91–7.77 (m, 3H), 7.75–7.52 (m, 6H), 7.42–7.36 (m, 2H), 7.30–7.24 (m, 1H), 6.97–6.83 (m, 4H), 6.79 (s, 1H), 6.67–6.61 (m, 1H), 6.52–6.32 (m, 5H), 4.89–4.84 (m, 1H), 3.81 (s, 1H), 2.87 (dd, *J* = 14.2, 9.1 Hz, 1H), 2.73–2.65 (m, 1H), 2.52–2.48 (m, 1H, overlapping with DMSO). ¹³C NMR (101 MHz, DMSO-*d*₆): δ = 165.7, 153.3, 148.0, 141.9, 141.3, 137.8, 137.5, 135.5, 134.8, 133.2 (2C), 132.8, 132.4, 130.9 (3C), 130.2, 130.1, 129.8 (2C), 129.7, 129.2, 128.3 (3C), 127.2, 126.9 (4C), 126.7, 125.8, 125.5, 122.0, 117.1, 74.8, 68.9, 52.8, 48.2, 29.5, 27.8. IR (KBr): 3303,

S14

3056, 3027, 1599, 1492, 1451, 1335, 1204, 1126, 1101, 1039, 1005, 940, 750, 700 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₁H₃₂N₅⁺: 594.2652; found 594.2641.

(±)-((1R,2S,4S,5S,6R)-1,5,6-Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-

b]quinoxalin]-4-yl)methanol (7*aao*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-serine (**6o**) (63 mg, 0.6 mmol). Purified by PTLC (Al₂O₃, CH₂Cl₂–hexane, 2:1) and subsequent crystallization from a mixture of hexane–Et₂O. Light yellow solid; yield: 98 mg (60%); mp 254–255 °C (hexane–Et₂O); TLC (R_f = 0.36, SiO₂, hexane–EtOAc, 1:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.36–8.31 (m, 1H), 8.14 (d, *J* = 7.6 Hz, 1H), 8.03 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.92 (d, *J* = 7.5 Hz, 1H), 7.83–7.69 (m, 4H), 7.63–7.58 (m, 1H), 7.49–7.44 (m, 1H), 7.38–7.24 (m, 4H), 7.04–6.98 (m, 1H), 6.95–6.89 (m, 2H), 6.69–6.63 (m, 1H), 6.52–6.43 (m, 5H), 5.12 (t, *J* = 5.0 Hz, 1H), 4.04 (s, 1H), 3.93–3.84 (m, 2H), 2.25–1.85 (m, 2H, exchange with H₂O). ¹³C NMR (101 MHz, CDCl₃): δ = 165.3, 153.1, 147.3, 142.2, 141.5, 137.6, 136.9, 134.8, 133.0 (2C), 131.8, 131.3, 130.9 (3C), 129.7, 129.5, 129.4, 129.2, 128.8, 127.9 (3C), 127.0, 126.7 (2C), 126.6 (2C), 126.4, 125.3, 124.8, 122.1, 73.8, 68.8, 63.1, 52.2, 45.4, 30.3. IR (KBr): 3338, 3055, 2871, 1601, 1579, 1495, 1337, 1107, 1043, 1035, 1021, 758, 746, 701 cm⁻¹. HRMS (ESI): *m/z* [M + H]⁺ calcd for C₃₈H₃₀N₃O⁺: 544.2383; found 544.2407.

$(\pm)-((1R,2S,4S,5S,6R)-1,5,6-Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-1)hexan$

b]quinoxalin]-4-yl)methanethiol (7aap). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-cysteine (**6p**) (73 mg, 0.6 mmol). Purified by recrystallization from hexane–CH₂Cl₂. Light yellow solid; yield: 114 mg (68%); mp 240–241 °C (hexane–CH₂Cl₂); TLC (R_f = 0.64, SiO₂, hexane–EtOAc, 5:2). ¹H NMR (400 MHz, CDCl₃): δ = 8.40–8.36 (m, 1H), 8.16 (d, *J* = 7.7 Hz, 1H), 8.04 (dd, *J* = 8.2, 0.9 Hz, 1H), 7.93 (d, *J* = 7.5 Hz, 1H), 7.85–7.69 (m, 4H), 7.66–7.61 (m, 1H), 7.52–7.47 (m, 1H), 7.39–7.26 (m, 4H), 7.04–6.99 (m, 1H), 6.95–6.89 (m, 2H), 6.69–6.64 (m, 1H), 6.52–6.43 (m, 5H), 5.05 (dd, *J* = 9.1, 3.2 Hz, 1H), 4.01 (s, 1H), 2.85–2.73 (m, 2H), 1.89 (br s, 1H, exchanges with H₂O), 1.44 (t, *J* = 8.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.5, 153.2, 147.5, 142.3, 141.5, 137.5, 136.9, 134.4, 133.1 (2C), 131.8, 131.4, 130.9 (2C), 129.7, 129.6, 129.4, 129.2, 128.8, 127.9 (3C), 127.1 (2C), 126.7 (2C), 126.6 (2C), 126.4, 125.3, 125.1, 122.0, 73.3, 69.5, 53.0, 47.1, 30.2, 26.3. IR (KBr): 3279, 3058, 2923, 2854, 2567, 1602, 1497, 1338, 1105, 761, 747, 699 cm⁻¹. HRMS (ESI): *m/z* [M - SH]⁺ calcd for C₃₈H₂₈N₃⁺: 526.2278; found 526.2301.

(±)-2-((1R,2S,4R,5S,6R)-1,5,6-Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-

b]quinoxalin]-4-yl)ethanol (*7aaq*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *DL*-homoserine (**6q**) (71 mg, 0.6 mmol). Purified by recrystallization from MeOH–H₂O. Light yellow solid; yield: 119 mg (71%); mp > 260 °C (MeOH–H₂O); TLC (R_f = 0.50, SiO₂, hexane–EtOAc, 1:1). ¹H NMR (400 MHz, CDCI₃): δ = 8.37 (d, *J* = 8.1, 1.1 Hz, 1H), 8.14 (d, *J* = 7.7 Hz, 1H), 8.04 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.95–7.92 (m, 1H), 7.85–7.69 (m, 4H), 7.65–7.61 (m, 1H), 7.52–7.48 (m, 1H), 7.38–7.24 (m, 4H), 7.04–6.91 (m, 3H), 6.69–6.64 (m, 1H), 6.52–6.45 (m, 5H), 5.09 (dd, *J* = 7.7, 3.8 Hz, 1H), 3.98–3.91 (m, 1H), 3.87 (s, 1H), 3.77–3.70 (m, 1H), 2.50–2.00 (m, 2H, exchange with H₂O), 1.98–1.85 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 164.7, 153.1, 142.2, 141.5, 137.7, 136.9, 134.6, 133.1 (2C), 131.9, 131.5, 130.9 (4C), 129.8, 129.6, 129.4, 129.2, 128.8, 127.8 (2C), 126.9, 126.7 (2C), 126.6 (3C), 126.4, 125.3, 124.7, 122.2, 74.4, 67.5, 61.6, 52.1, 47.6, 32.6, 30.3. IR (KBr): 3277, 3050, 3025, 2933, 2917, 1602, 1497, 1335, 1101, 1045, 1029, 758, 742, 700 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₉H₃₂N₃O⁺: 558.2540; found 558.2559.

(±)-Amino((3-((1R,2S,4R,5S,6R)-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-

indeno[*1,2-b*]*quinoxalin*]-*4-yl*)*propyl*)*amino*)*methaniminium chloride* (*7aar*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-arginine hydrochloride (**6r**) (126 mg, 0.6 mmol). Purified by PTLC (Al₂O₃, CH₂Cl₂–MeOH, 20:1) and subsequent crystallization from Et₂O. Light yellow solid; yield: 115 mg (59%); mp 205–207 °C (Et₂O); TLC (R_{*f*}= 0.34, SiO₂, MeOH–CH₂Cl₂, 10:1). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.42–8.34 (m, 2H), 8.03–7.99 (m, 1H), 7.93–7.80 (m, 3H), 7.75–7.62 (m, 4H), 7.57–7.52 (m, 1H), 7.41–6.85 (m, 10H), 6.68–6.62 (m, 1H), 6.51–6.43 (m, 4H), 4.66–4.59 (m, 1H), 4.02 (d, *J* = 7.4 Hz, 1H), 3.98 (s, 1H), 3.49–3.31 (m, 2H, overlapping with H₂O), 3.09–2.98 (m, 2H), 1.82–1.70 (m, 1H), 1.65–1.52 (m, 1H), 1.48–1.32 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ = 165.8, 157.4, 153.4, 148.0, 141.9, 141.3, 137.9, 137.4, 135.7, 133.1 (2C), 132.8, 132.4, 131.0 (2C), 130.2, 130.1, 129.8 (2C), 129.3 (2C), 128.3 (3C), 127.2, 126.9 (4C), 126.7, 126.3, 125.5, 121.9, 74.9, 68.9, 53.1, 48.5, 41.5, 29.6, 27.7, 26.9. IR (KBr): 3336, 3255, 3155, 3057, 1666, 1601, 1495, 1445, 1337, 1107, 757, 702 cm⁻¹. HRMS (ESI): *m/z* [M - Cl]⁺ calcd for C₄₁H₃₇N₆⁺: 613.3074; found 613.3098.

 (\pm) -2-((1R,2S,4R,5S,6R)-1,5,6-Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-b]quinoxalin]-4-yl)acetamide (7aas). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-b]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-asparagine (**6s**) (79 mg, 0.6 mmol). Purified by recrystallization from hexane–CH₂Cl₂. Light yellow solid, yield: 130 mg (76%); mp > 260 °C (hexane–CH₂Cl₂); TLC (R_f=0.39,

SiO₂, CH₂Cl₂–MeOH, 10:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.37$ (d, J = 8.1 Hz, 1H), 8.13 (d, J = 7.6 Hz, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 7.5 Hz, 1H), 7.83–7.70 (m, 4H), 7.63–7.57 (m, 1H), 7.49–7.43 (m, 1H), 7.38–7.24 (m, 4H), 7.04–6.98 (m, 1H), 6.95–6.89 (m, 2H), 6.68–6.63 (m, 1H), 6.52–6.41 (m, 5H), 5.76 (s, 1H), 5.59 (s, 1H), 5.26 (dd, J = 9.7, 2.7 Hz, 1H), 3.89 (s, 1H), 3.16 (br s, 1H), 2.64–2.48 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.2$, 165.2, 153.1, 147.4, 142.2, 141.5, 137.6, 137.0, 134.3, 133.1 (2C), 131.7, 131.5, 130.8 (3C), 129.7, 129.6, 129.3, 129.1, 128.8, 127.9 (3C), 127.1, 126.7 (2C), 126.6 (2C), 126.4, 125.3, 124.9, 122.0, 74.0, 64.7, 52.6, 47.1, 37.1, 30.1. IR (KBr): 3229, 3055, 3026, 1687, 1671, 1599, 1496, 1400, 1335, 1221, 1180, 1126, 949, 777, 760, 750, 703 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₉H₃₁N₄O⁺: 571.2492; found 517.2514.

(±)-3-((1*R*,2*S*,4*R*,5*S*,6*R*)-1,5,6-*Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-b]quinoxalin]-4-yl)propenamide (7<i>aat*). Prepared following the general procedure **B** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-b]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and *L*-glutamine (**6t**) (88 mg, 0.6 mmol). Purified by recrystallization from hexane-CH₂Cl₂. Light yellow solid; yield: 109 mg (62%); mp 249–250 °C (hexane–CH₂Cl₂); TLC (R_f = 0.32, SiO₂, CH₂Cl₂–MeOH, 10:1). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.40 (d, *J* = 7.4 Hz, 1H), 8.33 (d, *J* = 7.7 Hz, 1H), 8.03–7.99 (m, 1H), 7.92–7.80 (m, 4H), 7.76–7.70 (m, 1H), 7.68–7.62 (m, 2H), 7.58–7.52 (m, 1H), 7.41–7.34 (m, 2H), 7.29–7.24 (m, 1H), 7.15 (s, 1H), 6.99–6.93 (m, 1H), 6.91–6.85 (m, 2H), 6.67–6.62 (m, 2H), 6.51–6.43 (m, 5H), 4.63–4.57 (m, 1H), 3.96–3.92 (m, 2H), 2.23–2.13 (m, 1H), 2.02–1.82 (m, 2H), 1.69–1.57 (m, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ = 174.8, 165.8, 153.3, 148.1, 141.9, 141.3, 137.9, 137.4, 135.7, 133.1 (2C), 132.8, 132.4, 131.0 (3C), 130.2, 130.1, 129.8 (2C), 129.3 (2C), 128.3 (2C), 127.2, 126.9 (4C), 126.7, 126.1, 125.5, 121.9, 74.7, 68.8, 53.0, 48.4, 33.5, 29.6, 26.9. IR (KBr): 3341, 3292, 3052, 2936, 2908, 1684, 1646, 1601, 1497, 1453, 1444, 1403, 1178, 1106, 771, 759, 741, 696 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₄₀H₃₃N₄O⁺: 585.2649; found 586.2676.

General procedure C for the one-pot three-component reaction of cyclopropenes, 11*H*-indeno[1,2-*b*]quinoxalin-11-ones and peptides: A mixture of corresponding cyclopropene 1 (0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (2a) (0.3 mmol), and peptide 8 (0.6 mmol) was refluxed in a mixture of MeOH–H₂O (3:1, 8 mL) in the presence of AcOH (0.17 mL, 3 mmol) for 24 h until TLC showed the absence either of starting cyclopropene 1 or of any further changes. After cooling, all volatiles were removed *in vacuo*, and acetone (5 mL) was added to the residue. Filtration to remove an excess of insoluble peptide followed by removal of the solvent under reduced pressure gave a viscous yellow oil which was crystallized from Et₂O as a beige solid.

(±)-2-((*1R*,2*S*,4*S*,5*S*,6*R*)-*1*,5,6-*Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2*,11'-indeno[1,2*b]quinoxalin]-4-ylcarboxamido*)*acetic acid* (*9aaa*). Prepared following the general procedure **C** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and diglycine (**8a**) (79 mg, 0.6 mmol). Purified by recrystallization from Et₂O. Beige solid; yield: 142 mg (77%); mp 248–249 °C (Et₂O); TLC (R_f = 0.32, SiO₂, CH₂Cl₂–MeOH, 10:1). ¹H NMR (400 MHz, DMSO-*d*₆): δ =12.54 (br s, 1H), 8.46 (d, *J* = 7.5 Hz, 1H), 8.41 (d, *J* = 8.1 Hz, 1H), 8.36–8.31 (m, 1H), 8.06–7.74 (m, 5H), 7.67–7.54 (m, 3H), 7.33–7.20 (m, 3H), 6.97–6.80 (m, 3H), 6.70–6.64 (m, 1H), 6.53–6.38 (m, 6H), 5.17 (s, 1H), 4.42 (br s, 1H), 4.25 (s. 1H), 3.91 (dd, *J* = 17.4, 6.1 Hz, 1H), 3.80 (dd, *J* = 17.2, 5.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ = 171.7, 170.6, 165.9, 153.4, 148.1, 142.0, 141.3, 137.4 (2C), 134.5, 133.6 (2C), 132.4 (2C), 132.1, 131.3 (2C), 130.3, 130.1, 129.8, 129.7, 129.3, 127.7 (2C), 127.1, 126.9 (3C), 126.6 (3C), 126.3, 125.5, 121.9, 74.2, 70.5, 52.0, 46.8, 41.1, 30.2. IR (KBr): 3378, 3337, 3058, 3031, 1743, 1728 1665, 1534, 1498, 1417, 1336, 1207, 1110, 760, 700 cm⁻¹. HRMS (ESI): *m/z* [M + H]⁺ calcd for C₄₀H₃₁N₄O₃⁺: 615.2391; found 615.2388.

 (\pm) -2-((1R,2S,4S,5S,6R)-6-(Methoxycarbonyl)-1,5-diphenyl-3-azaspiro[bicyclo[3.1.0]hexane-

2,11'-indeno[1,2-b]quinoxalin]-4-ylcarboxamido)acetic acid (**9baa**). Prepared following the general procedure **C** from cyclopropene **1b** (75 mg, 0.3 mmol), 11*H*-indeno[1,2-b]quinoxalin-11one (**2a**) (70 mg, 0.3 mmol), and diglycine (**8a**) (79 mg, 0.6 mmol). Purified by recrystallization from Et₂O. Beige solid; yield: 113 mg (63%); mp 183–185 °C (Et₂O); TLC ($R_f = 0.32$, SiO₂, CH₂Cl₂–MeOH, 10:1). ¹H NMR (400 MHz, DMSO-*d*₆), zwitterionic form: $\delta = 8.40$ (d, J = 8.0 Hz, 1H), 8.29 (d, J = 7.7 Hz, 1H), 8.13–8.08 (m, 1H), 8.02 (d, J = 7.9 Hz, 1H), 7.94–7.75 (m, 6H), 7.64–7.59 (m, 1H), 7.42–7.36 (m, 2H), 7.29–7.23 (m, 1H), 6.73–6.66 (m, 1H), 6.59–6.52 (m, 5H), 5.10 (s, 1H), 4.38 (br s, 1H), 3.86 (s, 1H) 3.78 (dd, J = 17.4, 5.5 Hz, 1H), 3.69 (dd, J = 17.4, 6.0 Hz, 1H), 3.41 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆): $\delta = 171.6$, 169.6 (2C), 165.1, 153.3, 147.2, 142.0, 141.2, 137.4, 134.3, 132.6, 132.5 (3C), 130.9 (2C), 130.6, 130.3, 129.9, 129.7, 129.3, 127.8 (2C), 127.2, 126.9 (3C), 126.1, 122.0, 73.8, 70.1, 52.9, 51.7, 48.2, 42.0, 27.5. IR (KBr): 3318, 3058, 2948, 1745, 1669, 1604, 1512, 1442, 1400, 1338, 1204, 1171, 773, 755, 701 cm⁻¹. HRMS (ESI): *m*/z [M + H]⁺ calcd for C₃₆H₂₉N₄O₅⁺: 597.2132; found 597.2138.

(±)-2-((1R,2S,4S,5S,6R)-1,5-Diphenyl-6-vinyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-

indeno[1,2-*b*]*quinoxalin*]-4-*ylcarboxamido*)*acetic acid* (**9***faa*). Prepared following the general procedure **C** from cyclopropene **1f** (65 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and diglycine (**8a**) (79 mg, 0.6 mmol). Purified by recrystallization from Et₂O. Beige solid; yield: 156 mg (92%); mp 245–246 °C (Et₂O); TLC (R_f = 0.30, SiO₂, CH₂Cl₂–MeOH, 10:1). ¹H NMR (400 MHz, DMSO-*d*₆), zwitterionic form: δ = 8.42–8.38 (m, 1H), 8.30 (d, *J* = 7.7

Hz, 1H), 8.17–8.12 (m, 1H), 8.03–8.00 (m, 1H), 7.97–7.75 (m, 7H), 7.61–7.56 (m, 1H), 7.43–7.37 (m, 2H), 7.26–7.21 (m, 1H), 6.73–6.65 (m, 1H), 6.62–6.56 (m, 4H), 5.56 (dd, J = 16.9, 2.1 Hz, 1H), 5.12 (s, 1H), 4.99 (dd, J = 10.2, 2.2 Hz, 1H), 4.89–4.79 (m, 1H), 4.31 (br s, 1H), 3.88 (dd, J = 17.4, 6.1 Hz, 1H), 3.81–3.72 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6): $\delta = 171.8$, 170.4, 165.7, 153.4, 148.2, 142.0, 141.3, 137.7, 137.3, 136.7, 133.1, 132.5 (3C), 132.1 (2C), 130.3, 130.2, 129.8, 129.7, 129.3, 128.2 (2C), 127.1 (3C), 126.9, 126.2, 121.9, 114.7, 73.6, 69.6, 49.9, 45.1, 41.4, 29.6. IR (KBr): 3372, 3334, 3057, 3029, 1743, 1727, 1654, 1605, 1539, 1509, 1432, 1337, 1208, 1110, 914, 773, 758, 745, 702 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₆H₂₉N₄O₃⁺: 565.2234; found 565.2257.

(±)-2-((1R,2S,4S,5S)-1,5-Diphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-

b]quinoxalin]-4-ylcarboxamido)acetic acid (9gaa). Prepared following the general procedure **C** from cyclopropene **1g** (58 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and diglycine (**8a**) (79 mg, 0.6 mmol). Purified by recrystallization from Et₂O. Beige solid; yield: 116 mg (72%); mp 184–186 °C (Et₂O); TLC ($R_f = 0.36$, SiO₂, CH₂Cl₂–MeOH, 10:1). ¹H NMR (400 MHz, DMSO-*d*₆), zwitterionic form: $\delta = 8.37$ (d, J = 8.0 Hz, 1H), 8.25 (d, J = 7.6 Hz, 1H), 8.18–7.99 (m, 3H), 7.91–7.71 (m, 5H), 7.59–7.51 (m, 1H), 7.35–7.28 (m, 2H), 7.19–7.13 (m, 1H), 6.69–6.63 (m, 1H), 6.56–6.47 (m, 5H), 5.40 (s, 1H), 4.29 (br s, 1H), 3.78–3.65 (m, 2H), 2.71 (d, J = 4.8 Hz, 1H), 1.61 (d, J = 4.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): $\delta = 171.8$, 170.8, 165.8, 153.5, 148.5, 142.1, 141.2, 138.2, 137.0, 135.9, 132.4, 131.8 (2C), 130.2 (2C), 130.1 (2C), 129.8, 129.7, 129.3, 128.3 (2C), 127.1 (2C), 126.8 (2C), 126.0, 121.9, 72.8, 66.2, 47.7, 42.0, 40.7, 16.1. IR (KBr): 3329, 3057, 3026, 2926, 1726, 1663, 31603, 1511, 1397, 1336, 1206, 1105, 759, 700 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₄H₂₇N₄O₃⁺: 539.2078; found 539.2099.

(±)-2-(2-((1R,2S,4S,5S,6R)-1,5,6-Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-

b]quinoxalin]-4-ylcarboxamido)acetamido)acetic acid (*9aab*). Prepared following the general procedure **C** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and triglycine (**8b**) (114 mg, 0.6 mmol). Purified by recrystallization from Et₂O. Beige solid; yield: 143 mg (71%); mp 175–176 °C (Et₂O); TLC (R_f = 0.34, SiO₂, CH₂Cl₂– MeOH, 10:1). ¹H NMR (400 MHz, DMSO-*d*₆), zwitterionic form: δ = 8.47 (d, *J* = 7.3 Hz, 1H), 8.41 (d, *J* = 7.7 Hz, 1H), 8.38–8.32 (m, 1H), 8.05–7.73 (m, 7H), 7.62–7.53 (m, 3H), 7.34–7.18 (m, 3H), 6.98–6.82 (m, 3H), 6.70–6.65 (m, 1H), 6.53–6.37 (m, 6H), 5.19 (s, 1H), 4.40 (br s, 1H), 4.23 (s, 1H), 3.90–3.63 (m, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ = 171.7, 170.3, 169.5, 165.9, 153.3, 148.0, 142.0, 141.3, 137.4, 137.3, 134.4, 133.5 (2C), 132.5 (2C), 131.9, 131.2 (2C), 130.4, 130.2, 129.9, 129.8, 129.3, 127.8 (2C), 127.2, 127.0 (3C), 126.8 (2C), 126.3 (2C), 125.6, 121.9, 74.1, 70.6, 52.1, 46.6, 42.4, 41.8, 30.1. IR (KBr): 3314, 3058, 2927, 2858, 1731, 1659, 1519, 1401,

1337, 1206, 1104, 1023, 759, 700 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₂H₃₄N₅O₄⁺: 672.2605; found 672.2621.

 (\pm) -2-(2-((1R,2S,4S,5S,6R)-6-(Methoxycarbonyl)-1,5-diphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-b]quinoxalin]-4-ylcarboxamido)acetamido)acetic acid (**9bab**). Prepared following the general procedure C from cyclopropene 1b (75 mg, 0.3 mmol), 11H-indeno[1,2b]quinoxalin-11-one (2a) (70 mg, 0.3 mmol), and triglycine (8b) (114 mg, 0.6 mmol). Purified by recrystallization from Et₂O. Beige solid; yield: 122 mg (62%); mp 175–177 °C (Et₂O); TLC (R_f= 0.40, SiO₂, CH₂Cl₂–MeOH, 10:1). ¹H NMR (400 MHz, DMSO- d_6), zwitterionic form: $\delta = 8.39$ (d, J = 7.9 Hz, 1H), 8.31 (d, J = 7.7 Hz, 1H), 8.28–8.24 (m, 1H), 8.04–8.00 (m, 1H), 7.94–7.70 (m, 7H), 7.64–7.59 (m, 1H), 7.43–7.37 (m, 2H), 7.29–7.24 (m, 1H), 6.73–6.66 (m, 1H), 6.59–6.50 (m, 5H), 5.14 (s, 1H), 4.34 (br s, 1H), 3.85 (s, 1H), 3.81–3.61 (m, 4H), 3.43 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6): $\delta = 169.8$, 169.5, 168.9, 166.6, 165.1, 153.2, 147.1, 142.0, 141.1, 137.4, 134.2, 132.6, 132.4 (2C), 130.9 (2C), 130.6, 130.4, 130.0, 129.7, 129.3, 127.9 (2C), 127.3, 126.9 (4C), 126.2, 122.0, 73.7, 70.2, 52.9, 51.8, 48.2, 44.8, 42.6, 27.3. IR (KBr): 3321, 3057, 3028, 2948, 1745, 1711, 1676, 1605, 1511, 1437, 1399, 1338, 1298, 1106, 778, 754, 701 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₈H₃₁N₅NaO₆⁺: 676.2167; found 676.2187.

(±)-2-(2-((1R,2S,4S,5S,6R)-1,5-Diphenyl-6-vinyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-

indeno[*1*,2-*b*]*quinoxalin*]-*4*-*ylcarboxamido*)*acetamido*)*acetic acid* (*9fab*). Prepared following the general procedure **C** from cyclopropene **1f** (65 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11one (**2a**) (70 mg, 0.3 mmol), and triglycine (**8b**) (114 mg, 0.6 mmol). Purified by recrystallization from Et₂O. Beige solid; yield: 123 mg (66%); mp 234–235 °C (Et₂O); TLC ($R_f = 0.28$, SiO₂, CH₂Cl₂–MeOH, 10:1). ¹H NMR (400 MHz, DMSO-*d*₆), zwitterionic form: $\delta = 8.40$ (d, J = 7.8 Hz, 1H), 8.36–8.31 (m, 1H), 8.25–8.18 (m, 1H), 8.06–7.75 (m, 9H), 7.63–7.56 (m, 1H), 7.46–7.36 (m, 2H), 7.28–7.21 (m, 1H), 6.74–6.65 (m, 1H), 6.63–6.54 (m, 4H), 5.55 (d, J = 16.6 Hz, 1H), 5.16 (s, 1H), 5.04–4.78 (m, 2H), 4.29 (br s, 1H), 3.88–3.68 (m, 5H). ¹³C NMR (101 MHz, DMSO*d*₆): $\delta = 171.8$, 170.4, 169.4, 165.6, 153.4, 148.1, 142.0, 141.2, 137.7, 137.3, 136.7, 133.0, 132.6, 132.4 (2C), 132.1 (2C), 130.3, 130.2, 129.9, 129.7, 129.3, 128.3 (2C), 127.1 (3C) 126.9, 126.2, 121.9, 114.8, 73.4, 69.6, 49.9, 45.0, 42.3, 41.8, 29.5. IR (KBr): 3399, 3355, 3319, 3057, 1677, 1669, 1584, 1513, 1412, 1337, 1265, 1226, 1107, 771, 753, 702 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₈H₃₁N₅NaO₄⁺: 644.2268; found 644.2294.

(±)-2-(2-((1R,2S,4S,5S)-1,5-Diphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-

b]quinoxalin]-4-ylcarboxamido)acetamido)acetic acid (9gab). Prepared following the general procedure **C** from cyclopropene **1g** (58 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**)

(70 mg, 0.3 mmol), and triglycine (**8b**) (114 mg, 0.6 mmol). Purified by recrystallization from Et₂O. Beige solid; yield: 104 mg (58%); mp 199–200 °C (Et₂O); TLC (R_f = 0.40, SiO₂, CH₂Cl₂– MeOH, 10:1). ¹H NMR (400 MHz, DMSO-*d*₆), zwitterionic form: δ = 8.37 (d, *J* = 8.0 Hz, 1H), 8.30 (d, *J* = 7.6 Hz, 1H), 8.24–8.18 (m, 1H), 8.05–7.98 (m, 2H), 7.92–7.72 (m, 6H), 7.60–7.54 (m, 1H), 7.36–7.28 (m, 2H), 7.20–7.14 (m, 1H), 6.69–6.64 (m, 1H), 6.56–6.48 (m, 5H), 5.48 (s, 1H), 4.26 (br s, 1H), 3.89 (dd, *J* = 16.7, 5.7 Hz, 1H), 3.82–3.72 (m, 3H), 2.73 (d, *J* = 4.6 Hz, 1H), 1.64 (d, *J* = 4.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ = 171.6, 171.1, 169.6, 165.8, 153.5, 148.4, 142.1, 141.2, 138.0, 137.0, 135.8, 132.4, 131.8 (2C), 130.2 (2C), 130.1 (3C), 129.8 (2C), 129.3, 128.4 (2C), 127.1 (2C), 126.8, 126.2, 121.9, 72.6, 66.3, 47.8, 42.2, 41.4, 40.5, 16.0. IR (KBr): 3324, 3058, 2926, 1663, 1512, 1498, 1401, 1337, 1206, 1106, 759, 702 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₃₆H₃₀N₅O4⁺: 596.2292; found 596.2320.

General procedure D for the one-pot three-component reaction of cyclopropenes, 11*H*-indeno[1,2-*b*]quinoxalin-11-ones, and amines: A mixture of corresponding cyclopropene 1 (0.3 mmol), 11H-indeno[1,2-*b*]quinoxalin-11-one 2 (0.3 mmol), and amine 10 (0.6 mmol) was refluxed in MeOH (6 mL) for 24 h until complete consumption of 1 as monitored by TLC. The solvent was removed under reduced pressure. The residue was recrystallized from MeOH to furnish 11 as a light yellow solid.

Methyl (±)-(*1R*,2*S*,4*R*,5*S*,6*R*)-*1*,4,5-*Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2*,11'-indeno[1,2*b]quinoxaline]-6-carboxylate* (**11baa**). Prepared following the general procedure **D** from cyclopropene **1b** (75 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and benzylamine (**10a**) (64 mg, 0.6 mmol). Light yellow solid; yield: 151 mg (88%); mp > 260 °C (MeOH); TLC (R_f = 0.36, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.40 (d, *J* = 8.1 Hz, 1H), 8.30 (d, *J* = 7.6 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.99 (d, *J* = 7.6 Hz, 1H), 7.86–7.72 (m, 3H), 7.69–7.65 (m, 2H), 7.61–7.56 (m, 1H), 7.41–7.22 (m, 8H), 6.76–6.67 (m, 3H), 6.62–6.57 (m, 2H), 6.05 (s, 1H), 3.83 (s, 1H), 3.30 (s, 3H), 2.55 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 170.1, 165.1, 153.1, 147.3, 142.1, 141.5, 138.7, 137.5, 134.3, 132.3 (3C), 132.1, 130.6 (2C), 130.0, 129.6, 129.5, 129.1, 129.0, 127.9 (2C), 127.6 (3C), 127.4 (2C), 127.1, 126.7 (2C), 126.6, 125.5, 122.2, 72.9, 69.8, 53.2, 51.1, 50.6, 27.6. IR (KBr): 3312, 3054, 3030, 1743, 1600, 1575, 1508, 1442, 1339, 1187, 1167, 754, 701 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₃₉H₃₀N₃O₂⁺: 572.2333; found 572.2358.

(±)-(1R,2S,4R,5S,6R)-N-Isopropyl-1,4,5-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'indeno[1,2-b]quinoxaline]-6-carboxamide (**11caa**). Prepared following the general procedure **D** from cyclopropene **1c** (83 mg, 0.3 mmol), 11*H*-indeno[1,2-b]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and benzylamine (**10a**) (64 mg, 0.6 mmol). Light yellow solid; yield: 108 mg (60%); mp 155–157 °C (MeOH); TLC (R_f = 0.32, SiO₂, hexane–EtOAc, 2:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.40–8.37 (m, 2H), 8.04 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.86–7.72 (m, 5H), 7.61–7.57 (m, 1H), 7.44–7.33 (m, 3H), 7.29–7.26 (m, 5H), 6.87–6.77 (m, 3H), 6.69–6.64 (m, 2H), 5.98 (s, 1H), 3.79 (s, 1H), 3.66–3.57 (m, 1H), 3.50 (d, *J* = 7.6 Hz, 1H), 2.54 (s, 1H), 0.51 (d, *J* = 6.5 Hz, 3H), 0.19 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 168.0, 165.0, 153.3, 142.3, 141.5, 138.4, 137.6, 133.7, 133.3 (2C), 132.3, 131.9, 131.5 (2C), 130.0, 129.5 (2C), 129.2, 128.9, 128.0 (2C), 127.9 (3C), 127.8, 127.7, 127.5 (2C), 127.4 (2C), 127.3, 125.7, 122.0, 73.0, 70.2, 50.9, 48.9, 40.7, 30.4, 21.7, 21.4. IR (KBr): 3421, 3292, 3056, 2970, 2870, 1639, 1532, 1493, 1367, 1336, 1107, 761, 705 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₁H₃₅N₄O⁺: 599.2805; found 599.2828.

(±)-(1R,2S,4R,5S,6R)-1,4,5-Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-

b]quinoxaline]-6-carbonitrile (**11daa**). Prepared following the general procedure **D** from cyclopropene **1d** (65 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and benzylamine (**10a**) (64 mg, 0.6 mmol). Light yellow solid; yield: 139 mg (86%); mp > 260 °C (MeOH); TLC (R_f = 0.32, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.38 (dd, *J* = 8.1, 0.9 Hz, 1H), 8.14 (d, *J* = 7.6 Hz, 1H), 8.09–8.05 (m, 1H), 8.03–7.99 (m, 3H), 7.87–7.72 (m, 3H), 7.63–7.58 (m, 1H), 7.49–7.43 (m, 2H), 7.40–7.22 (m, 6H), 6.85–6.78 (m, 3H), 6.72–6.66 (m, 2H), 6.17 (s, 1H), 3.65 (s, 1H), 2.55 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 164.1, 152.9, 146.3, 142.1, 141.3, 137.9, 137.4, 133.2, 132.2, 131.4 (4C), 130.4, 129.9 (2C), 129.5, 129.3, 129.2, 128.5 (2C), 128.3 (2C), 128.1, 128.0, 127.8, 127.4 (2C), 126.8 (2C), 125.0, 122.5, 118.7, 71.8, 67.6, 51.8, 48.6, 13.0. IR (KBr): 3286, 3057, 3028, 2238, 1604, 1578, 1505, 1497, 1449, 1337, 1104, 1055, 756, 701 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₃₈H₂₇N₄⁺: 539.2230; found 539.2246.

(±)-(*1R*,2*S*,4*R*,5*S*,6*R*)-6-*Ethyl*-1,4,5-*triphenyl*-3-*azaspiro[bicyclo[3.1.0]hexane*-2,11'-*indeno[*1,2-*b*]*quinoxaline]* (*11eaa*). Prepared following the general procedure **D** from cyclopropene **1e** (66 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and benzylamine (**10a**) (64 mg, 0.6 mmol). Light yellow solid; yield: 151 mg (93%); mp 209–210 °C (MeOH); TLC (R_f = 0.58, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.32 (dd, *J* = 8.1, 1.2 Hz, 1H), 8.21 (d, *J* = 7.6 Hz, 1H), 8.07 (d, *J* = 7.6 Hz, 1H), 8.03 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.99–7.95 (m, 2H), 7.80–7.68 (m, 3H), 7.64–7.59 (m, 1H), 7.44–7.38 (m, 2H), 7.34–7.25 (m, 6H), 6.74–6.66 (m, 3H), 6.62–6.57 (m, 2H), 5.95 (s, 1H), 2.76 (t, *J* = 6.8 Hz, 1H), 2.40 (br s, 1H), 1.57–1.45 (m, 1H), 1.27–1.16 (m, 1H), 1.06 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.9, 153.3, 149.3, 142.1, 141.6, 140.2, 137.9, 137.7, 134.1, 132.2 (2C), 131.9, 130.7 (2C), 129.6, 129.5, 129.1

(2C), 128.6, 127.9 (2C), 127.8 (2C), 127.3 (2C), 127.2, 126.7 (2C), 126.5, 126.0, 125.2, 122.2, 72.6, 69.5, 48.1, 45.7, 27.6, 20.3, 14.6. IR (KBr): 3293, 3051, 2974, 2851, 1600, 1496, 1335, 1101, 761, 699 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₉H₃₂N₃⁺: 542.2591; found 542.2601.

(±)-(1R,2S,4R,5S,6R)-1,4,5-Triphenyl-6-vinyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-

indeno[1,2-*b*]*quinoxaline*] (**11***faa*). Prepared following the general procedure **D** from cyclopropene **1f** (65 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and benzylamine (**10a**) (64 mg, 0.6 mmol). Light yellow solid; yield: 128 mg (79%); mp 238–239 °C (MeOH); TLC (R_f = 0.56, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (dd, J = 8.2, 1.2 Hz, 1H), 8.22 (d, J = 7.6 Hz, 1H), 8.05 (dd, J = 8.2, 1.2 Hz, 1H), 7.99–7.92 (m, 3H), 7.85–7.68 (m, 3H), 7.58–7.53 (m, 1H), 7.41–7.25 (m, 8H), 6.77–6.71 (m, 3H), 6.64–6.59 (m, 2H), 6.11 (s, 1H), 5.41 (dd, J = 16.8, 2.3 Hz, 1H), 5.06 (dt, J = 16.8, 10.3 Hz, 1H), 4.96 (dd, J = 10.1, 2.4 Hz, 1H), 3.66 (d, J = 10.5 Hz, 1H), 2.51 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.7, 153.4, 148.2, 142.3, 141.5, 139.7, 137.9, 137.5, 136.7, 133.0, 132.6 (2C), 132.1 (2C), 131.9, 129.6 (2C), 129.3, 129.2, 128.8, 127.9 (4C), 127.3 (3C), 126.8 (3C), 126.4, 125.3, 122.0, 113.5, 73.1, 69.5, 50.3, 47.1, 29.9. IR (KBr): 3372, 3055, 1601, 1448, 1335, 1101, 904, 754, 698 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₉H₃₀N₃⁺: 540.2434; found 540.2452.

(±)-(1R,2S,4R,5S)-1,4,5-Triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-

b]quinoxaline] (*11gaa*). Prepared following the general procedure **D** from cyclopropene **1g** (58 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and benzylamine (**10a**) (64 mg, 0.6 mmol). Light yellow solid; yield: 103 mg (67%); mp 195–196 °C (MeOH); TLC (R_f = 0.50, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.39 (d, *J* = 8.0 Hz, 1H), 8.17 (d, *J* = 7.6 Hz, 1H), 8.08–8.04 (m, 1H), 8.01–7.97 (m, 1H), 7.85–7.72 (m, 4H), 7.71–7.65 (m, 1H), 7.56–7.51 (m, 1H), 7.48–7.44 (m, 2H), 7.37–7.19 (m, 6H), 6.73–6.63 (m, 3H), 6.60–6.55 (m, 2H), 6.37 (s, 1H), 2.67 (d, *J* = 4.7 Hz, 1H), 2.21 (br s, 1H), 1.59 (d, *J* = 4.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.6, 153.5, 148.3, 142.3, 141.5, 140.5, 138.1, 137.3, 135.8, 131.7, 131.5 (2C), 130.3 (2C), 129.7, 129.6, 129.4, 129.2, 128.8, 128.1 (2C), 128.0 (2C), 127.2 (3C), 126.9 (2C), 126.6, 126.3, 125.0, 122.1, 72.6, 66.3, 47.9, 42.7, 16.0. IR (KBr): 3332, 3285, 3052, 1602, 1494, 1447, 1366, 1337, 1106, 1031, 758, 702 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₃₇H₂₈N₃⁺: 514.2278; found 514.2297.

(±)-(1R,2S,4R,5S,6R)-7',8'-Dimethyl-1,4,5,6-tetraphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'indeno[1,2-b]quinoxaline] (11aba). Prepared following the general procedure **D** from cyclopropene **1a** (81 mg, 0.3 mmol), 7,8-dimethyl-11*H*-indeno[1,2-b]quinoxalin-11-one (**2b**) (78 mg, 0.3 mmol), and benzylamine (**10a**) (64 mg, 0.6 mmol). Light yellow solid; yield: 167 mg (90%); mp > 260 °C (MeOH); TLC (R_f = 0.52, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.30 (d, J = 7.7 Hz, 1H), 8.17 (s, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.80 (s, 1H), 7.67–7.62 (m, 1H), 7.57–7.46 (m, 3H), 7.36–7.22 (m, 9H), 6.97–6.83 (m, 3H), 6.70–6.65 (m, 1H), 6.54–6.47 (m, 3H), 6.44–6.40 (m, 2H), 6.12 (s, 1H), 4.16 (s, 1H), 2.65 (s, 3H), 2.60 (br s, 1H), 2.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.0, 152.3, 147.8, 140.8, 140.4, 139.6, 139.1, 137.8, 137.2, 134.6, 133.8 (2C), 132.5, 131.8, 131.4, 131.0 (3C), 129.5, 128.9, 128.4, 128.0, 127.8, 127.4 (4C), 127.3, 127.0, 126.7, 126.6 (2C), 126.4 (2C), 126.3, 125.2, 125.0, 121.8, 73.6, 70.4, 52.6, 48.9, 30.4, 20.4, 20.3. IR (KBr): 3346, 3052, 3029, 2878, 1600, 1572, 1496, 1420, 1335, 1106, 1024, 759, 700 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₅H₃₆N₃⁺: 618.2904; found 618.2926.

(±)-(1R,2S,4R,5S,6R)-1,5,6-Triphenyl-4-(p-tolyl)-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-

indeno[*1*,2-*b*]*quinoxaline*] (*11aab*). Prepared following the general procedure **D** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and 4-xylylamine (**10b**) (73 mg, 0.6 mmol). Light yellow solid; yield: 168 mg (93%); mp > 260 °C (MeOH); TLC (R_f = 0.50, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.44 (dd, *J* = 8.2, 1.1 Hz, 1H), 8.32 (d, *J* = 7.7 Hz, 1H), 8.05 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.95 (d, *J* = 7.5 Hz, 1H), 7.87–7.81 (m, 1H), 7.79–7.74 (m, 1H), 7.70–7.65 (m, 1H), 7.59–7.49 (m, 3H), 7.31–7.20 (m, 6H), 7.09–7.04 (m, 2H), 6.97–6.92 (m, 1H), 6.89–6.84 (m, 2H), 6.71–6.65 (m, 1H), 6.53–6.47 (m, 3H), 6.45–6.41 (m, 2H), 6.10 (s, 1H), 4.15 (s, 1H), 2.60 (br s, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 166.0, 153.3, 148.1, 142.2, 141.6, 137.6, 137.2, 136.9, 136.4, 134.7, 133.7 (2C), 131.8 (2C), 131.0 (2C), 129.6 (3C), 129.3, 129.2, 128.8, 128.6 (2C), 127.4 (2C), 127.3 (2C), 126.7 (3C), 126.4 (3C), 126.3, 125.2, 125.0, 122.0, 73.6, 70.3, 52.6, 48.9, 30.5, 21.1. IR (KBr): 3358, 3057, 3026, 2866, 1601, 1573, 1495, 1444, 1333, 1106, 757, 698 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₄₄H₃₄N₃⁺: 604.2747; found 604.2770.

2,11'-indeno[1,2-b]quinoxaline] (11aac). Prepared following the general procedure **D** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and 4-methoxybenzylamine (**10c**) (82 mg, 0.6 mmol). Light yellow solid; yield: 158 mg (85%); mp > 260 °C (MeOH); TLC (R_f = 0.40, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.44 (dd, *J* = 8.2, 1.0 Hz, 1H), 8.31 (d, *J* = 7.6 Hz, 1H), 8.05 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.95 (d, *J* = 7.5 Hz, 1H), 7.87–7.81 (m, 1H), 7.79–7.73 (m, 1H), 7.70–7.65 (m, 1H), 7.59–7.49 (m, 3H), 7.30–7.24 (m, 7H), 6.98–6.78 (m, 5H), 6.70–6.65 (m, 1H), 6.55–6.40 (m, 4H), 6.09 (s, 1H), 4.14 (s, 1H), 3.79 (s, 3H), 2.60 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.5, 159.0, 153.3, 148.1, 142.2, 141.6, 137.6, 137.2, 134.7, 133.7 (2C), 131.8, 131.6 (2C), 130.9 (3C), 129.6 (2C), 129.3, 129.2, 128.8, 128.4 (2C), 127.4 (3C), 126.7 (3C), 126.4 (3C), 125.2, 125.1, 122.0, 113.2

(2C), 73.6, 70.0, 55.2, 52.5, 49.0, 30.4. IR (KBr): 3347, 3059, 3026, 2927, 2834, 1610, 1510, 1496, 1443, 1334, 1244, 1170, 1107, 1042, 757, 700 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₄H₃₄N₃O⁺: 620.2696; found 620.2712.

(\pm) -(1R,2S,4R,5S,6R)-4-(4-Fluorophenyl)-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-

2,11'-indeno[1,2-b]quinoxaline] (11aad). Prepared following the general procedure **D** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and 4-fluorobenzylamine (**10d**) (75 mg, 0.6 mmol). Light yellow solid; yield: 175 mg (96%); mp > 260 °C (MeOH); TLC (R_f = 0.50, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.43 (dd, *J* = 8.2, 1.2 Hz, 1H), 8.31 (d, *J* = 7.7 Hz, 1H), 8.05 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.95 (d, *J* = 7.5 Hz, 1H), 7.87–7.82 (m, 1H), 7.80–7.74 (m, 1H), 7.71–7.65 (m, 1H), 7.55–7.49 (m, 3H), 7.31–7.25 (m, 7H), 6.98–6.92 (m, 3H), 6.89–6.83 (m, 2H), 6.71–6.66 (m, 1H), 6.54–6.47 (m, 2H), 6.42–6.38 (m, 2H), 6.11 (s, 1H), 4.11 (s, 1H), 2.60 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.9, 163.5, 161.1, 153.2, 148.0, 142.3, 141.5, 137.6, 136.9, 135.2, 134.4, 133.7 (2C), 131.8, 131.6, 130.9 (2C), 129.7, 129.5, 129.4, 129.2, 128.9, 128.7 (2C), 127.5 (2C), 126.9, 126.7 (2C), 126.5 (3C), 126.4, 125.2, 125.1, 122.0, 114.7, 114.5, 73.5, 69.7, 52.6, 48.9, 30.3. ¹⁹F NMR (376 MHz, CDCl₃): δ = -115.7. IR (KBr): 3347, 3058, 2876, 1602, 1506, 1443, 1366, 1334, 1221, 1153, 1107, 757, 698 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₄₃H₃₁FN₃⁺: 608.2497; found 608.2518.

(\pm) -(1R,2S,4R,5S,6R)-4-(4-Chlorophenyl)-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-

2,11'-indeno[1,2-b]quinoxaline] (11aae). Prepared following the general procedure **D** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and 4-chlorobenzylamine (**10e**) (85 mg, 0.6 mmol). Light yellow solid; yield: 146 mg (78%); mp > 260 °C (MeOH); TLC (R_f = 0.56, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.43 (d, *J* = 7.4 Hz, 1H), 8.36–8.30 (m, 1H), 8.08 (d, *J* = 7.9 Hz, 1H), 7.98–7.93 (m, 1H), 7.88–7.83 (m, 1H), 7.81–7.75 (m, 1H), 7.71–7.63 (m, 1H), 7.56–7.47 (m, 3H), 7.32–7.18 (m, 9H), 6.98–6.92 (m, 1H), 6.89–6.83 (m, 2H), 6.71–6.66 (m, 1H), 6.54–6.47 (m, 2H), 6.41–6.37 (m, 2H), 6.12 (s, 1H), 4.11 (s, 1H), 2.48 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.8, 153.2, 147.9, 142.1, 141.5, 137.5, 136.8, 134.2, 133.7 (2C), 133.1, 131.9, 130.9 (3C), 129.8, 129.5 (4C), 129.2, 128.9, 128.6 (2C), 128.0 (3C), 127.6 (2C), 127.0, 126.8 (2C), 126.5 (3C), 125.3, 125.2, 122.1, 73.5, 69.7, 52.5, 48.7, 30.4. IR (KBr): 3344, 3055, 2871, 1601, 1491, 1443, 1331, 1107, 1093, 1011, 758, 700 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₄₃H₃₁ClN₃⁺: 624.2201; found 624.2200.

(±)-(1*R*,2*S*,4*S*,5*S*,6*R*)-4-(2,4-*Dichlorophenyl*)-1,5,6-*triphenyl*-3-*azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-b]quinoxaline]* (**11aaf**). Prepared following the general procedure **D** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and 2,4-dichlorobenzylamine (**10f**) (106 mg, 0.6 mmol). Light yellow solid; yield: 176 mg (89%); mp > 260 °C (MeOH); TLC (R_f = 0.52, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.45 (dd, *J* = 8.2, 1.1 Hz, 1H), 8.25–8.21 (m, 2H), 8.06 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.94 (d, *J* = 7.5 Hz, 1H), 7.88–7.83 (m, 1H), 7.80–7.75 (m, 1H), 7.67–7.60 (m, 3H), 7.53–7.48 (m, 1H), 7.36 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.26–7.21 (m, 4H), 7.05–7.00 (m, 1H), 6.96–6.91 (m, 2H), 6.73–6.67 (m, 1H), 6.65 (s, 1H), 6.55–6.46 (m, 6H), 4.32 (s, 1H), 2.80 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.5, 153.2, 147.5, 142.3, 141.5, 137.6, 136.7, 136.2, 135.7, 133.6 (3C), 133.5, 131.8, 131.2, 131.0 (2C), 130.0, 129.7 (3C), 129.5, 129.3, 129.2, 128.9, 127.6 (3C), 127.1, 127.0, 126.7 (4C), 126.5, 125.4, 125.2, 122.0, 73.5, 65.4, 51.4, 47.3, 30.9. IR (KBr): 3341, 3061, 3025, 1602, 1585, 1495, 1465, 1446, 1386, 1365, 1335, 1104, 757, 699 cm⁻¹. HRMS (ESI): *m/z* [M + H]⁺ calcd for C₄₃H₃₀Cl₂N₃⁺: 658.1811; found 658.1840.

(±)-(1*R*,2*S*,4*S*,5*S*,6*R*)-1,5,6-*Triphenyl-4-(pyridin-3-yl)-3-azaspiro[bicyclo[3.1.0]hexane-2,11'indeno[1,2-b]quinoxaline] (11aag). Prepared following the general procedure D from cyclopropene 1a (81 mg, 0.3 mmol), 11<i>H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and 3-picolylamine (**10g**) (65 mg, 0.6 mmol). Light yellow solid; yield: 167 mg (94%); mp > 260 °C (MeOH); TLC (R_f = 0.32, SiO₂, hexane–EtOAc, 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.61–8.57 (m, 1H), 8.53–8.49 (m, 1H), 8.44 (d, *J* = 8.2 Hz, 1H), 8.31 (d, *J* = 7.7 Hz, 1H), 8.08– 8.02 (m, 1H), 7.97–7.93 (m, 1H), 7.88–7.82 (m, 1H), 7.80–7.75 (m, 1H), 7.72–7.67 (m, 1H), 7.60– 7.50 (m, 4H), 7.32–7.25 (m, 5H), 7.23–7.18 (m, 1H), 6.98–6.92 (m, 1H), 6.89–6.83 (m, 2H), 6.72– 6.66 (m, 1H), 6.55–6.47 (m, 2H), 6.42–6.38 (m, 2H), 6.16 (s, 1H), 4.12 (s, 1H), 2.60 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.7, 153.3, 148.5, 147.7, 142.5, 141.5, 137.6, 136.5, 135.3 (2C), 133.9, 133.5 (2C), 131.9 (2C), 131.4, 130.9 (2C), 129.8, 129.5 (3C), 129.3, 129.0, 127.8 (2C), 127.2, 126.8 (2C), 126.5 (4C), 125.3, 125.2, 123.0, 122.0, 73.5, 68.4, 52.7, 48.7, 30.4. IR (KBr): 3308, 3058, 3025, 2841, 1601, 1495, 1446, 1336, 1205, 1118, 752, 709, 698 cm⁻¹. HRMS (ESI): *m/z* [M + H]⁺ calcd for C₄₂H₃₁N₄⁺: 591.2543; found 591.2555.

 $(\pm)-(1R,2S,4S,5S,6R)-4-(Furan-2-yl)-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hexane-3,11'-1,5,6-triphenyl-3,11'-1,5,6-triphenyl-3,11'-1,5,6-triphenyl-3,11'-1,5,6-triphenyl-3,11'-1,5,6-triphenyl-3,11'-1,5,6-triphenyl-3,11'-1,5,6-triphenyl-3,11'-1,5,6-triphenyl-3,11'-1,5,6-triphenyl-3,11'-1,5,6-triphenyl-3,11'-1,5,6-$

indeno[1,2-*b*]*quinoxaline*] (**11aah**). Prepared following the general procedure **D** from cyclopropene **1a** (81 mg, 0.3 mmol), 11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2a**) (70 mg, 0.3 mmol), and furfurylamine (**10h**) (58 mg, 0.6 mmol). Light yellow solid; yield: 151 mg (87%); mp > 260 °C (MeOH); TLC (R_f = 0.30, SiO₂, hexane–EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (dd, *J* = 8.2, 1.1 Hz, 1H), 8.25 (d, *J* = 7.7 Hz, 1H), 8.06 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.95 (d, *J*

= 7.5 Hz, 1H), 7.87–7.81 (m, 1H), 7.79–7.74 (m, 1H), 7.68–7.62 (m, 3H), 7.54–7.49 (m, 1H), 7.40 (s, 1H), 7.32–7.21 (m, 3H), 7.04–6.99 (m, 1H), 6.96–6.91 (m, 2H), 6.72–6.66 (m, 1H), 6.55–6.49 (m, 6H), 6.31–6.28 (m, 2H), 6.09 (s, 1H), 4.27 (s, 1H), 2.95 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 165.3, 153.3, 153.2, 147.1, 142.3, 142.2, 141.5, 137.7, 137.0, 134.3, 133.1 (2C), 132.5, 131.8, 131.5, 131.0 (2C), 129.8, 129.6, 129.4, 129.2, 128.9, 127.6 (3C), 126.8 (3C), 126.6 (2C), 126.4, 125.3, 124.8, 122.1, 110.0, 107.5, 74.0, 66.2, 52.3, 47.5, 30.8. IR (KBr): 3295, 3057, 3029, 1603, 1501, 1335, 1187, 1074, 756, 700 cm⁻¹. HRMS (ESI): *m/z* [M + H]⁺ calcd for C₄₁H₃₀N₃O⁺: 580.2383; found 580.2380.

General procedure E for oxidation of 3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2b]quinoxalines] to 3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-indeno[1,2-b]quinoxalines]: A 50 mL round-bottom two-necked flask equipped with a magnetic stirbar was charged with corresponding 3-azaspiro[bicyclo[3.1.0]hexane-2,11'-indeno[1,2-b]quinoxaline] **11** (1.0 mmol) and dry toluene (25 mL). The suspension was heated and stirred at 80 °C under an argon atmosphere until the starting amine **11** dissolved completely. DDQ (3.0 or 6.0 mmol) was then added in one portion to the obtained solution, and the mixture was allowed to reflux for 1 h or 5 h. After cooling, the reaction mixture was quenched with aqueous saturated potassium carbonate and transferred into a separatory funnel. The aqueous layer was removed and the organic one was washed three times with saturated K₂CO₃ and twice with H₂O to remove completely the resulting hydroquinone. Further, the organic layer was collected, dried over anhydrous sodium sulfate and concentrated *in vacuo*. The resulting crude product **12** was purified by recrystallization from MeOH.

(±)-(1R,2S,5S,6S)-1,4,5,6-Tetraphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-indeno[1,2-

b]quinoxaline] (12*a*). Prepared following the general procedure **E** from compound **11aaa** (7**aaj**) (1.0 mmol, 590 mg) and DDQ (3.0 mmol, 681 mg) at reflux for 1 h. Beige solid; yield: 482 mg (82%); mp > 260 °C (MeOH); TLC (R_f = 0.48, SiO₂, hexane–EtOAc, 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.22 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.12–8.03 (m, 3H), 7.97–7.86 (m, 2H), 7.82–7.57 (m, 6H), 7.38–7.21 (m, 6H), 7.14–6.99 (m, 4H), 6.72–6.60 (m, 3H), 6.55–6.49 (m, 2H), 6.03–5.90 (m, 1H), 3.58 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 184.2, 160.5, 153.7, 147.0, 142.6, 141.7, 138.7, 135.3, 133.5, 133.3 (2C), 132.1, 131.9, 131.3, 131.0 (4C), 130.5, 129.9, 129.6 (2C), 129.3 (2C), 129.1, 128.7, 128.1 (2C), 127.9 (2C), 127.5, 127.0 (4C), 126.7, 126.2, 125.2, 122.6, 86.4, 53.7, 51.9, 41.0. IR (KBr): 3057, 3032, 1599, 1570, 1495, 1447, 1329, 1302, 1265, 1069, 1026, 760, 698 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₃H₃₀N₃⁺: 588.2434; found 588.2441.

$(\pm)-(1R,2S,5S,6S)-1,5,6-Triphenyl-4-(p-tolyl)-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-1)-3-azaspiro[bicyclo[3.1.0]hex-3-azaspiro[bicyclo[3.1.0]hex-3-azaspiro[3.1.0]hex-3-azaspiro[3.1.0]hex-3-aza$

indeno[*1*,2-*b*]*quinoxaline*] (*12b*). Prepared following the general procedure **E** from compound **11aab** (1.0 mmol, 604 mg) and DDQ (3.0 mmol, 681 mg) at reflux for 1 h. Beige solid; yield: 548 mg (91%); mp > 260 °C (MeOH); TLC (R_f = 0.56, SiO₂, hexane–EtOAc, 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.27 (dd, *J* = 7.9, 1.6 Hz, 1H), 8.11–7.99 (m, 3H), 7.96–7.85 (m, 2H), 7.78–7.56 (m, 6H), 7.36–7.23 (m, 3H), 7.14–6.98 (m, 6H), 6.70–6.59 (m, 3H), 6.54–6.48 (m, 2H), 6.02–5.88 (m, 1H), 3.55 (s, 1H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 184.0, 160.7, 153.8, 147.3, 142.6, 141.7, 140.7, 138.7, 135.5, 133.3 (2C), 132.4, 131.9, 131.4, 131.0 (3C), 130.8, 129.8, 129.6 (2C), 129.3 (3C), 129.1, 128.8 (2C), 128.7, 127.9 (3C), 127.4, 127.0 (3C), 126.6, 126.2, 125.2, 122.5, 86.4, 53.7, 52.0, 40.9, 21.5. IR (KBr): 3059, 3029, 1605, 1585, 1555, 1495, 1367, 1320, 1298, 1182, 1071, 823, 756, 702 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₄H₃₂N₃⁺: 602.2591; found 602.2589.

(\pm) -(1R, 2S, 5S, 6S)-4-(4-Methoxyphenyl)-1, 5, 6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-

2,11'-indeno[1,2-b]quinoxaline] (12c). Prepared following the general procedure **E** from compound **11aac** (1.0 mmol, 620 mg) and DDQ (3.0 mmol, 681 mg) at reflux for 1 h. Beige solid; yield: 537 mg (87%); mp > 260 °C (MeOH); TLC (R_f = 0.30, SiO₂, hexane–EtOAc, 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.28 (d, *J* = 7.5 Hz, 1H), 8.13–7.85 (m, 5H), 7.81–7.56 (m, 6H), 7.38–7.24 (m, 3H), 7.13–6.99 (m, 4H), 6.80–6.75 (m, 2H), 6.71–6.61 (m, 3H), 6.55–6.48 (m, 2H), 6.03–5.89 (m, 1H), 3.77 (s, 3H), 3.56 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 183.4, 161.4, 160.8, 153.7, 147.4, 142.6, 141.7, 138.7, 135.5, 133.3 (2C), 132.6, 131.9, 131.4, 131.1, 131.0 (4C), 129.8 (2C), 129.6, 129.5, 129.1, 128.7, 127.9 (2C), 127.5, 127.0 (4C), 126.6, 126.2 (2C), 125.2, 122.5, 113.5 (2C), 86.2, 55.2, 53.5, 52.0, 40.9. IR (KBr): 3053, 2918, 2849, 1607, 1589, 1510, 1497, 1323, 1302, 1258, 1171, 1030, 833, 768, 754, 702 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₄₄H₃₂N₃O⁺: 618.2540; found 618.2554.

(±)-(*1R*,2*S*,5*S*,6*S*)-4-(4-Fluorophenyl)-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'indeno[1,2-b]quinoxaline] (**12d**). Prepared following the general procedure **E** from compound **11aad** (1.0 mmol, 608 mg) and DDQ (6 mmol, 1.362 g) at reflux for 5 h. Beige solid; yield: 442 mg (73%); mp > 260 °C (MeOH); TLC (R_f = 0.56, SiO₂, hexane–EtOAc, 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.27 (d, *J* = 7.1 Hz, 1H), 8.13–7.56 (m, 12H), 7.39–7.29 (m, 2H), 7.16–6.94 (m, 6H), 6.75–6.47 (m, 5H), 6.02–5.86 (m, 1H), 3.55 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 183.1, 160.4, 153.6, 146.9, 142.6, 141.5, 138.7, 135.2, 133.2 (2C), 132.0, 131.9, 131.5, 131.4, 131.2, 131.0 (3C), 129.9 (2C), 129.6 (4C), 129.1, 128.7, 128.0 (2C), 127.6, 127.0 (4C), 126.7, 126.3, 125.1, 122.6, 115.3, 115.1, 86.4, 53.5, 52.0, 40.9. ¹⁹F NMR (376 MHz, CDCl₃): δ = -109.4. IR (KBr): 3059, 3028, 2852, 1603, 1573, 1508, 1497, 1335, 1231, 1158, 1070, 839, 757, 702 cm⁻¹. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₃H₂₉FN₃⁺: 606.2340; found 606.2352.

(±)-(*1R*,2*S*,5*S*,6*S*)-4-(4-Chlorophenyl)-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'indeno[1,2-b]quinoxaline] (**12e**). Prepared following the general procedure **E** from compound **11aae** (1.0 mmol, 624 mg) and DDQ (6.0 mmol, 1.362 g) at reflux for 5 h. Beige solid; yield: 361 mg (58%); mp > 260 °C (MeOH); TLC (R_f = 0.70, SiO₂, hexane–EtOAc, 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.27 (dd, *J* = 8.0, 1.4 Hz, 1H), 8.13–8.02 (m, 3H), 7.96–7.81 (m, 2H), 7.79–7.57 (m, 6H), 7.36–7.21 (m, 5H), 7.14–6.99 (m, 4H), 6.71–6.49 (m, 5H), 6.01–5.88 (m, 1H), 3.54 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 183.1, 160.3, 146.9, 142.6, 141.6, 138.7, 136.6, 135.1, 133.2 (2C), 131.9 (4C), 131.1, 131.0 (4C), 130.6 (3C), 130.0, 129.7, 129.6, 129.1, 128.8, 128.4 (2C), 128.0 (2C), 127.7, 127.1, 127.0 (4C), 126.3, 125.1, 86.5, 53.5, 52.0, 41.0. IR (KBr): 3057, 3026, 1591, 1495, 1333, 1300, 1090, 758, 700 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₄₃H₂₉ClN₃⁺: 622.2045; found 622.2055.

 $(\pm)-(1R,2S,5S,6S)-4-(Furan-2-yl)-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-1,5,6-triphenyl-3-ene-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-3-ene-2,11'-1,5,6-triphenyl-3-azaspiro[bicyclo[3.1.0]hex-$

indeno[*1*,2-*b*]*quinoxaline*] (*12f*). Prepared following the general procedure **E** from compound **11aah** (1.0 mmol, 580 mg) and DDQ (3.0 mmol, 681 mg) at reflux for 1 h. Beige solid; yield: 445 mg (77%); mp > 260 °C (MeOH); TLC (R_f = 0.20, SiO₂, hexane–EtOAc, 3:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.27 (dd, *J* = 8.2, 1.7 Hz, 1H), 8.11–8.07 (m, 2H), 8.03–7.99 (m, 1H), 7.76–7.55 (m, 5H), 7.49–7.37 (m, 4H), 7.24–7.17 (m, 1H), 7.10–7.04 (m, 1H), 7.00–6.93 (m, 2H), 6.70–6.65 (m, 1H), 6.60–6.45 (m, 5H), 6.32–6.29 (m, 1H), 6.05–6.00 (m, 1H), 5.93 (d, *J* = 6.1 Hz, 1H), 3.47 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 173.2, 160.5, 153.7, 148.2, 146.9, 145.1, 142.6, 141.7, 138.7, 135.1, 132.1, 131.9, 131.4, 131.0, 130.9 (4C), 129.9, 129.6 (2C), 129.0, 128.7 (2C), 128.2 (2C), 127.0 (2C), 126.9 (3C), 126.7, 126.1, 125.3, 122.5, 116.3, 111.7, 86.4, 52.8, 52.3, 40.5. IR (KBr): 3062, 3028, 2921, 2851, 1601, 1495, 1476, 1335, 1162, 1068, 1031, 1006, 968, 758, 700 cm⁻¹. HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₄₁H₂₈N₃O⁺: 578.2227; found 578.2228.

Figure S1. ¹H NMR spectrum of compound 4aaa (CDCl₃, 400 MHz)

Figure S2. ¹³C NMR spectrum of compound 4aaa (CDCl₃, 101 MHz)

Figure S3. ¹H NMR spectrum of compound 4baa (CDCl₃, 400 MHz)

Figure S4. ¹³C NMR spectrum of compound 4baa (CDCl₃, 101 MHz)

Figure S5. ¹H NMR spectrum of compound 4caa (CDCl₃, 400 MHz)

Figure S6. ¹³C NMR spectrum of compound 4caa (CDCl₃, 101 MHz)

Figure S7. ¹H NMR spectrum of the crude reaction mixture for 4caa (CDCl₃, 400 MHz)

Figure S8. ¹H NMR spectrum of compound 4daa (CDCl₃, 400 MHz)

Figure S9. ¹³C NMR spectrum of compound 4daa (CDCl₃, 101 MHz)

Figure S10. ¹H NMR spectrum of compound 4eaa (CDCl₃, 400 MHz)

Figure S11. ¹³C NMR spectrum of compound 4eaa (CDCl₃, 101 MHz)

Figure S12. ¹H NMR spectrum of compound 4faa (CDCl₃, 400 MHz)

Figure S13. ¹³C NMR spectrum of compound 4faa (CDCl₃, 101 MHz)

Figure S14. ¹H NMR spectrum of compound 4gaa (CDCl₃, 400 MHz)

Figure S15. ¹³C NMR spectrum of compound 4gaa (CDCl₃, 101 MHz)

Figure S16. ¹H NMR spectrum of compound 4haa (CDCl₃, 400 MHz)

Figure S17. ¹³C NMR spectrum of compound 4haa (CDCl₃, 101 MHz)

Figure S18. ¹H NMR spectrum of compound 4aba (CDCl₃, 400 MHz)

Figure S19. ¹³C NMR spectrum of compound 4aba (CDCl₃, 101 MHz)

Figure S20. ¹H NMR spectrum of compound 4dba (CDCl₃, 400 MHz)

Figure S21. ¹³C NMR spectrum of compound 4dba (CDCl₃, 101 MHz)

Figure S22. ¹H NMR spectrum of compound 4aab (CDCl₃, 400 MHz)

Figure S23. ¹³C NMR spectrum of compound 4aab (CDCl₃, 101 MHz)

Figure S24. ¹H NMR spectrum of compound 4aac (CDCl₃, 400 MHz)

Figure S25. ¹³C NMR spectrum of compound 4aac (CDCl₃, 101 MHz)

Figure S26. ¹H NMR spectrum of compound 5 (CDCl₃, 400 MHz)

Figure S27. ¹³C NMR spectrum of compound 5 (CDCl₃, 101 MHz)

Figure S28. ¹H NMR spectrum of compound 7aaa (CDCl₃, 400 MHz)

Figure S29. ¹³C NMR spectrum of compound 7aaa (CDCl₃, 101 MHz)

Figure S30. ¹H NMR spectrum of compound 7aab (CDCl₃, 400 MHz)

Figure S31. ¹³C NMR spectrum of compound 7aab (CDCl₃, 101 MHz)

Figure S32. ¹H NMR spectrum of compound 7aac (CDCl₃, 400 MHz)

Figure S33. ¹³C NMR spectrum of compound 7aac (CDCl₃, 101 MHz)

Figure S34. ¹H NMR spectrum of compound 7aad (CDCl₃, 400 MHz)

Figure S35. ¹³C NMR spectrum of compound 7aad (CDCl₃, 101 MHz)

Figure S36. ¹H NMR spectrum of compound 7aae (CDCl₃, 400 MHz)

Figure S37. ¹³C NMR spectrum of compound 7aae (CDCl₃, 101 MHz)

Figure S38. ¹H NMR spectrum of compound 7aaf (CDCl₃, 400 MHz)

Figure S39. ¹³C NMR spectrum of compound 7aaf (CDCl₃, 101 MHz)

Figure S40. ¹H NMR spectrum of compound 7aag (CDCl₃, 400 MHz)

Figure S41. ¹³C NMR spectrum of compound 7aag (CDCl₃, 101 MHz)

Figure S42. ¹H NMR spectrum of compound 7aah (CDCl₃, 400 MHz)

Figure S43. ¹³C NMR spectrum of compound 7aah (CDCl₃, 101 MHz)

Figure S44. ¹H NMR spectrum of compound 7aai (CDCl₃, 400 MHz)

Figure S45. ¹³C NMR spectrum of compound 7aai (CDCl₃, 101 MHz)

Figure S47. ¹³C NMR spectrum of compound 7aaj (CDCl₃, 101 MHz)

Figure S48. ¹H NMR spectrum of compound 7aak (DMSO-*d*₆, 400 MHz)

Figure S49. ¹³C NMR spectrum of compound 7aak (DMSO-*d*₆, 101 MHz)

Figure S50. ¹H NMR spectrum of compound 7aal (CDCl₃, 400 MHz)

Figure S51. ¹³C NMR spectrum of compound 7aal (CDCl₃, 101 MHz)

Figure S52. ¹H NMR spectrum of compound 7aam (CDCl₃, 400 MHz)

Figure S53. ¹³C NMR spectrum of compound 7aam (CDCl₃, 101 MHz)

Figure S54. ¹H NMR spectrum of compound 7aan (DMSO-*d*₆, 400 MHz)

Figure S55. ¹³C NMR spectrum of compound 7aan (DMSO-*d*₆, 101 MHz)

Figure S56. ¹H NMR spectrum of compound 7aao (CDCl₃, 400 MHz)

Figure S57. ¹³C NMR spectrum of compound 7aao (CDCl₃, 101 MHz)

Figure S58. ¹H NMR spectrum of compound 7aap (CDCl₃, 400 MHz)

Figure S59. ¹³C NMR spectrum of compound 7aap (CDCl₃, 101 MHz)

Figure S60. ¹H NMR spectrum of compound 7aaq (CDCl₃, 400 MHz)

Figure S61. ¹³C NMR spectrum of compound 7aaq (CDCl₃, 101 MHz)

Figure S62. ¹H NMR spectrum of compound 7aar (DMSO-*d*₆, 400 MHz)

Figure S63. ¹³C NMR spectrum of compound 7aar (DMSO-*d*₆, 101 MHz)

Figure S64. ¹H NMR spectrum of compound 7aas (CDCl₃, 400 MHz)

Figure S65. ¹³C NMR spectrum of compound 7aas (CDCl₃, 101 MHz)

Figure S66. ¹H NMR spectrum of compound 7aat (DMSO-*d*₆, 400 MHz)

Figure S67. ¹³C NMR spectrum of compound 7aat (DMSO-*d*₆, 101 MHz)

Figure S68. ¹H NMR spectrum of compound 9aaa (DMSO-*d*₆, 400 MHz)

Figure S69. ¹³C NMR spectrum of compound 9aaa (DMSO-*d*₆, 101 MHz)

Figure S70. ¹H NMR spectrum of compound 9aab (DMSO-*d*₆, 400 MHz)

Figure S71. ¹³C NMR spectrum of compound 9aab (DMSO-*d*₆, 101 MHz)

Figure S72. ¹H NMR spectrum of compound 9baa (DMSO-*d*₆, 400 MHz)

Figure S73. ¹³C NMR spectrum of compound 9baa (DMSO-*d*₆, 101 MHz)

Figure S74. ¹H NMR spectrum of compound 9bab (DMSO-*d*₆, 400 MHz)

Figure S75. ¹³C NMR spectrum of compound 9bab (DMSO-*d*₆, 101 MHz)

Figure S76. ¹H NMR spectrum of compound 9faa (DMSO-*d*₆, 400 MHz)

Figure S77. ¹³C NMR spectrum of compound 9faa (DMSO-*d*₆, 101 MHz)

Figure S78. ¹H NMR spectrum of compound 9fab (DMSO-*d*₆, 400 MHz)

Figure S79. ¹³C NMR spectrum of compound 9fab (DMSO-*d*₆, 101 MHz)

Figure S80. ¹H NMR spectrum of compound 9gaa (DMSO-*d*₆, 400 MHz)

Figure S81. ¹³C NMR spectrum of compound 9gaa (DMSO-*d*₆, 101 MHz)

Figure S82. ¹H NMR spectrum of compound 9gab (DMSO-*d*₆, 400 MHz)

Figure S83. ¹³C NMR spectrum of compound 9gab (DMSO-*d*₆, 101 MHz)

Figure S84. ¹H NMR spectrum of compound **11aab** (CDCl₃, 400 MHz)

Figure S85. ¹³C NMR spectrum of compound 11aab (CDCl₃, 101 MHz)

Figure S86. ¹H NMR spectrum of compound 11aac (CDCl₃, 400 MHz)

Figure S87. ¹³C NMR spectrum of compound **11aac** (CDCl₃, 101 MHz)

Figure S88. ¹H NMR spectrum of compound **11aad** (CDCl₃, 400 MHz)

Figure S89. ¹³C NMR spectrum of compound 11aad (CDCl₃, 101 MHz)

Figure S90. ¹⁹F NMR spectrum of compound 11aad (CDCl₃, 376 MHz)

Figure S91. ¹H NMR spectrum of compound 11aae (CDCl₃, 400 MHz)

Figure S92. ¹³C NMR spectrum of compound **11aae** (CDCl₃, 101 MHz)

Figure S93. ¹H NMR spectrum of compound 11aaf (CDCl₃, 400 MHz)

Figure S94. ¹³C NMR spectrum of compound **11aaf** (CDCl₃, 101 MHz)

Figure S95. ¹H NMR spectrum of compound 11aag (CDCl₃, 400 MHz)

Figure S96. ¹³C NMR spectrum of compound 11aag (CDCl₃, 101 MHz)

Figure S97. ¹H NMR spectrum of compound 11aah (CDCl₃, 400 MHz)

Figure S98. ¹³C NMR spectrum of compound 11aah (CDCl₃, 101 MHz)

Figure S99. ¹H NMR spectrum of compound **11aba** (CDCl₃, 400 MHz)

Figure S100. ¹³C NMR spectrum of compound 11aba (CDCl₃, 101 MHz)

Figure S101. ¹H NMR spectrum of compound 11baa (CDCl₃, 400 MHz)

Figure S102. ¹³C NMR spectrum of compound 11baa (CDCl₃, 101 MHz)

Figure S103. ¹H NMR spectrum of compound 11caa (CDCl₃, 400 MHz)

Figure S104. ¹³C NMR spectrum of compound 11caa (CDCl₃, 101 MHz)

Figure S105. ¹H NMR spectrum of compound 11daa (CDCl₃, 400 MHz)

Figure S106. ¹³C NMR spectrum of compound 11daa (CDCl₃, 101 MHz)

Figure S107. ¹³C NMR spectrum of compound 11eaa (CDCl₃, 400 MHz)

Figure S108. ¹H NMR spectrum of compound 11eaa (CDCl₃, 101 MHz)

Figure S109. ¹H NMR spectrum of compound 11faa (CDCl₃, 400 MHz)

Figure S110. ¹³C NMR spectrum of compound 11faa (CDCl₃, 101 MHz)

Figure S111. ¹H NMR spectrum of compound 11gaa (CDCl₃, 400 MHz)

Figure S112. ¹³C NMR spectrum of compound 11gaa (CDCl₃, 101 MHz)

Figure S113. ¹H NMR spectrum of compound 12a (CDCl₃, 400 MHz)

Figure S114. ¹³C NMR spectrum of compound 12a (CDCl₃, 101 MHz)

Figure S115. ¹H NMR spectrum of compound 12b (CDCl₃, 400 MHz)

Figure S116. ¹³C NMR spectrum of compound 12b (CDCl₃, 101 MHz)

Figure S117. ¹H NMR spectrum of compound 12c (CDCl₃, 400 MHz)

Figure S118. ¹³C NMR spectrum of compound 12c (CDCl₃, 101 MHz)

Figure S119. ¹H NMR spectrum of compound 12d (CDCl₃, 400 MHz)

Figure S120. ¹³C NMR spectrum of compound 12d (CDCl₃, 101 MHz)

Figure S121. ¹⁹F NMR spectrum of compound 12d (CDCl₃, 376 MHz)

Figure S122. ¹H NMR spectrum of compound 12e (CDCl₃, 400 MHz)

Figure S123. ¹³C NMR spectrum of compound 12e (CDCl₃, 101 MHz)

Figure S124. ¹H NMR spectrum of compound 12f (CDCl₃, 400 MHz)

Figure S125. ¹³C NMR spectrum of compound 12f (CDCl₃, 101 MHz)

3. Bioassay details

			Number	of cells		
Compound	24	h	48	h	72	1
	experiment	average	experiment	average	experiment	average
Imatinih	11393		13125		6683	
magylata	9922	11124	13324	13347	7133	7913
mesylate	12058		13593		9924	
	18349		38307		76373	
4aab	22336	20590	34489	36879	61945	66450
	21085		37843		61032	
	13151		12660		9608	
4caa		13926		12667	8515	8765
	14702		12674		8172	
	10740		20517		24180	
7aac	14408	13060	14290	14872	33597	33150
	14033		9810		41673	
	14856		27750		67666	
7aad	15727	15465	26203	27532	49934	52383
	15814		28645		39551	
	13045		31276		53820	
7aae	12457	13018	29482	30044	55055	56804
	13553		29375		61539	
	9763		20193		30943	
7aag	8850	9110	14778	16203	35736	34298
	8718		13640		36215	
	10740		23019		28996	
7aak	9925	10458	18975	20682	35974	33209
	10710		20053		34659	
	9796		9337		13054	
7 aao	8991	9204	9556	9767	11047	12116
	8827		10410		12247	
799r	15209	1338/	15857	16444	21334	19259
/ aa1	14982	15504	14158	10444	15952	17437

Table S2. Evaluation of proliferative activity and viability of K562 cells by flow cytometry

	9961		19319		20492	
	8347		7177		3758	
7aas	7962	8201	7403	7378	4414	4253
	8295		7555		4587	
	8210		7285		4439	
7aat	7165	7511	6759	6671	4592	4577
	7158		5969		4700	
	9126		10005		9480	
9aaa	8993	9252	11677	10476	10587	10728
	9639		9746		12119	
	10458		27269		62359	
9aab	12102	11473	28671	28577	61613	61986
	11860		29731			
	16260		32843		72172	
9baa	13321	15509	35047	33320	62799	69265
	16948		32071		72824	
	13593		32206		71334	
Control	14755	14646	32657	32702	69851	70961
	15590		33243		71699	

Figure S126. Cytotoxicity of selected compounds against human leukemia K562 cell line [at 25 μ M for the tested compounds (10 μ M for **7aar**) and 10 μ M for Imatinib]

7aao 24h

25Jan17 09:38:32 k562 cell cycle new custom Z0006726 5 24h-1 Stop Time: 50 seconds, 9030 events

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

Stats:	Not No	rmalized,	Listgating: Disabled								
Hist	Reg	gion ID	%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	Α	Α	99.9	9023	241.8	23.2	226.0	19.6	155	22.72	41.65
2	F1	F	0.00	0	****	****	****	****	**	**	**
	F2	F	0.00	0	****	****	****	****	**	**	**
	F3	F	99.6	8991	0.810	0.543	0.102	0.402	56	88.54	47.39
	F4	F	0.35	32	88.1	2.72	46.4	2.80	2	111.80	65.39

XL AK31079 (3.0/1.23)

Page 1

Figure S127. Cytotoxicity of 7aao against human leukemia K562 cell line, 24 h

7aao 48h

2

4

COULTER(R) EPICS(R) Acquisition Flow Cytometry Report

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

26Jan17 08:11:52 k562 cell cycle new custom Z0006816 5 48h-1 9646 events Stop Time: 50 seconds,

Page 1

Stats:	Not Not	rmalized,	Listgating: Disabled								
Hist	Reg	ion ID	%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	Α	Α	99.6	9611	230.2	33.2	226.0	21.0	99	21.99	60.13
2	F1	F	0.00	0	****	****	****	****	**	**	**
	F2	F	0.00	0	****	****	****	****	**	**	**
	F3	F	99.4	9556	0.767	0.512	0.102	0.432	71	90.39	48.33
	F4	F	0.57	55	124.1	2.60	22.6	2.80	1	132.82	50.04

XL AK31079 (3.0/1.23)

Figure S128. Cytotoxicity of 7aao against human leukemia K562 cell line, 48 h

7aao 72h

COULTER(R) EPICS(R) Acquisition Flow Cytometry Report

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

27Jan17 09:04:50 k562 cell cycle new custom Z0006881 5 72h-2 Stop Time: 50 seconds, 12386 events

Stats:	Not No	ormalized,	Listgating: Disabled								
Hist	Reg	gion ID	%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	Α	Α	100	12383	241.1	38.8	226.0	26.1	97	24.73	70.93
2	F1	F	0.00	0	****	****	****	****	**	**	**
	F2	F	0.06	7	101.4	45.0	28.0	14.7	1	78.36	56.44
	F3	F	98.9	12247	1.13	0.582	1.47	0.715	65	81.82	51.52
	F4	F	1.04	129	112.6	3.57	28.0	6.65	3	121.73	58.50

XL AK31079 (3.0/1.23)

Page 1

Figure S129. Cytotoxicity of 7aao against human leukemia K562 cell line, 72 h

COULTER(R) EPICS(R) Acquisition Flow Cytometry Report

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

25Jan17 k562 cell cycle new custom

Z0006724 4 24h-2 8348 events Stop Time: 50 seconds,

09:34:24

Page 1

2: A

Stats:	Not Normalized,	Listgating: Disabled								
Hist	Region ID	%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	A A	99.9	8337	244.8	22.8	210.3	16.9	154	22.08	37.76
2	F1 F	0.00	0	***	****	****	****	**	**	**
	F2 F	0.00	0	****	****	****	***	**	**	**
	F3 F	99.5	8295	0.726	0.622	0.102	0.619	71	91.05	45.56
	F4 F	0.50	42	206.4	2.93	348.0	2.10	2	116.90	53.13

7aas 24h

XL AK31079 (3.0/1.23)

7aas 48h

26Jan17 08:06:37 k562 cell cycle new custom Z0006813 4 48h-1 Stop Time: 50 seconds, 7531 events

Page 1

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

Stats:	Not Normalized,	Listgating: Disabled								
Hist	Region ID	%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	A A	99.6	7498	226.5	28.7	195.7	19.6	85	22.48	54.66
2	F1 F	0.00	0	****	****	****	****	**	**	**
	F2 F	0.01	1	323.8	15.8	323.8	15.8	1	0.00	0.00
	F3 F	98.7	7403	1.09	0.561	0.102	0.102	41	88.56	56.42
	F4 F	1.25	94	123.5	2.04	464.0	2.10	3	125.62	52.12

XL AK31079 (3.0/1.23)

Figure S131. Cytotoxicity of 7aas against human leukemia K562 cell line, 48 h

7aas 72h

COULTER(R) EPICS(R) Acquisition Flow Cytometry Report

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

27Jan17 09:11:18 k562 cell cycle new custom Z0006883 4 72h-1 Stop Time: 50 seconds, 5305 events

Stats:	Not No	rmalized,	Listgating: Disabled								
Hist	Reg	ion ID	%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	Α	Α	100	5303	238.0	45.5	242.8	37.4	44	26.26	60.59
2	F1	F	0.00	0	****	****	****	****	**	**	**
	F2	F	0.02	1	32.4	22.6	32.4	22.6	1	0.00	0.00
	F3	F	83.2	4414	1.63	0.802	1.58	0.825	24	90.32	55.26
	F4	F	16.7	888	216.0	2.12	280.4	1.82	10	94.67	40.12

XL AK31079 (3.0/1.23)

Figure S132. Cytotoxicity of 7aas against human leukemia K562 cell line, 72 h

7aat 24h

COULTER(R) EPICS(R) Acquisition Flow Cytometry Report

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

25Jan17 09:26:46 k562 cell cycle new custom Z0006720 3 24h-1 Stop Time: 50 seconds, 7212 events

Stats:	Not Normalized,	Listgating: Disabled								
Hist	Region ID	%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	A A	99.9	7206	254.9	23.4	260.9	22.6	131	22.72	38.37
2	F1 F	0.00	0	****	****	****	****	**	**	**
	F2 F	0.01	1	66.5	24.3	66.5	24.3	1	0.00	0.00
	F3 F	99.4	7165	0.791	0.724	0.102	0.576	57	90.93	44.92
	F4 F	0.56	40	114.5	2.49	34.8	1.69	2	123.95	49.95

XL AK31079 (3.0/1.23)

Figure S133. Cytotoxicity of 7aat against human leukemia K562 cell line, 24 h

7aat 48h

COULTER(R) EPICS(R) Acquisition Flow Cytometry Report

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

26Jan17 08:01:19 k562 cell cycle new custom Z0006810 3 48h-1 Stop Time: 50 seconds, 6907 events

Page 1

Stats:	Not No	ormalized,	Listgating: Disabled								
Hist	Re	gion ID	%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	Α	Α	99.5	6875	249.3	30.7	260.9	28.0	86	24.12	52.53
2	F1	F	0.00	0	****	****	****	****	**	**	**
	F2	F	0.01	1	210.3	16.9	210.3	16.9	1	0.00	0.00
	F3	F	98.3	6759	0.736	0.638	0.102	0.102	60	97.54	56.82
	F4	F	1.67	115	192.8	2.16	301.3	1.27	2	111.08	50.11

XL AK31079 (3.0/1.23)

Figure S134. Cytotoxicity of 7aat against human leukemia K562 cell line, 48 h

7aat 72h

COULTER(R) EPICS(R) Acquisition Flow Cytometry Report

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

27Jan17 09:17:26 k562 cell cycle new custom Z0006886 3 72h-1 Stop Time: 50 seconds, 5339 events

Page 1

Stats:	Not No	rmalized,	Listgating: Disabled								
Hist	Reg	gion ID	%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	Α	A	99.9	5333	254.0	41.6	260.9	30.1	63	26.11	49.80
2	F1	F	0.00	0	****	****	****	****	**	**	**
	F2	F	0.00	0	****	****	****	****	**	**	**
	F3	F	86.1	4592	1.45	0.849	1.82	0.953	31	88.59	50.52
	F4	F	13.9	741	237.2	2.28	348.0	1.96	9	90.55	41.48

XL AK31079 (3.0/1.23)

Figure S135. Cytotoxicity of 7aat against human leukemia K562 cell line, 72 h

9aaa 24h

25Jan17 09:42:49 k562 cell cycle new custom Z0006728 6 24h Stop Time: 50 seconds, 9175 events

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

Stats:	Not Normalized,	Listgating: Disabled								
Hist	Region ID	%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	A A	99.9	9164	266.2	20.7	260.9	19.6	183	23.81	36.78
2	F1 F	0.00	0	****	****	****	****	**	**	**
	F2 F	0.00	0	****	****	****	****	**	**	**
	F3 F	99.6	9126	0.727	0.684	0.102	0.536	78	92.25	43.88
	F4 F	0.41	38	68.0	2.52	32.4	1.69	2	92.73	59.51

XL AK31079 (3.0/1.23)

Figure S136. Cytotoxicity of 9aaa against human leukemia K562 cell line, 24 h

9aaa 48h

COULTER(R) EPICS(R) Acquisition Flow Cytometry Report

OP ID: 0

Initial cytosett. from prot. k562 cell cycle new custom

26Jan17 08:15:59 k562 cell cycle new custom Z0006818 6 48h Stop Time: 50 seconds, 10067 events

Stats: Not Normalized,			Listgating: Disabled								
Hist	Region ID		%	Count	Mn X	Mn Y	PkPosX	PkPosY	PkCnt	FPCVX	FPCVY
1	A	Α	99.9	10059	261.4	21.7	242.8	19.6	179	24.00	37.51
2	F	1 F	0.00	0	****	****	****	****	**	**	**
	F	2 F	0.01	1	88.7	18.2	88.7	18.2	1	0.00	0.00
	F	3 F	99.5	10005	0.927	0.635	1.10	0.619	54	82.91	43.85
	F	4 F	0.53	53	125.4	2.43	348.0	1.96	2	124.84	53.31

XL AK31079 (3.0/1.23)

Figure S137. Cytotoxicity of 9aaa against human leukemia K562 cell line, 48 h

9aaa 72h

2

4

COULTER(R) EPICS(R) Acquisition Flow Cytometry Report

OP ID: 0

Hist

Initial cytosett. from prot. k562 cell cycle new custom

27Jan17 08:56:22 k562 cell cycle new custom 20006877 6 72h-1 Stop Time: 50 seconds, 10672 events

FPCVY

40.30

**

**

43.69

57.89

Page 1

1

3

12 **** **** **** **** ** ** F2 F 0.00 0 F3 F F4 F 99.2 10587 1.22 0.782 1.58 0.825 77 74.29 2 128.43 0.79 116.6 30.1 4.99 3.05 84

XL AK31079 (3.0/1.23)

Figure S138. Cytotoxicity of 9aaa against human leukemia K562 cell line, 72 h
4. X-ray crystallographic data for compounds 4faa, 7aaq, 11baa, 12a and 12c

Figure S139. ORTEP representation of the molecular structure of **4faa** (CCDC 1556702). Thermal ellipsoids are drawn at 50% probability level.

Empirical formula	$C_{36}H_{29}N_3$
Formula weight	503.62
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	16.4746(7)
b/Å	9.1306(3)
c/Å	19.2167(8)
α/°	90
β/°	113.764(5)
γ/°	90
Volume/Å ³	2645.56(19)
Z	4
$\rho_{calc} g/cm^3$	1.264
μ/mm-1	0.074
F(000)	1064.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.2
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.246 to 54.99
Index ranges	$-21 \le h \le 21, -11 \le k \le 11, -24 \le l \le 13$
Reflections collected	17160
Independent reflections	$6077 [R_{int} = 0.0248, R_{sigma} = 0.0294]$
Data/restraints/parameters	6077/0/352
Goodness-of-fit on F ²	1.021
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0406, wR_2 = 0.0952$
Final R indexes [all data]	$R_1 = 0.0512, wR_2 = 0.1024$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.22

Table S3. Crystal data and structure refinement for compound 4faa

Figure S140. ORTEP representation of the molecular structure of **7aaq** MeOH solvate (CCDC 1556703). Thermal ellipsoids are drawn at 50% probability level.

 Table S4. Crystal data and structure refinement for compound 7aaq

Empirical formula	$C_{40.35}H_{35.05}N_3O_{1.68}$
Formula weight	588.76
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.0006(3)
b/Å	13.4106(7)
c/Å	13.9272(4)
α/°	73.859(4)
β/°	78.251(3)
$\gamma/^{\circ}$	71.617(4)
Volume/Å ³	1519.94(12)
Z	2
$\rho_{calc} g/cm^3$	1.286
μ/mm^{-1}	0.616
F(000)	623.0
Crystal size/mm ³	0.25 imes 0.2 imes 0.2
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	6.662 to 139.972
Index ranges	$-10 \le h \le 10, -16 \le k \le 16, -12 \le l \le 16$
Reflections collected	10039
Independent reflections	5735 [$R_{int} = 0.0334$, $R_{sigma} = 0.0426$]
Data/restraints/parameters	5735/1/432
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0478, wR_2 = 0.1249$
Final R indexes [all data]	$R_1 = 0.0600, wR_2 = 0.1337$
Largest diff. peak/hole / e Å ⁻³	0.53/-0.31

Figure S141. ORTEP representation of the molecular structure of 11baa (CCDC 1582653). Thermal ellipsoids are drawn at 50% probability level.

Empirical formula	$C_{39}H_{29}N_3O_2$
Formula weight	571.65
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	9.8591(3)
b/Å	17.6789(6)
c/Å	16.9614(6)
$\alpha/^{\circ}$	90
β/°	96.753(3)
$\gamma/^{\circ}$	90
Volume/Å ³	2935.83(17)
Z	4
$\rho_{calc} g/cm^3$	1.293
μ/mm^{-1}	0.080
F(000)	1200.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.2
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.554 to 55
Index ranges	$\text{-}12 \leq h \leq 11, \text{-}22 \leq k \leq 21, \text{-}16 \leq l \leq 22$
Reflections collected	14357
Independent reflections	$6716 [R_{int} = 0.0246, R_{sigma} = 0.0400]$
Data/restraints/parameters	6716/0/438
Goodness-of-fit on F ²	1.021
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0520, wR_2 = 0.1152$
Final R indexes [all data]	$R_1 = 0.0712, wR_2 = 0.1249$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.23

 Table S5. Crystal data and structure refinement for compound 11baa

Figure S142. ORTEP representation of the molecular structure of 12a (CCDC 1582655). Thermal ellipsoids are drawn at 50% probability level.

Empirical formula	$C_{43}H_{29}N_3$
Formula weight	587.69
Temperature/K	100(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	9.7752(5)
b/Å	18.4617(8)
c/Å	18.0848(9)
α/°	90
β/°	102.389(5)
γ/°	90
Volume/Å ³	3187.7(3)
Z	4
$\rho_{calc} g/cm^3$	1.225
μ/mm^{-1}	0.072
F(000)	1232.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.2
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	5.712 to 55
Index ranges	$-12 \le h \le 12, -23 \le k \le 23, -23 \le l \le 23$
Reflections collected	21229
Independent reflections	7299 [$R_{int} = 0.0287$, $R_{sigma} = 0.0339$]
Data/restraints/parameters	7299/0/415
Goodness-of-fit on F ²	1.017
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0427, wR_2 = 0.0926$
Final R indexes [all data]	$R_1 = 0.0534, wR_2 = 0.0987$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.21

 Table S6. Crystal data and structure refinement for compound 12a

Figure S143. ORTEP representation of the molecular structure of 12c (CCDC 1582654). Thermal ellipsoids are drawn at 50% probability level.

Empirical formula	$C_{44}H_{31}N_{3}O$
Formula weight	617.72
Temperature/K	100(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	9.9057(3)
b/Å	18.2185(5)
c/Å	17.9256(5)
$\alpha/^{\circ}$	90
β/°	94.694(3)
$\gamma/^{\circ}$	90
Volume/Å ³	3224.13(16)
Z	4
$\rho_{calc} g/cm^3$	1.273
μ/mm^{-1}	0.077
F(000)	1296.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.15
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.894 to 54.996
Index ranges	$\textbf{-12} \leq h \leq 12, \textbf{-23} \leq k \leq 13, \textbf{-18} \leq l \leq 23$
Reflections collected	15480
Independent reflections	7300 [$R_{int} = 0.0252$, $R_{sigma} = 0.0391$]
Data/restraints/parameters	7300/0/434
Goodness-of-fit on F ²	1.014
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0442, wR_2 = 0.0951$
Final R indexes [all data]	$R_1 = 0.0596, wR_2 = 0.1036$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.23

 Table S7. Crystal data and structure refinement for compound 12c

5. Computational data

Atom	Х	Y	Ζ
С	-4.397571000000	0.585281000000	-0.317279000000
С	-4.507200000000	-0.804071000000	-0.442638000000
С	-3.365607000000	-1.599809000000	-0.543157000000
С	-2.124784000000	-0.970046000000	-0.536404000000
С	-2.010958000000	0.425730000000	-0.454406000000
С	-3.148494000000	1.213710000000	-0.317825000000
С	-0.775095000000	-1.563068000000	-0.520563000000
С	0.174399000000	-0.494041000000	-0.419313000000
С	-0.550053000000	0.852291000000	-0.491079000000
Ν	-0.438088000000	-2.818638000000	-0.532650000000
С	0.914225000000	-3.049553000000	-0.428495000000
С	1.852397000000	-1.987643000000	-0.303871000000
Ν	1.450660000000	-0.668495000000	-0.302121000000
С	1.380868000000	-4.387873000000	-0.431913000000
С	2.725600000000	-4.652902000000	-0.314824000000
С	3.658958000000	-3.593487000000	-0.188007000000
С	3.231611000000	-2.285825000000	-0.181427000000
Ν	-0.116472000000	1.571193000000	-1.674735000000
С	1.098920000000	2.273475000000	-1.221753000000
С	0.830522000000	2.488677000000	0.271008000000
0	-0.196587000000	1.683382000000	0.644972000000
С	-1.012616000000	2.649469000000	-2.142035000000
С	-0.055191000000	3.534438000000	-2.933381000000
С	1.191897000000	3.580871000000	-2.030119000000
0	1.375057000000	3.238500000000	1.035746000000
Н	-5.304837000000	1.191776000000	-0.211844000000
Н	-5.499197000000	-1.271015000000	-0.443059000000
Н	-3.429852000000	-2.692397000000	-0.608361000000

Table S8. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized Ox-1 lactone

Н	-3.077750000000	2.300628000000	-0.199042000000
Н	0.637094000000	-5.187384000000	-0.528302000000
Н	3.081564000000	-5.689824000000	-0.317967000000
Н	4.727265000000	-3.821099000000	-0.094382000000
Н	3.930685000000	-1.446759000000	-0.085362000000
Н	1.991376000000	1.630271000000	-1.306401000000
Н	-1.847459000000	2.237059000000	-2.732697000000
Н	-1.428339000000	3.231277000000	-1.288444000000
Н	-0.475929000000	4.531035000000	-3.142105000000
Н	0.185692000000	3.046581000000	-3.894155000000
Н	2.129368000000	3.638015000000	-2.604251000000
Н	1.165973000000	4.444197000000	-1.341941000000

Table S9. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized TS from Ox-1 to I-1

Atom	Х	Y	Z
С	1.772757000	-2.354930000	-0.385284000
С	0.810210000	-3.190948000	-0.958303000
С	-0.439018000	-2.687988000	-1.329077000
С	-0.693237000	-1.343095000	-1.104035000
С	0.264398000	-0.493148000	-0.515889000
С	1.514810000	-0.999445000	-0.160281000
С	-1.909474000	-0.567095000	-1.403263000
С	-1.682220000	0.794117000	-1.010904000
С	-0.287673000	0.886260000	-0.451505000
Ν	-3.027269000	-0.989171000	-1.913055000
С	-3.997900000	-0.025316000	-2.047827000
С	-3.778980000	1.319595000	-1.640355000
Ν	-2.577689000	1.724763000	-1.107712000
С	-5.251897000	-0.387390000	-2.598814000
С	-6.245021000	0.554653000	-2.732192000
С	-6.027497000	1.894607000	-2.322059000

С	-4.818059000	2.271727000	-1.786493000
Ν	0.120760000	1.872665000	0.313467000
С	-0.149901000	3.204100000	-0.217082000
С	0.275962000	3.100900000	-1.743534000
0	0.348807000	1.917522000	-2.192165000
С	1.395948000	1.899528000	1.048215000
С	1.363975000	3.286564000	1.685438000
С	0.716383000	4.169607000	0.604816000
0	0.486624000	4.166659000	-2.328971000
Н	2.750603000	-2.765067000	-0.108456000
Н	1.041488000	-4.249998000	-1.121371000
Н	-1.204894000	-3.324971000	-1.786414000
Н	2.297054000	-0.372541000	0.274727000
Н	-5.393631000	-1.429962000	-2.906259000
Н	-7.214404000	0.270583000	-3.158403000
Н	-6.830469000	2.632196000	-2.434778000
Н	-4.621312000	3.300473000	-1.462931000
Н	-1.226682000	3.430247000	-0.209878000
Н	1.441199000	1.068069000	1.769600000
Н	2.230675000	1.813473000	0.322504000
Н	2.370340000	3.624508000	1.977817000
Н	0.731393000	3.256112000	2.589675000
Н	0.122173000	4.987351000	1.041143000
Н	1.469156000	4.619853000	-0.064313000

Table S10. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized I-1 pyrrolidinium carboxylate

Atom	Х	Y	Z
С	-3.536576000	0.811851000	-2.786317000
С	-4.118231000	-0.297178000	-2.168727000
С	-3.406747000	-1.033662000	-1.217250000
С	-2.121928000	-0.622893000	-0.902691000

С	-1.527923000	0.509202000	-1.501660000
С	-2.240811000	1.227828000	-2.465061000
С	-1.155190000	-1.248029000	0.016819000
С	0.056812000	-0.482387000	-0.012814000
С	-0.165171000	0.675637000	-0.935994000
Ν	-1.307926000	-2.324428000	0.728285000
С	-0.202087000	-2.695296000	1.454079000
С	1.011795000	-1.953873000	1.399386000
Ν	1.126217000	-0.816117000	0.642036000
С	-0.269463000	-3.853922000	2.266703000
С	0.831376000	-4.255237000	2.986633000
С	2.043428000	-3.520043000	2.925635000
С	2.133933000	-2.390653000	2.147725000
Ν	0.691374000	1.603147000	-1.189289000
С	1.933489000	1.780062000	-0.446618000
С	1.547460000	2.333571000	1.016419000
0	0.391233000	2.084647000	1.398055000
С	0.438964000	2.773826000	-2.063575000
С	1.607657000	3.721723000	-1.774030000
С	2.714824000	2.793794000	-1.267195000
0	2.487714000	2.922416000	1.576317000
Н	-4.101022000	1.369786000	-3.541800000
Н	-5.136895000	-0.596924000	-2.440674000
Н	-3.835994000	-1.917493000	-0.731821000
Н	-1.823374000	2.089720000	-2.989104000
Н	-1.215833000	-4.406059000	2.294269000
Н	0.776264000	-5.152762000	3.613781000
Н	2.910367000	-3.857162000	3.505471000
Н	3.055082000	-1.799989000	2.083844000
Н	2.427439000	0.810970000	-0.292718000
Н	-0.542758000	3.203499000	-1.807059000

Н	0.426931000	2.420756000	-3.110415000
Н	1.883894000	4.299161000	-2.669364000
Н	1.321420000	4.430915000	-0.977086000
Н	3.244559000	2.305612000	-2.104790000
Н	3.441862000	3.301105000	-0.616459000

Table S11. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized TS from I-1 to D-1

Atom	Х	Y	Z
С	-3.392189000	0.407158000	-2.348981000
С	-3.971525000	-0.719263000	-1.756863000
С	-3.241810000	-1.472928000	-0.837107000
С	-1.949873000	-1.068747000	-0.527447000
С	-1.353690000	0.079910000	-1.101926000
С	-2.092727000	0.816446000	-2.036874000
С	-0.978840000	-1.708923000	0.366905000
С	0.239765000	-0.931802000	0.334779000
С	0.014837000	0.210506000	-0.554369000
Ν	-1.127129000	-2.789518000	1.073483000
С	-0.020189000	-3.162415000	1.798878000
С	1.187625000	-2.412309000	1.757783000
Ν	1.307293000	-1.267857000	1.009650000
С	-0.087602000	-4.328377000	2.602145000
С	1.006419000	-4.733581000	3.330670000
С	2.213135000	-3.989555000	3.285160000
С	2.302500000	-2.853066000	2.516053000
Ν	0.918212000	1.139763000	-0.813207000
С	2.129168000	1.270495000	-0.197918000
С	1.537308000	2.103926000	1.584321000
Ο	0.480556000	1.616160000	1.857962000
С	0.662414000	2.291768000	-1.719407000
С	1.851049000	3.227398000	-1.478908000

С	2.943988000	2.306504000	-0.922131000
0	2.431123000	2.846713000	1.877794000
Н	-3.965886000	0.987328000	-3.081506000
Н	-4.993392000	-1.012381000	-2.023306000
Н	-3.659651000	-2.370324000	-0.365410000
Н	-1.689876000	1.694468000	-2.546141000
Н	-1.032685000	-4.883993000	2.615759000
Н	0.949463000	-5.636521000	3.949855000
Н	3.078367000	-4.324520000	3.869311000
Н	3.222597000	-2.258904000	2.465939000
Н	2.541924000	0.364026000	0.254626000
Н	-0.306334000	2.742298000	-1.454041000
Н	0.618357000	1.899479000	-2.750989000
Н	2.141170000	3.754692000	-2.400340000
Н	1.580905000	3.979863000	-0.716952000
Н	3.546389000	1.845160000	-1.728631000
Н	3.623726000	2.824961000	-0.227542000

Table S12. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized D-1 azomethine ylide (S-shaped)

Х	Y	Z
2.761479000	-0.194450000	-0.030349000
2.733290000	-1.615394000	-0.134261000
3.952039000	-2.336978000	-0.213260000
5.160539000	-1.680474000	-0.190557000
5.193038000	-0.265699000	-0.085903000
4.025529000	0.457208000	-0.007671000
1.624219000	0.560265000	0.049903000
0.491000000	-0.126166000	0.020354000
0.476000000	-1.585874000	-0.082605000
1.549969000	-2.315160000	-0.158452000
-0.859069000	0.318101000	0.067258000
	X 2.761479000 2.733290000 3.952039000 5.160539000 5.193038000 4.025529000 1.624219000 0.491000000 0.491000000 0.476000000 1.549969000	XY2.761479000-0.1944500002.733290000-1.6153940003.952039000-2.3369780005.160539000-1.6804740005.193038000-0.2656990004.0255290000.4572080001.6242190000.5602650000.491000000-0.1261660000.47600000-1.5858740001.549969000-2.315160000-0.8590690000.318101000

С	-1.733598000	-0.846805000	0.024468000
С	-0.917403000	-2.012392000	-0.074747000
С	-3.129517000	-1.037433000	0.086005000
С	-3.649790000	-2.329596000	0.028536000
С	-2.829495000	-3.462453000	-0.084497000
С	-1.447679000	-3.299107000	-0.130790000
Ν	-1.217601000	1.658111000	0.128768000
С	-2.639121000	2.085616000	0.046665000
С	-2.553823000	3.600838000	-0.164267000
С	-1.145245000	3.976964000	0.328277000
С	-0.417007000	2.674285000	0.272678000
Н	3.887523000	-3.429371000	-0.292615000
Н	6.098142000	-2.245157000	-0.252758000
Н	6.158698000	0.254315000	-0.067225000
Н	4.031502000	1.551154000	0.073613000
Н	-3.828443000	-0.203181000	0.190159000
Н	-4.738557000	-2.458605000	0.077723000
Н	-3.274384000	-4.463041000	-0.127707000
Н	-0.769104000	-4.158490000	-0.206625000
Н	-3.119096000	1.551353000	-0.786845000
Н	-3.127811000	1.799472000	0.994451000
Н	-3.353823000	4.130412000	0.373892000
Н	-2.650528000	3.831276000	-1.238152000
Н	-1.144251000	4.350177000	1.371502000
Н	-0.654553000	4.747234000	-0.290292000
Н	0.658596000	2.493237000	0.365458000

Table S13. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized Ox-2 lactone

Х	Y	Z
-4.337623000	0.656510000	-0.412043000
-4.471600000	-0.727262000	-0.252259000
	X -4.337623000 -4.471600000	XY-4.3376230000.656510000-4.471600000-0.727262000

С	-3.342452000	-1.541971000	-0.168136000
С	-2.091389000	-0.935113000	-0.228010000
С	-1.950267000	0.452354000	-0.354359000
С	-3.076886000	1.259475000	-0.468382000
С	-0.753530000	-1.550832000	-0.255859000
С	0.221161000	-0.506017000	-0.387216000
С	-0.471087000	0.855035000	-0.345975000
Ν	-0.447661000	-2.815258000	-0.236835000
С	0.892733000	-3.084600000	-0.371245000
С	1.853229000	-2.049585000	-0.539850000
Ν	1.487890000	-0.722234000	-0.545392000
С	1.325002000	-4.434692000	-0.360450000
С	2.658324000	-4.734890000	-0.514237000
С	3.614736000	-3.701626000	-0.687245000
С	3.220690000	-2.384267000	-0.701221000
Ν	-0.136810000	1.678942000	0.804665000
С	-0.356540000	3.056193000	0.330802000
С	-0.109439000	2.947067000	-1.176397000
0	-0.134580000	1.636965000	-1.522350000
С	1.284086000	1.652946000	1.227329000
С	1.419666000	2.978191000	1.967262000
С	0.659869000	3.958178000	1.056761000
0	0.095776000	3.824003000	-1.971907000
Η	-5.235548000	1.279566000	-0.500080000
Н	-5.472034000	-1.173431000	-0.209235000
Η	-3.423973000	-2.631198000	-0.071750000
Η	-2.999745000	2.342925000	-0.616653000
Η	0.564707000	-5.213356000	-0.229726000
Н	2.988440000	-5.780389000	-0.505738000
Н	4.673245000	-3.958749000	-0.810545000
Н	3.936529000	-1.564296000	-0.831784000

Н	-1.399419000	3.385230000	0.488233000
Н	1.484609000	0.766473000	1.851554000
Н	1.967181000	1.623914000	0.351505000
Н	2.470888000	3.265802000	2.129073000
Н	0.921072000	2.904729000	2.949878000
Н	0.160958000	4.762777000	1.618223000
Н	1.328692000	4.429989000	0.315493000

Table S14. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized TS from Ox-2 to I-2

Atom	Х	Y	Z
С	-4.326884000	0.636725000	-0.080358000
С	-4.462398000	-0.700016000	-0.465678000
С	-3.334630000	-1.511062000	-0.602266000
С	-2.090179000	-0.948003000	-0.355773000
С	-1.939413000	0.403071000	0.008576000
С	-3.071056000	1.201654000	0.160200000
С	-0.767234000	-1.596019000	-0.371312000
С	0.211132000	-0.626211000	0.027460000
С	-0.482483000	0.686468000	0.212074000
Ν	-0.473475000	-2.827838000	-0.662798000
С	0.860594000	-3.140708000	-0.554914000
С	1.829268000	-2.178110000	-0.154922000
Ν	1.478002000	-0.882532000	0.138153000
С	1.279521000	-4.462201000	-0.845865000
С	2.607638000	-4.804565000	-0.738445000
С	3.572110000	-3.844510000	-0.338875000
С	3.191583000	-2.554586000	-0.052610000
Ν	0.056874000	1.737810000	0.786396000
С	-0.373190000	3.025950000	0.253760000
С	-0.357137000	2.818791000	-1.324534000
0	-0.311696000	1.611077000	-1.698928000

С	1.490793000	1.830227000	1.135477000
С	1.594125000	3.256441000	1.664337000
С	0.661229000	4.054827000	0.739730000
0	-0.386782000	3.847400000	-2.005927000
Н	-5.221345000	1.259364000	0.037493000
Н	-5.460164000	-1.113534000	-0.652466000
Н	-3.413602000	-2.567327000	-0.884788000
Н	-3.014396000	2.249000000	0.466349000
Н	0.514864000	-5.185330000	-1.152401000
Н	2.927248000	-5.828838000	-0.963768000
Н	4.625698000	-4.136457000	-0.259803000
Н	3.912877000	-1.789672000	0.257912000
Н	-1.398793000	3.291513000	0.548045000
Н	1.759252000	1.043922000	1.856138000
Н	2.089264000	1.683229000	0.214468000
Н	2.632835000	3.622130000	1.651773000
Н	1.227022000	3.289245000	2.705337000
Н	0.186133000	4.902130000	1.257553000
Η	1.195697000	4.454039000	-0.138900000

 Table S15. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized I-2 pyrrolidinium carboxylate

Atom	Х	Y	Z
С	-4.091344000	0.719807000	-0.400888000
С	-4.273874000	-0.664492000	-0.453747000
С	-3.179305000	-1.527365000	-0.357393000
С	-1.923783000	-0.968424000	-0.180650000
С	-1.728900000	0.426694000	-0.089804000
С	-2.822664000	1.282249000	-0.234984000
С	-0.620057000	-1.649461000	-0.099130000
С	0.396562000	-0.650022000	0.061178000
С	-0.282549000	0.680740000	0.141365000

Ν	-0.367252000	-2.921671000	-0.164620000
С	0.965103000	-3.248871000	-0.078507000
С	1.973778000	-2.256380000	0.075797000
Ν	1.663193000	-0.921076000	0.152574000
С	1.341592000	-4.612036000	-0.146533000
С	2.668945000	-4.964953000	-0.064764000
С	3.673498000	-3.975026000	0.088486000
С	3.333887000	-2.644487000	0.157786000
Ν	0.310258000	1.761359000	0.516155000
С	-0.321634000	3.068564000	0.700588000
С	-0.444173000	3.769375000	-0.737519000
0	-0.812242000	2.999227000	-1.644148000
С	1.772088000	1.857811000	0.795520000
С	1.992176000	3.337580000	1.110749000
С	0.630914000	3.798202000	1.634627000
0	-0.182156000	4.982247000	-0.751305000
Н	-4.956219000	1.383840000	-0.511510000
Н	-5.280955000	-1.074460000	-0.592381000
Н	-3.293039000	-2.615386000	-0.425456000
Н	-2.697902000	2.365252000	-0.280677000
Н	0.547116000	-5.357499000	-0.265624000
Н	2.957117000	-6.021432000	-0.118465000
Н	4.725200000	-4.277188000	0.152145000
Н	4.086399000	-1.856521000	0.276488000
Н	-1.336458000	2.927272000	1.106764000
Н	1.987929000	1.198727000	1.654559000
Η	2.329538000	1.477224000	-0.072696000
Η	2.232103000	3.892331000	0.186821000
Н	2.816393000	3.472702000	1.827923000
Η	0.476327000	3.487206000	2.683499000
Н	0.477003000	4.881921000	1.534790000

Atom	Х	Y	Z
С	-4.258637000	0.660294000	-0.472371000
С	-4.423218000	-0.713348000	-0.674253000
С	-3.313353000	-1.557963000	-0.637009000
С	-2.068360000	-1.001829000	-0.375383000
С	-1.885009000	0.382425000	-0.140869000
С	-3.004474000	1.221621000	-0.216532000
С	-0.764727000	-1.668412000	-0.312092000
С	0.239233000	-0.666928000	-0.027414000
С	-0.449455000	0.627540000	0.105886000
Ν	-0.499156000	-2.931372000	-0.473315000
С	0.827672000	-3.264271000	-0.353497000
С	1.818460000	-2.286311000	-0.065403000
Ν	1.505199000	-0.961568000	0.102288000
С	1.213566000	-4.618390000	-0.517909000
С	2.534706000	-4.982199000	-0.398274000
С	3.523805000	-4.007233000	-0.108037000
С	3.173935000	-2.687107000	0.054761000
Ν	0.130370000	1.742925000	0.518252000
С	-0.447026000	2.963200000	0.698766000
С	-0.538696000	3.632953000	-1.282804000
0	-0.834099000	2.670308000	-1.923656000
С	1.601900000	1.824972000	0.768085000
С	1.862547000	3.321192000	0.937568000
С	0.515009000	3.876061000	1.410473000
0	-0.288667000	4.798685000	-1.209603000
Н	-5.131229000	1.322043000	-0.527311000
Н	-5.420430000	-1.121241000	-0.875591000
Н	-3.402513000	-2.636825000	-0.812400000

Table S16. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized TS from I-2 to D-2

Η	-2.934391000	2.306937000	-0.120093000
Н	0.426920000	-5.349157000	-0.740258000
Н	2.828864000	-6.030564000	-0.526476000
Н	4.572851000	-4.311845000	-0.014108000
Н	3.917534000	-1.913098000	0.278839000
Н	-1.519657000	2.977598000	0.908202000
Н	1.804961000	1.238701000	1.681495000
Н	2.136546000	1.350942000	-0.065502000
Н	2.121404000	3.768513000	-0.038882000
Н	2.690862000	3.508904000	1.637913000
Н	0.399314000	3.796471000	2.509131000
Н	0.356348000	4.924879000	1.113281000

 Table S17. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized D-2 azomethine ylide (W-shaped)

Atom	Х	Y	Z
С	2.748933000	-0.185588000	-0.175497000
С	2.734466000	-1.604806000	-0.043717000
С	3.960922000	-2.315609000	0.033092000
С	5.162634000	-1.650037000	-0.018329000
С	5.182310000	-0.236062000	-0.151394000
С	4.008771000	0.475528000	-0.227964000
Ν	1.608278000	0.559408000	-0.253831000
С	0.479711000	-0.128116000	-0.189948000
С	0.476635000	-1.587610000	-0.062519000
Ν	1.558018000	-2.309238000	0.009177000
С	-0.882640000	0.296440000	-0.247088000
С	-1.737083000	-0.871755000	-0.146210000
С	-0.911536000	-2.027968000	-0.031922000
С	-3.133232000	-1.051189000	-0.084542000
С	-3.649595000	-2.337915000	0.066668000
С	-2.821817000	-3.467589000	0.154967000

С	-1.438158000	-3.308773000	0.111347000
Ν	-1.292588000	1.611282000	-0.406486000
С	-0.352789000	2.736270000	-0.122919000
С	-1.277263000	3.950543000	-0.020282000
С	-2.520900000	3.546748000	-0.831028000
С	-2.445224000	2.054292000	-0.809207000
Н	3.906441000	-3.406755000	0.134601000
Н	6.105830000	-2.205549000	0.042403000
Н	6.143686000	0.290530000	-0.193304000
Н	4.002490000	1.567603000	-0.330924000
Н	-3.832664000	-0.210590000	-0.126677000
Н	-4.738388000	-2.465721000	0.117617000
Н	-3.263532000	-4.464427000	0.265224000
Н	-0.759118000	-4.167151000	0.193521000
Н	0.214943000	2.501933000	0.788910000
Н	0.358607000	2.784213000	-0.963666000
Н	-0.794248000	4.863566000	-0.399465000
Н	-1.556353000	4.118687000	1.033638000
Н	-2.477061000	3.896130000	-1.881546000
Н	-3.467797000	3.917780000	-0.404295000
Н	-3.216908000	1.364919000	-1.159058000

Table S18. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized TS from D-1 to D-2

Atom	Х	Y	Z
С	2.692001000	-0.185048000	0.210059000
С	2.695664000	-1.612574000	0.134943000
С	3.923104000	-2.317618000	0.254386000
С	5.108905000	-1.648260000	0.441987000
С	5.111076000	-0.229315000	0.519522000
С	3.938948000	0.478669000	0.407470000
Ν	1.558148000	0.560050000	0.100637000

С	0.449198000	-0.147287000	-0.086916000
С	0.453402000	-1.619638000	-0.147493000
Ν	1.540244000	-2.331976000	-0.043709000
С	-0.883557000	0.269777000	-0.249508000
С	-1.735595000	-0.876751000	-0.370941000
С	-0.925139000	-2.052758000	-0.324715000
С	-3.130063000	-1.013871000	-0.524263000
С	-3.671034000	-2.290682000	-0.627786000
С	-2.865652000	-3.447157000	-0.585967000
С	-1.487209000	-3.326144000	-0.433718000
Ν	-1.301389000	1.628687000	-0.141502000
С	-1.526262000	2.267891000	1.181862000
С	-2.129654000	3.631801000	0.822060000
С	-1.742422000	3.839549000	-0.657540000
С	-1.402188000	2.463383000	-1.110040000
Н	3.880914000	-3.412492000	0.191141000
Н	6.050358000	-2.202647000	0.532849000
Н	6.058191000	0.303508000	0.670309000
Н	3.920368000	1.574277000	0.463994000
Н	-3.778587000	-0.129081000	-0.563097000
Н	-4.756981000	-2.401080000	-0.746575000
Н	-3.328062000	-4.437090000	-0.672679000
Н	-0.839536000	-4.211839000	-0.395566000
Н	-2.181967000	1.613921000	1.777850000
Н	-0.536877000	2.325616000	1.670673000
Н	-1.752519000	4.435149000	1.471698000
Н	-3.227040000	3.595454000	0.919417000
Н	-0.836115000	4.462726000	-0.788602000
Н	-2.533810000	4.285302000	-1.282122000
Η	-1.207196000	2.131735000	-2.137986000

Table S19. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized TS from D-1 to 4gaa (TS1-
endo)

Atom	Х	Y	Z
С	2.520346000	-0.512778000	0.074966000
С	2.348728000	-1.900987000	-0.184600000
С	3.481239000	-2.754131000	-0.197353000
С	4.739795000	-2.252014000	0.041976000
С	4.913335000	-0.868365000	0.300520000
С	3.830545000	-0.019255000	0.314457000
Ν	1.464327000	0.360979000	0.126313000
С	0.283944000	-0.179031000	-0.082224000
С	0.119125000	-1.603296000	-0.349406000
Ν	1.106475000	-2.447097000	-0.404437000
С	-1.029822000	0.419776000	-0.076246000
С	-2.000601000	-0.631121000	-0.376326000
С	-1.309320000	-1.860572000	-0.521881000
С	-3.404375000	-0.639195000	-0.440997000
С	-4.064406000	-1.848088000	-0.658924000
С	-3.365488000	-3.056087000	-0.809663000
С	-1.974750000	-3.064704000	-0.736991000
Ν	-1.256409000	1.766606000	-0.033692000
С	-2.492631000	2.440063000	-0.507543000
С	-2.086218000	3.917624000	-0.512868000
С	-0.987417000	4.006754000	0.562359000
С	-0.428250000	2.610015000	0.582161000
Н	3.309915000	-3.819000000	-0.397404000
Н	5.610562000	-2.918052000	0.034173000
Н	5.918983000	-0.474250000	0.490951000
Н	3.945006000	1.054564000	0.509798000
Н	-3.994930000	0.273860000	-0.316689000
Н	-5.160425000	-1.851691000	-0.708767000

Н	-3.916623000	-3.988566000	-0.977413000
Н	-1.399267000	-3.994211000	-0.832517000
Н	-2.756322000	2.042345000	-1.501455000
Н	-3.328329000	2.247681000	0.185218000
Н	-2.944636000	4.577977000	-0.314846000
Н	-1.664716000	4.181195000	-1.498140000
Н	-1.409080000	4.243360000	1.560269000
Н	-0.220020000	4.765024000	0.337324000
Н	0.626394000	2.338491000	0.663322000
С	-0.804263000	0.407276000	2.482827000
С	-1.979914000	1.274502000	2.787047000
С	-0.545818000	1.720525000	2.647024000
Н	-2.446700000	1.204387000	3.785848000
Н	-2.689931000	1.527704000	1.981558000
С	-0.337409000	-0.949226000	2.703436000
С	-1.240394000	-2.023062000	2.656343000
С	1.025342000	-1.210256000	2.933261000
С	-0.787880000	-3.331010000	2.828350000
С	1.473392000	-2.516562000	3.101261000
С	0.568814000	-3.581569000	3.043259000
Н	-2.302152000	-1.817140000	2.462313000
Н	1.731606000	-0.371761000	2.973747000
Н	-1.500155000	-4.164288000	2.781502000
Н	2.540485000	-2.709211000	3.270390000
Н	0.924041000	-4.611578000	3.169831000
С	0.382090000	2.638407000	3.310625000
С	-0.101539000	3.641514000	4.162061000
С	1.764908000	2.542808000	3.082598000
С	0.783324000	4.515785000	4.794572000
С	2.644616000	3.419702000	3.713291000
С	2.157503000	4.407850000	4.573913000

Н	-1.183645000	3.725084000	4.329181000
Н	2.137168000	1.778020000	2.385548000
Н	0.394192000	5.292674000	5.464235000
Н	3.722685000	3.334554000	3.528654000
Н	2.851241000	5.098381000	5.068539000

Table S20. Cartesian	coordinates (in	n Å)) of M11/cc-p	VDZ oj	ptimized 4g	aa cycloadduct
----------------------	-----------------	------	---------------	--------	-------------	----------------

Atom	Х	Y	Z
С	2.702428000	-0.569154000	-0.178022000
С	2.512094000	-1.882859000	-0.688422000
С	3.643747000	-2.650447000	-1.065716000
С	4.909637000	-2.127033000	-0.944536000
С	5.098109000	-0.815069000	-0.440435000
С	4.017183000	-0.052057000	-0.063720000
Ν	1.640322000	0.214202000	0.217693000
С	0.475460000	-0.337690000	0.078128000
С	0.283646000	-1.654349000	-0.460437000
Ν	1.259486000	-2.431199000	-0.834651000
С	-0.865025000	0.297977000	0.445813000
С	-1.842733000	-0.787361000	-0.003192000
С	-1.164815000	-1.915768000	-0.494394000
С	-3.231774000	-0.821059000	0.111720000
С	-3.916455000	-1.968125000	-0.300616000
С	-3.231345000	-3.078874000	-0.807629000
С	-1.840595000	-3.063674000	-0.901638000
Ν	-0.963871000	1.611436000	-0.173877000
С	-2.147666000	2.092799000	-0.884113000
С	-1.890100000	3.601335000	-0.927508000
С	-1.309296000	3.882382000	0.467268000
С	-0.464024000	2.631785000	0.764505000
Н	3.467155000	-3.660344000	-1.454403000

Н	5.780476000	-2.724119000	-1.239574000
Н	6.112798000	-0.409764000	-0.350864000
Н	4.136378000	0.964754000	0.329543000
Н	-3.789990000	0.025014000	0.528544000
Н	-5.009589000	-1.999517000	-0.217992000
Н	-3.792559000	-3.966839000	-1.121481000
Н	-1.280111000	-3.927726000	-1.278604000
Н	-2.221179000	1.638184000	-1.889320000
Н	-3.106919000	1.892038000	-0.358159000
Н	-2.802127000	4.181069000	-1.146547000
Н	-1.138520000	3.825251000	-1.706545000
Н	-2.129477000	3.958808000	1.206363000
Н	-0.721762000	4.813773000	0.515603000
Н	0.612968000	2.820273000	0.586034000
С	-0.910948000	0.547620000	1.974529000
С	-1.997779000	1.489790000	2.428253000
С	-0.612510000	2.023664000	2.170827000
Н	-2.315326000	1.371486000	3.470994000
Н	-2.795530000	1.780004000	1.734406000
С	-0.496224000	-0.575639000	2.878081000
С	-1.482317000	-1.433588000	3.382686000
С	0.846063000	-0.835335000	3.185401000
С	-1.139528000	-2.528585000	4.175828000
С	1.190734000	-1.927244000	3.983599000
С	0.200304000	-2.777466000	4.478434000
Н	-2.535427000	-1.231447000	3.143109000
Н	1.625412000	-0.171641000	2.793583000
Н	-1.923909000	-3.191586000	4.560955000
Н	2.245013000	-2.115353000	4.220959000
Н	0.473779000	-3.636632000	5.103038000
С	0.261136000	2.555609000	3.262215000

С	-0.272518000	3.100024000	4.433689000
С	1.655068000	2.534967000	3.098825000
С	0.566478000	3.606949000	5.429570000
С	2.493196000	3.040925000	4.090382000
С	1.950415000	3.578870000	5.260941000
Н	-1.361378000	3.134297000	4.566442000
Н	2.074807000	2.094802000	2.182471000
Н	0.132284000	4.030456000	6.343539000
Н	3.581094000	3.012412000	3.951597000
Н	2.609690000	3.976074000	6.042363000

Table S21. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized TS from D-1 to 4gaa'(TS2-exo)

Atom	Х	Y	Z
С	2.120401000	-0.715195000	0.299704000
С	1.811455000	-2.100425000	0.406942000
С	2.856259000	-3.036549000	0.616927000
С	4.162745000	-2.618229000	0.714666000
С	4.474733000	-1.238819000	0.600969000
С	3.479371000	-0.311394000	0.397412000
Ν	1.155917000	0.239719000	0.109757000
С	-0.078632000	-0.217129000	0.054123000
С	-0.377182000	-1.642480000	0.111612000
Ν	0.522666000	-2.563364000	0.289472000
С	-1.329890000	0.483295000	-0.131878000
С	-2.382767000	-0.523412000	-0.307990000
С	-1.812271000	-1.807135000	-0.104779000
С	-3.762999000	-0.450960000	-0.563749000
С	-4.513404000	-1.626748000	-0.602633000
С	-3.934109000	-2.883185000	-0.383233000
С	-2.566739000	-2.975281000	-0.132769000
Ν	-1.447313000	1.834534000	-0.247270000

С	-2.703359000	2.497881000	-0.643760000
С	-2.372939000	3.999593000	-0.631223000
С	-0.960579000	4.112498000	-0.013425000
С	-0.586349000	2.694353000	0.308607000
Н	2.578696000	-4.095048000	0.693886000
Н	4.965295000	-3.347063000	0.877549000
Н	5.518646000	-0.911003000	0.677151000
Н	3.699877000	0.759423000	0.307440000
Н	-4.276765000	0.496919000	-0.740926000
Н	-5.588869000	-1.558305000	-0.808603000
Н	-4.554089000	-3.786624000	-0.414745000
Н	-2.076042000	-3.941241000	0.040772000
Н	-3.014632000	2.119724000	-1.631655000
Н	-3.481859000	2.234821000	0.094928000
Н	-3.119146000	4.552115000	-0.038597000
Н	-2.389932000	4.406249000	-1.654562000
Н	-0.941552000	4.743066000	0.892278000
Н	-0.230342000	4.540551000	-0.723489000
Н	0.440822000	2.355133000	0.467892000
С	-1.099336000	0.854431000	2.486147000
С	-1.009222000	2.206147000	2.434984000
С	0.222212000	1.438668000	2.864214000
С	-1.861815000	-0.325047000	2.839355000
С	-3.265351000	-0.373407000	2.762665000
С	-1.165434000	-1.476095000	3.245438000
С	-3.948362000	-1.536526000	3.101576000
С	-1.853026000	-2.639087000	3.588531000
С	-3.246505000	-2.673166000	3.517072000
Н	-3.818383000	0.510868000	2.421046000
Н	-0.067410000	-1.442226000	3.281993000
Н	-5.043157000	-1.562710000	3.033413000

Н	-1.295471000	-3.528843000	3.906205000
Н	-3.789902000	-3.588707000	3.780682000
Н	0.503362000	1.415017000	3.933820000
Н	1.077546000	1.377514000	2.169265000
С	-1.698123000	3.399471000	2.937992000
С	-3.081979000	3.581154000	2.790382000
С	-0.948604000	4.402820000	3.570201000
С	-3.698087000	4.739698000	3.261169000
С	-1.567648000	5.557738000	4.047952000
С	-2.943663000	5.732801000	3.890637000
Н	-3.684103000	2.803424000	2.303844000
Н	0.134799000	4.263764000	3.681965000
Н	-4.780720000	4.867046000	3.138071000
Н	-0.968418000	6.331591000	4.543437000
Н	-3.430274000	6.643456000	4.259996000

Table S22. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized 4gaa' cycloadduct

Atom	Х	Y	Z
С	2.280576000	-1.313428000	0.681717000
С	1.757230000	-2.565453000	0.258001000
С	2.626985000	-3.681480000	0.154571000
С	3.961779000	-3.551112000	0.459028000
С	4.484158000	-2.300843000	0.878819000
С	3.660706000	-1.204435000	0.987727000
Ν	1.483141000	-0.198343000	0.803056000
С	0.233453000	-0.380782000	0.504083000
С	-0.286999000	-1.642127000	0.059414000
Ν	0.431548000	-2.722362000	-0.064321000
С	-0.876798000	0.676226000	0.574711000
С	-2.071243000	-0.128861000	0.018923000
С	-1.716296000	-1.462855000	-0.234357000

С	-3.393157000	0.262869000	-0.180143000
С	-4.323584000	-0.672642000	-0.640686000
С	-3.952165000	-1.998380000	-0.893860000
С	-2.635954000	-2.406200000	-0.686780000
Ν	-0.465107000	1.909005000	-0.096496000
С	-0.746137000	2.040046000	-1.522840000
С	-2.063868000	2.847089000	-1.645845000
С	-2.263498000	3.514338000	-0.264285000
С	-1.024091000	3.091536000	0.572304000
Н	2.196537000	-4.634685000	-0.174685000
Н	4.629584000	-4.416859000	0.376779000
Н	5.550534000	-2.211784000	1.117525000
Н	4.036366000	-0.225952000	1.309491000
Н	-3.719540000	1.285344000	0.037779000
Н	-5.363537000	-0.362164000	-0.798478000
Н	-4.700591000	-2.715383000	-1.251183000
Н	-2.316790000	-3.439316000	-0.870056000
Н	0.084272000	2.588789000	-2.005972000
Н	-0.802524000	1.042459000	-1.994767000
Н	-2.910022000	2.184481000	-1.895215000
Н	-1.992123000	3.596563000	-2.451870000
Н	-3.197226000	3.189272000	0.230946000
Н	-2.327527000	4.610358000	-0.363872000
Н	-0.269971000	3.905221000	0.528934000
С	-1.115753000	1.124968000	2.035680000
С	-1.222920000	2.653336000	2.022902000
С	0.010530000	1.958985000	2.575223000
С	-1.852850000	0.165531000	2.920407000
С	-3.248175000	0.181633000	3.035661000
С	-1.125030000	-0.812017000	3.607788000
С	-3.903145000	-0.764014000	3.822747000

С	-1.778666000	-1.764159000	4.392602000
С	-3.169499000	-1.741512000	4.500384000
Н	-3.820671000	0.959330000	2.513368000
Н	-0.028794000	-0.817711000	3.524574000
Н	-4.996111000	-0.737001000	3.911415000
Н	-1.197069000	-2.526707000	4.924842000
Н	-3.685702000	-2.486042000	5.118776000
Н	0.120918000	1.974542000	3.666635000
Н	0.934701000	2.009782000	1.990660000
С	-2.045357000	3.477110000	2.967828000
С	-2.341390000	3.031016000	4.266813000
С	-2.466417000	4.765403000	2.608130000
С	-3.066341000	3.826453000	5.152312000
С	-3.187074000	5.565880000	3.496510000
С	-3.501394000	5.097408000	4.770448000
Н	-1.997322000	2.045093000	4.600008000
Н	-2.212925000	5.168309000	1.622676000
Н	-3.288885000	3.447591000	6.157528000
Н	-3.500131000	6.569790000	3.184612000
Н	-4.070997000	5.722449000	5.468629000

Table S23. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized TS from D-2 to 4gaa''(TS3-exo)

Atom	Х	Y	Z
С	2.732014000	0.237834000	0.941144000
С	2.681537000	-1.146820000	1.272481000
С	3.858824000	-1.800471000	1.722251000
С	5.042038000	-1.110561000	1.837423000
С	5.095486000	0.269173000	1.506459000
С	3.969503000	0.926358000	1.070171000

Ν	1.632694000	0.925609000	0.504039000
С	0.527555000	0.216413000	0.410055000
С	0.490620000	-1.203446000	0.737019000
Ν	1.523138000	-1.872858000	1.163211000
С	-0.777471000	0.582991000	-0.088740000
С	-1.634830000	-0.599979000	-0.002128000
С	-0.863010000	-1.688071000	0.481994000
С	-2.991031000	-0.822106000	-0.286663000
С	-3.524385000	-2.099266000	-0.099576000
С	-2.742131000	-3.169083000	0.357296000
С	-1.396568000	-2.961189000	0.655305000
Ν	-1.157644000	1.854329000	-0.422544000
С	-0.543240000	3.091063000	0.134549000
С	-0.907717000	4.153857000	-0.904542000
С	-2.210818000	3.620091000	-1.524048000
С	-2.029256000	2.136982000	-1.385751000
Н	3.782373000	-2.866623000	1.968653000
Н	5.947563000	-1.622438000	2.183967000
Н	6.043626000	0.812367000	1.600019000
Н	3.988546000	1.991485000	0.809041000
Н	-3.653345000	-0.019616000	-0.628728000
Н	-4.586645000	-2.265562000	-0.318598000
Η	-3.190853000	-4.161222000	0.482739000
Н	-0.755985000	-3.773225000	1.022569000
Н	-1.026550000	3.281443000	1.110968000
Н	0.533444000	2.933997000	0.291136000
Η	-0.123482000	4.204814000	-1.681015000
Η	-1.017128000	5.151387000	-0.452503000
Η	-2.359121000	3.913667000	-2.577377000
Η	-3.104300000	3.944575000	-0.955320000
Н	-2.772712000	1.400361000	-1.693224000

С	0.610955000	1.464502000	-2.711203000
С	-0.199206000	0.220711000	-2.594404000
С	-0.838378000	1.298642000	-3.097255000
Н	0.857745000	2.024778000	-1.791113000
Н	1.386862000	1.522985000	-3.495551000
С	-0.035609000	-1.218105000	-2.604284000
С	-1.098604000	-2.071741000	-2.947332000
С	1.196476000	-1.778301000	-2.232793000
С	-0.927766000	-3.451906000	-2.923095000
С	1.365218000	-3.162232000	-2.211816000
С	0.304094000	-4.001971000	-2.554065000
Н	-2.067586000	-1.640210000	-3.225223000
Н	2.019783000	-1.108424000	-1.944807000
Н	-1.765612000	-4.108809000	-3.187549000
Н	2.331192000	-3.588563000	-1.913709000
Н	0.435554000	-5.090753000	-2.531585000
С	-1.717490000	1.722954000	-4.187554000
С	-1.359594000	2.826178000	-4.976661000
С	-2.930608000	1.065739000	-4.447489000
С	-2.184131000	3.245859000	-6.020390000
С	-3.754739000	1.490473000	-5.488039000
С	-3.382898000	2.578880000	-6.281314000
Н	-0.419354000	3.351232000	-4.761676000
Н	-3.232566000	0.215378000	-3.820924000
Н	-1.889195000	4.105966000	-6.633886000
Н	-4.698487000	0.966288000	-5.681805000
Н	-4.032371000	2.911260000	-7.099905000

Table S24. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized 4gaa" cycloadduct

Atom	Х	Y	Z
С	2.918144000	0.023869000	0.609658000

С	2.773178000	-1.295453000	1.116204000
С	3.905282000	-1.962438000	1.648876000
С	5.129398000	-1.335804000	1.678424000
С	5.272776000	-0.017435000	1.176234000
С	4.189234000	0.648834000	0.651091000
Ν	1.855446000	0.710339000	0.063717000
С	0.720161000	0.080544000	0.083379000
С	0.576222000	-1.256041000	0.610508000
Ν	1.562842000	-1.945606000	1.106038000
С	-0.592897000	0.524357000	-0.557963000
С	-1.533776000	-0.591148000	-0.101553000
С	-0.835464000	-1.651677000	0.485119000
С	-2.912781000	-0.662836000	-0.259107000
С	-3.568759000	-1.832982000	0.133477000
С	-2.857999000	-2.910705000	0.679917000
С	-1.479114000	-2.825008000	0.873893000
Ν	-1.103088000	1.858052000	-0.300377000
С	-0.351543000	2.865665000	0.454076000
С	-1.061580000	4.160494000	0.053181000
С	-1.330884000	3.941289000	-1.442474000
С	-1.684300000	2.447426000	-1.521539000
Η	3.763607000	-2.980016000	2.031608000
Н	6.001596000	-1.855588000	2.092268000
Н	6.254292000	0.470272000	1.206329000
Н	4.272444000	1.667092000	0.253192000
Н	-3.472891000	0.180076000	-0.685319000
Η	-4.655975000	-1.911898000	0.010809000
Н	-3.395254000	-3.820673000	0.972110000
Н	-0.911110000	-3.647276000	1.325737000
Н	-0.404673000	2.666848000	1.541208000
Н	0.720794000	2.905485000	0.172228000

Н	-0.455454000	5.057942000	0.261076000
Н	-2.016368000	4.249935000	0.603501000
Н	-0.407258000	4.132148000	-2.021194000
Н	-2.127208000	4.588254000	-1.845737000
Н	-2.787253000	2.317215000	-1.533035000
С	0.410217000	1.586117000	-2.657511000
С	-0.400447000	0.445024000	-2.106194000
С	-1.094706000	1.659858000	-2.699251000
Н	0.944560000	2.231419000	-1.949047000
Н	0.939708000	1.382269000	-3.595220000
С	-0.281475000	-0.920912000	-2.708492000
С	-1.403666000	-1.675438000	-3.071260000
С	0.987101000	-1.507807000	-2.797924000
С	-1.260182000	-2.994348000	-3.502280000
С	1.133480000	-2.828168000	-3.225849000
С	0.007606000	-3.575594000	-3.574280000
Н	-2.400941000	-1.225837000	-3.000198000
Н	1.869082000	-0.915783000	-2.513903000
Н	-2.147868000	-3.575475000	-3.780432000
Н	2.132865000	-3.276378000	-3.284009000
Н	0.118214000	-4.614927000	-3.906960000
С	-1.854107000	1.629063000	-3.990202000
С	-1.268576000	2.036073000	-5.193182000
С	-3.190363000	1.201515000	-4.007345000
С	-1.993314000	2.005931000	-6.387134000
С	-3.916441000	1.170110000	-5.196004000
С	-3.317905000	1.571261000	-6.393197000
Н	-0.230217000	2.390139000	-5.195810000
Н	-3.668004000	0.877799000	-3.072069000
Н	-1.515992000	2.328882000	-7.320520000
Н	-4.958019000	0.826331000	-5.188974000

Н -3.887	108000	1.545736000
----------	--------	-------------

-7.330235000

Table S25. (Cartesian coordinates (in Å) of	M11/cc-pVDZ optimized TS	S from D-2 to 4gaa "
	[]	Γ S 4-endo)	

Atom	Х	Y	Z
С	-4.446265000	-1.405247000	-0.202992000
С	-3.897648000	-2.697932000	0.022986000
С	-4.765025000	-3.816481000	0.124806000
С	-6.125931000	-3.657700000	0.012029000
С	-6.675907000	-2.368779000	-0.216887000
С	-5.855796000	-1.270480000	-0.326256000
Ν	-3.668009000	-0.282023000	-0.274638000
С	-2.379829000	-0.481482000	-0.117436000
С	-1.825569000	-1.811299000	0.090561000
Ν	-2.546861000	-2.892872000	0.159740000
С	-1.284681000	0.466674000	-0.031364000
С	-0.043372000	-0.307857000	0.060359000
С	-0.373357000	-1.682670000	0.178657000
С	1.315464000	0.044293000	-0.002806000
С	2.283244000	-0.954746000	0.109678000
С	1.939040000	-2.303638000	0.279671000
С	0.596045000	-2.673925000	0.300942000
Ν	-1.413334000	1.814419000	-0.186510000
С	-2.690525000	2.432671000	-0.609882000
С	-2.399567000	3.941228000	-0.635049000
С	-1.012471000	4.114505000	0.024000000
С	-0.603982000	2.713710000	0.375473000
Н	-4.308117000	-4.797634000	0.302926000
Н	-6.791017000	-4.525198000	0.098072000
Н	-7.762821000	-2.251480000	-0.305910000
Н	-6.257661000	-0.264757000	-0.499426000
Н	1.641275000	1.076921000	-0.166315000

Н	3.342214000	-0.672096000	0.058906000
Н	2.725107000	-3.061521000	0.374283000
Н	0.289521000	-3.723151000	0.397306000
Н	-2.987887000	2.009395000	-1.582602000
Н	-3.466491000	2.144203000	0.119247000
Н	-3.179064000	4.493206000	-0.085879000
Н	-2.390896000	4.316079000	-1.670846000
Н	-1.042456000	4.752060000	0.925032000
Н	-0.275023000	4.561832000	-0.666488000
Н	0.425604000	2.439625000	0.614062000
С	-1.191607000	0.865250000	2.539960000
С	-1.056917000	2.213217000	2.508078000
С	0.151786000	1.400161000	2.910756000
С	-1.993246000	-0.281437000	2.917315000
С	-3.397517000	-0.281389000	2.827669000
С	-1.340895000	-1.443091000	3.363333000
С	-4.124813000	-1.412869000	3.182415000
С	-2.073901000	-2.572663000	3.725273000
С	-3.466328000	-2.562521000	3.632531000
Н	-3.913310000	0.610442000	2.449225000
Н	-0.243884000	-1.444960000	3.416039000
Н	-5.219061000	-1.406505000	3.092544000
Н	-1.552284000	-3.472821000	4.073261000
Н	-4.043775000	-3.454473000	3.904918000
Н	0.449980000	1.350914000	3.974743000
Н	1.003872000	1.317408000	2.211218000
С	-1.702507000	3.429778000	3.007624000
С	-3.073410000	3.669763000	2.824046000
С	-0.926605000	4.399341000	3.659886000
С	-3.652189000	4.851262000	3.284116000
С	-1.509382000	5.577458000	4.126683000

С	-2.872902000	5.809761000	3.937115000
Н	-3.691465000	2.921746000	2.311380000
Н	0.147195000	4.216081000	3.796261000
Н	-4.724557000	5.025246000	3.132662000
Н	-0.890835000	6.324775000	4.638934000
Н	-3.329765000	6.739153000	4.297709000

 Table S26. Cartesian coordinates (in Å) of M11/cc-pVDZ optimized 4gaa''' cycloadduct

Atom	Х	Y	Z
С	-4.303541000	-0.834492000	-0.078332000
С	-4.046082000	-2.221652000	-0.259431000
С	-5.120901000	-3.090633000	-0.577181000
С	-6.397614000	-2.596646000	-0.708369000
С	-6.653911000	-1.213677000	-0.527530000
С	-5.628079000	-0.350143000	-0.218740000
Ν	-3.298580000	0.052845000	0.239169000
С	-2.120991000	-0.477301000	0.355141000
С	-1.861363000	-1.875136000	0.157324000
Ν	-2.781640000	-2.747343000	-0.139256000
С	-0.830205000	0.269704000	0.695900000
С	0.194344000	-0.863800000	0.636512000
С	-0.418440000	-2.094005000	0.346427000
С	1.562374000	-0.828415000	0.904071000
С	2.293859000	-2.018333000	0.843998000
С	1.675010000	-3.235519000	0.534797000
С	0.303576000	-3.283895000	0.289756000
Ν	-0.660565000	1.382164000	-0.227277000
С	0.584801000	1.691936000	-0.926159000
С	0.326563000	3.127077000	-1.392554000
С	-0.394501000	3.750338000	-0.186466000
С	-1.253562000	2.596514000	0.359753000
Н	-4.892523000	-4.154523000	-0.711973000
---	--------------	--------------	--------------
Н	-7.224812000	-3.273006000	-0.954195000
Н	-7.676652000	-0.833513000	-0.634422000
Н	-5.798009000	0.723329000	-0.072971000
Н	2.068599000	0.106588000	1.168540000
Н	3.371047000	-1.996879000	1.048382000
Н	2.271903000	-4.154270000	0.495668000
Н	-0.207661000	-4.226996000	0.062374000
Н	1.490402000	1.663429000	-0.280829000
Н	0.755416000	0.991168000	-1.764272000
Н	-0.343560000	3.113609000	-2.271251000
Н	1.253046000	3.657039000	-1.668980000
Н	-0.989900000	4.639943000	-0.451605000
Н	0.344912000	4.053292000	0.579568000
Н	-2.310043000	2.678703000	0.037297000
С	-0.939820000	0.906658000	2.104904000
С	-1.233738000	2.385848000	1.880588000
С	0.119412000	1.931283000	2.390349000
С	-1.495240000	0.055274000	3.205523000
С	-2.875229000	-0.058888000	3.419950000
С	-0.617696000	-0.668846000	4.020601000
С	-3.366025000	-0.881572000	4.433593000
С	-1.107353000	-1.495134000	5.033525000
С	-2.483186000	-1.602071000	5.241634000
Н	-3.561720000	0.517736000	2.786776000
Н	0.464669000	-0.575618000	3.854799000
Н	-4.447900000	-0.957414000	4.598220000
Н	-0.409271000	-2.057667000	5.665569000
Н	-2.870149000	-2.247778000	6.039479000
Н	0.345435000	2.121264000	3.446170000
Н	0.974728000	2.034316000	1.712202000

С	-2.136794000	3.204976000	2.748278000
С	-2.156712000	3.046361000	4.144273000
С	-2.969608000	4.182119000	2.185387000
С	-2.993972000	3.822535000	4.942615000
С	-3.806187000	4.963733000	2.985704000
С	-3.826347000	4.785671000	4.367654000
Н	-1.511886000	2.296790000	4.620110000
Н	-2.965899000	4.351473000	1.102530000
Н	-2.993409000	3.673818000	6.029497000
Н	-4.445409000	5.722807000	2.518155000
Н	-4.483269000	5.397845000	4.997117000

6. References

Data for (*E*)-2,3-Diphenylacrylaldehyde (5): (a) K. Alder, J. Haydn, K. Heimbach, K. Neufang, *Liebigs Chem.*, 1954, 586, 128; (b) G. A. Molander, T. Fumagalli, *J. Org. Chem.*, 2006, 71, 5743; (c) R. J. Kulawiec, J. H. Kim, *J. Org. Chem.*, 1996, 61, 7656.