Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information For

Combinatorial Nickel-Catalyzed Directly Difluoromethylation of Aryl Boronic Acids

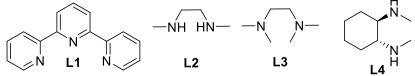
Jie Sheng, Hui-Qi Ni, Kang-Jie Bian, Yan Li, Yi-Ning Wang, Xi-Sheng Wang *

Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China

Tabel of Contents

General Information	S2
Tables of the Optimization of Reaction Conditions	S3
Ligand Screening	S3
Ni Source Screening	S4
Solvent Screening	S4
Optimization the Amount of Ligands	S5
Optimization of N/P Ligands Combination	S5
Preparation of Aryl Boronic Acids	S7
General Procedure for Difluoromethylation of Aryl Boronic Acids	S7
Mechanistic Studies	S13
References	S14
¹ H, ¹⁹ F, and ¹³ C NMR Spectra	S15

General Information:


NMR spectra were recorded on Bruker-400 (400 MHz for ¹H; 101 MHz for ¹³C and 376 MHz for ¹⁹F {¹H, ¹³C decoupled}) instruments internally referenced to SiMe₄ signal. High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight) or Micromass GCT using EI (electron impact). Infrared spectra were recorded on a Thermo Scientific Nicolet iS10 as either neat films or solids. 1,4-Dioxane was distilled from sodium immediately and degassed before use. Ni(OTf)₂, P(4-OMePh)₃ were obtained from Boka chemical and used as received. Bpy, phen were obtained from Energy and used as received. Dtbpy was obtained from Macklin and used as received. PCy₃ was obtained from J&K and used as received. PPh₃ and K₂CO₃ were purchased from Sinopharm and used as received. BrCF₂H was obtained from Shanghai Qinba Chemical.

Tables of the Optimization of Reaction Conditions

Table S1. Ligands Screening^a

Ph ⁄	B(OH ₂) 1a	+ BrCF ₂ H 2a	Ni(OTf) ₂ (5 mol%) Ligand (x mol%) K_2CO_3 (3.0 equiv) 1,4-dioxane, 80 °C, 24 h	Ph 3a
	Entry		ligand (x mol%)	Yield (%) ^b
	1		No	0
	2		phen (5)	12
	3		bpy (5)	7
	4		dtbpy (5)	21
	5		dmbpy (5)	16
	6		dombpy (5)	10
	7		pyridine (10)	3
	8		L1 (5)	9
	9		L2 (5)	13
	10		L3 (5)	7
	11		L4 (5)	3
	12		PPh ₃ (10)	trace
	13		PCy ₃ (10)	0
	14		dppp(5)	trace
	15		dppe (5)	trace
	16		bpy (5)/PPh ₃ (10)	32
	17		dtbpy(5)/PPh ₃ (10)	62(72)
	18		dtbpy(5)/dpph(5)	59
	19		dtbpy(5)/dppe(5)	21
	20		dtbpy(5)/dppb(5)	53
	21		dtbpy(5)/P <i>t</i> -Bu ₃ (10)	42
	22		bpy(5)/P(4-OMePh) ₃ (10)	45
	23		phen(5)/PCy ₃ (10)	44

^{*a*} Unless otherwise noted, the reaction conditions were as follows: **1a** (2.0 equiv), **2** (0.2 mmol, 1.0 equiv), Ni(OTf)₂ (5 mol%), ligands, K₂CO₃ (3.0 equiv), 1,4-dioxane (2.0 mL), 80 $^{\circ}$ C, 24 h, N₂, 25 mL tube. ^{*b*} Yields determined by ¹⁹F NMR using PhOCF₃ as an internal standard; numbers in parentheses were isolated yields

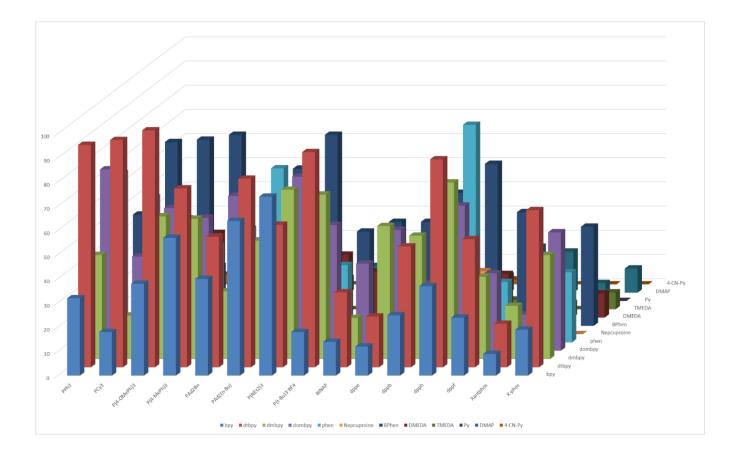
B(OH) ₂ +		F F -	[Ni] (5 r dtbpy (5 PPh ₃ (10	F F H	
Ph	1a		K ₂ CO ₃ (3. 1,4-dioxane,		3a
Entry	[Ni]	Yield (%) ^t	Dentry	[Ni]	Yield (%) ^b
1	No	0	8	NiCl ₂ (dppe)	36
2	NiBr ₂	47	9	NiCl ₂ (dppf)	10
3	Nil ₂	26	10	Ni(OTf) ₂	82 (94) ^c
4	NiCl ₂	0	11	Ni(NO ₃) ₂ •6H ₂ O	17
5	Ni(acac) ₂	0	12	NiCl ₂ (dme)	6
6	NiCl ₂ (PPh ₃) ₂	trace	13	Ni(OAc) ₂	11
7	NiCl ₂ (dppp)	50			

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (2.0 equiv), **2** (0.2 mmol, 1.0 equiv), [Ni] (5 mol%), bpy (5 mol%), P(4-OMePh)₃ (10 mol%), K₂CO₃ (3.0 equiv), 1,4-dioxane (2.0 mL), 80 °C, 24 h, N₂. ^b Yields determined by ¹⁹FNMR using PhOCF₃ as an internal standard; numbers in parentheses were isolated yields. ^c Reaction was performed in 5 mL sealed tube

Table S3 Solvent Screening^a

	B(OH) ₂	F_F	Ni(OTf) ₂ (5 mol%) dtbpy (5 mol%) PPh ₃ (10 mol%)	F F
Ph′	+ 1a	Br H	K ₂ CO ₃ (3.0 equiv) Ph 4-dioxane, 80 °C, 24 h	Ja 3a
-	entry	solven	yield (%) ^b	
	1	THF	47	
	2	DMF	21	
	3	DCM	0	
	4	CHCl ₃	12	
	5	CH3CN	I 3	
	6	Toluene	e 0	
_	7	EA	6	

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (2.0 equiv), **2** (0.2 mmol, 1.0 equiv), NiOTf₂ (5 mol%), dtbpy (5 mol%), PPh₃ (10 mol%), K₂CO₃ (3.0 equiv), solvent (2.0 mL), 80 °C, 24 h, N₂, 5 mL sealed tube. ^b Yields determined by ¹⁹FNMR using PhOCF₃ as an internal standard.


Ph	B(OH) ₂ F F + Br H	dtbpy (PPh ₃ (y K ₂ CO ₃ ((5 mol%) x mol%) y mol%) 3.0 equiv) Ph
	1a 2	1,4-dioxane	e, 80 °C, 24 h ^{Pri 3} a
entry	Х	У	yield (%) ^b
1	5	0	22
2	10	0	19
3	15	0	26
4	0	5	0
5	0	10	0
6	0	20	0
7	5	5	70
8	5	15	86 (94)
9	10	10	81

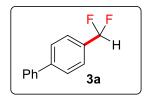
^{*a*} Unless otherwise noted, the reaction conditions were as follows: **1a** (2.0 equiv), **2** (0.2 mmol, 1.0 equiv), Ni(OTf)₂ (5 mol%), bpy (x mol%), PPh₃ (y mol%), K₂CO₃ (3.0 equiv), 1,4-dioxane (2 mL), 80 °C, 24 h, N₂, 5 mL sealed tube. ^{*b*} Yields determined by ¹⁹FNMR using PhOCF₃ as an internal standard; numbers in parentheses were isolated yields.

Table S5 Optimization of N, P ligands combination^{a, b}

			Ph	B(OH) ₂ +	Br H	Ni(OTf) ₂ (5 r N ligands (x <u>P ligands (y</u> K ₂ CO ₃ (3.0 c 1,4-dioxane, 80	mol%) mol%)	F F 5a				
N, P ligand(mol%)	bpy(5)	dtbpy(5)	dmbpy(5)	dombpy(5)	phen(5)			DMEDA(5)	TMEDA(5)	Py(10)	DMAP(10)	4-CN-Py(10)
PPh ₃ (10)	32	82(94)	43	75	70	0	46	17	1	0	8	3
PCy ₃ (10)	18	83(94)	18	39	60	0	76	41	2	0	11	4
P(4-OMePh) ₃ (10)	38	88(98)	59	59	29	2	77	35	0	0	12	3
P(4-MePh) ₃ (10)	57	74	58	55	40	0	79	26	0	0	14	1
PAd ₂ Bn(10)	40	54	28	64	47	0	44	18	3	1	7	0
PAd ₂ (<i>n</i> -Bu)(10)	64	78	49	47	72	3	65	21	0	2	6	0
P(NEt ₂) ₃ (10)	74	59	70	72	61	1	79	26	0	0	11	0
P(<i>t</i> -Bu) ₃ ●BF ₄ (10)	18	82(89)	68	52	32	0	39	19	0	0	10	2
BINAP	14	31	17	36	6	0	43	9	0	0	18	0
dppe(5)	12	21	55	50	31	10	43	1	0	0	7	0
dppb(5)	25	50	51	28	24	9	55	8	2	2	7	2
dpph(5)	37	86(90)	73	60	90(95)	26	67	18	4	3	19	6
dppf(5)	24	53	34	32	25	1	47	4	1	0	17	0
Xantphos(5)	9	18	22	15	9	0	18	6	3	0	4	0
X-phos(10)	19	65	43	49	29	0	41	10	7	0	10	0

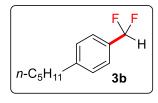
Unless otherwise noted, the reaction conditions were as follows: **1** (2.0 equiv), **4** (1.0 equiv), Ni(OTf)₂ (5 mol%), N ligand (x mol%), P ligand (y mol%), K₂CO₃ (3.0 equiv), 1,4-dioxane (2 mL), 80 °C, 24 h, N₂, 5 mL sealed tube. Yields determined by ¹⁹FNMR using PhOCF₃ as an internal standard; numbers in parentheses were isolated yields.

Preparation of Aryl boronic acids

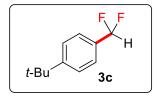

Boronic acids $1n^1$, $1x^2$ and 6^3 were synthesized via known methods. Compound 4^4 was synthesized via known method.

Preparation of BrCF₂H Stock Solution⁵

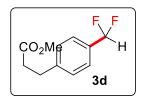
Dry 1, 4-dioxane (~23 mL) was added to a Schlenk graduated cylinder under nitrogen. The vessel and solvent were weighed. Next, BrCF₂H was bubbled through the 1,4-dioxane solution using a long needle until the total volume of the solution reached approximately 25 mL. The vessel was sealed weighed again. The concentration of the BrCF₂H stock solution was calculated based on the mass of BrCF₂H added and the total volume of the solution (~1.0 mol/L).


General Procedure for Nickel-Catalyzed Cross-Coupling between Aryl boronic Acids and Difluorobromomethane

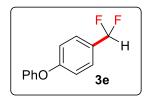
Ni(OTf)₂ (5 mol %, 0.01 mmol, 3.6 mg), N ligand (5 mol%, 0.01 mmol), P ligand (5 mol%, 0.01 mmol for biphosphine ligands, or 10 mol%, 0.02 mmol for monophosphine ligands), phenylboronic acid **1** (2.0 equiv, 0.4 mmol) and K₂CO₃ (3.0 equiv, 0.6 mmol, 82.8 mg) were combined in a 5 mL oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), and **2** (1.0 equiv, 0.2 mmol), 1, 4-dioxane (2.0 mL) were then added via syringe. The tube was sealed with a Teflon lined cap and heated in a preheated oil bath at 80 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography (PE) to give **3** as colorless solid or oil.


4-(difluoromethyl)-1,1'-biphenyl (3a): dtbpy (5 mol%), PPh₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3a** was purified with silica gel chromatography (PE) as a colorless solid (92% yield). This compound is known.⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 2H), 7.57 (t, J = 7.6 Hz, 4H), 7.45 (t, J = 7.4 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H), 6.67 (t, J = 56.5 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H), 6.67 (t, J = 56.5 Hz, 2H), 7.57 (t, J = 7.4 Hz, 2H), 7.37 (t, J = 7.4 Hz, 2H), 7.57 (t, J = 56.5 Hz), 7.57 (t, J

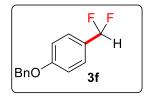
1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.23 (d, J = 56.5 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 143.80 (t, J = 1.8 Hz), 140.28 (s), 133.31 (t, J = 22.5 Hz), 129.05 (s), 128.03 (s), 127.55 (s), 127.37 (s), 126.16 (t, J = 6.0 Hz), 114.89 (t, J = 238.4 Hz).


1-(difluoromethyl)-4-pentylbenzene (3b): dtbpy (5 mol%), PPh₃ (10 mol%) were used as ligands, the reaction was run for 24 h. **Note**: The product **3b** was isolated with silica gel chromatography (PE) to give a unseparated mixture with homo-coupling biarene as a colorless oil, the yield (85% yield) was determined by the ratio of the mixture via ¹H NMR analysis (10:1). ¹H NMR (400 MHz,

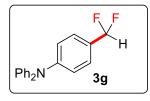
CDCl₃) δ 7.41 (d, J = 7.7 Hz, 2H), 7.26 (d, J = 8.1 Hz, 2H), 6.62 (t, J = 56.7 Hz, 1H), 2.63 (t, J = 7.7 Hz, 2H), 1.68 – 1.58 (m, 2H), 1.42 – 1.28 (m, 4H), 0.89 (t, J = 6.3 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ – 109.67 (d, J = 56.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 146.02 (t, J = 1.8 Hz), 131.89 (t, J = 22.0 Hz), 128.83 (s), 125.63 (t, J = 6.0 Hz), 115.11 (t, J = 238.1 Hz), 35.92 (s), 31.56 (s), 31.14 (s), 22.66 (s), 14.15 (s). HRMS EI (m/z): [M]⁺ calcd. for C₁₂H₁₆F₂: 198.1220 found: 198.1223.


1-(tert-butyl)-4-(difluoromethyl)benzene (3c): dtbpy (5 mol%), PPh₃ (10 mol%) were used as ligands, the reaction was run for 24 h. **Note**: The product **3c** was isolated with silica gel chromatography (PE) to give a unseparated mixture with homo-coupling biarene as a colorless oil, the yield (89% yield) was

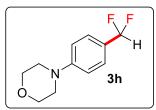
determined by the ratio of the mixture via ¹H NMR analysis (9:1). This compound is known.⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 6.63 (t, J = 56.6 Hz, 1H), 1.34 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -109.85 (d, J = 56.8 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 154.14 (t, J = 2.0 Hz), 131.67 (t, J = 23.5 Hz), 125.76 (s), 125.45 (t, J = 6.0 Hz), 115.04 (t, J = 238.5 Hz), 35.00 (s), 31.36 (s).


Methyl 3-(4-(difluoromethyl)phenyl)propanoate (3d): dtbpy (5 mol%), PCy₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3d** was purified with silica gel chromatography (PE/EA = 20:1) as a colorless oil (76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 6.0 Hz, 2H), 7.29 (d, J = 5.8 Hz, 2H), 6.62 (t, J = 56.6 Hz, 1H), 3.67 (s, 3H), 2.99 (t, J = 7.1 Hz, 2H), 2.65 (t, J = 7.6

Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.08 (d, J = 58.5 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 173.16 (s), 143.51 (s), 132.59 (t, J = 22.6 Hz), 128.75 (s), 125.90 (t, J = 6.0 Hz), 114.87 (t, J = 238.2 Hz), 51.83 (s), 35.46 (s), 30.80 (s). IR (neat, cm⁻¹) 3011, 2940, 1734, 1595, 1519, 1497, 1479, 1450, 1382, 1356, 1334, 1313, 1245, 1223, 1210, 1177, 1160, 1147, 1120, 1107, 1060, 1018, 924, 841, 749, 698, 668, 639. HRMS EI (m/z): [M]⁺ calcd. for C₁₁H₁₂OF₂: 214.0805 found: 214.0806.

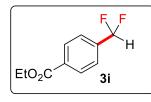

1-(difluoromethyl)-4-phenoxybenzene (3e): dtbpy (5 mol%), PPh₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3e** was purified with silica gel chromatography (PE) as a colorless solid (69% yield). This compound is known.^{7 1}H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.8 Hz, 2H), 7.37 (t, J = 7.1 Hz, 2H), 7.16 (t, J = 6.9 Hz, 1H), 7.04 (d, J = 7.6 Hz, 4H), 6.62 (t, J =

56.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.94 (d, J = 56.6 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 159.73 (s), 156.30 (s), 130.11 (s), 129.01 (t, J = 22.8 Hz), 127.46 (t, J = 5.9 Hz), 124.26 (s), 119.77 (s), 118.38 (s), 114.74 (t, J = 238.0 Hz).

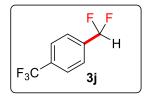


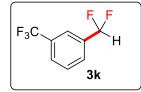
1-(benzyloxy)-4-(difluoromethyl)benzene (3f): dtbpy (5 mol%), PPh₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3f** was purified with silica gel chromatography (PE) as a colorless solid (65% yield). This compound is known.⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 8.4, 4.8 Hz, 4H), 7.32 – 7.24 (m, 3H), 6.94 (d, J = 8.8 Hz, 2H), 6.51 (t, J = 56.7 Hz, 1H), 5.01

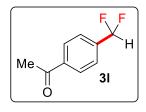
(s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.32 (d, J = 56.8 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 160.68 (s), 136.62 (s), 128.80 (s), 128.28 (s), 127.58 (s), 127.28 (t, J = 5.9 Hz), 127.17 (t, J = 22.7 Hz), 115.08 (s), 114.99 (t, J = 237.5 Hz), 70.24 (s).


4-(difluoromethyl)-N,N-diphenylaniline (3g): dtbpy (5 mol%), PPh₃ (10 mol%) were used as ligands, the reaction was run for 24 h. ¹⁹F NMR yield: 69% (using PhOCF₃ as internal standard). **Note:** Compound **3g** is unstable upon purification with silica gel chromatography. HRMS ESI (m/z): $[M+H]^+$ calced. for C₁₉H₁₆F₂N: 296.1245 found: 296.1249.

for C₁₉H₁₆F₂N: 296.1245 found: 296.1249. **4-(4-(difluoromethyl)phenyl)morpholine (3h)**: dtbpy (5 mol%), PPh₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3h** was purified with silica gel chromatography (PE/EA = 5:1) as a colorless solid (78% yield). This compound is known.⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.3 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 6.58 (t, J = 56.9 Hz, 1H), 3.90 – 3.82 (m,

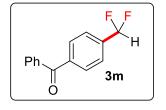

2H), 3.24 - 3.18 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.05 (d, J = 56.9 Hz). ¹³C NMR (101 MHz, 101 MHz)


CDCl₃) δ 153.00 (s), 126.87 (t, J = 5.9 Hz), 125.39 (t, J = 22.8 Hz), 115.23 (t, J = 236.9 Hz), 114.94 (s), 66.85 (s), 48.65 (s).



Ethyl 4-(difluoromethyl)benzoate (3i): dtbpy (5 mol%), PCy₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3i** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (86% yield). This compound is known.⁸ ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.1 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 6.69 (t, J = 56.1 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 1.41

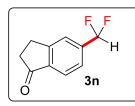
(t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.16 (d, J = 56.1 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.91 (s), 138.47 (t, J = 22.4 Hz), 132.80 (t, J = 1.8 Hz), 130.04 (s), 125.72 (t, J = 6.0 Hz), 114.17 (t, J = 239.7 Hz), 61.49 (s), 14.40 (s).



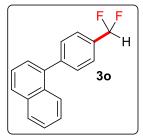
1-(difluoromethyl)-4-(trifluoromethyl)benzene (3j): dtbpy (5 mol%), PCy₃ (10 mol%) were used as ligands, the reaction was run for 24 h. This compound is known.⁸ Due to the low boiling point of the product, the yield (52%) was determined by ¹⁹F NMR using PhOCF₃ as an internal standard. This compound is known⁸. The product was characterized by ¹⁹F NMR and GC-MS analysis.

1-(difluoromethyl)-3-(trifluoromethyl)benzene (3k): dtbpy (5 mol%), PCy₃ (10 mol%) were used as ligands, the reaction was run for 24 h. This compound is known.⁷ Due to the low boiling point of the product, the yield (62%) was determined by ¹⁹F NMR using PhOCF₃ as an internal standard. This compound is known⁷. The product was characterized by ¹⁹F NMR and GC-MS analysis.

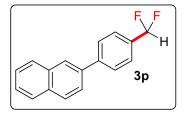
1-(4-(difluoromethyl)phenyl)ethan-1-one (3l): dtbpy (5 mol%), PCy₃ (10 mol%) were used as ligands, the reaction was run for 48 h. Due to the low boiling point of the product, the yield (67%) was determined by ¹⁹F NMR using PhOCF₃ as an internal standard and the product **3l** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (49% yield). This compound is known.⁷ ¹H NMR


 $(400 \text{ MHz, CDCl}_3) \delta 7.88 \text{ (d, J = 8.0 Hz, 2H), 7.81 (d, J = 7.7 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 6.73 (t, J = 56.1 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl_3) \delta -112.29 (d, J = 56.1 Hz). ¹³C NMR (101 MHz, CDCl_3) \delta 197.53 (s), 138.99 (t, J = 1.7 Hz), 138.64 (t, J = 22.5 Hz), 128.78 (s), 126.04 (t, J = 6.0 Hz), 114.08 (t, J = 239.8 Hz), 26.92 (s).$

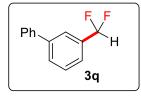
(4-(difluoromethyl)phenyl)(phenyl)


methanone (3m): dtbpy (5 mol%), PCy₃ (10 mol%) were used as ligands, the reaction was run for 48 h. The product **3m** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless solid (80% yield). This compound is known.⁹ ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.0 Hz, 2H),

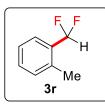
7.81 (d, J = 7.7 Hz, 2H), 7.66 – 7.62 (m, 2H), 7.60 (s, 1H), 7.50 (t, J = 7.7 Hz, 2H), 6.73 (t, J = 56.1 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.00 (d, J = 56.1 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 196.07 (s), 139.85 (t, J = 1.8 Hz), 137.93 (t, J = 22.4 Hz), 137.14 (s), 133.03 (s), 130.37 (s), 130.23 (s), 128.59 (s), 125.72 (t, J = 6.0 Hz), 114.18 (t, J = 239.7 Hz).

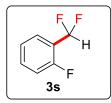

5-(difluoromethyl)-2,3-dihydro-1H-inden-1-one (3n): dtbpy (5 mol%), PCy₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3n** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless solid (51% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.9 Hz, 1H), 7.65 (s, 1H), 7.51 (d, J = 7.9 Hz, 1H), 6.71 (t, J = 56.1 Hz, 1H), 3.23 – 3.18 (m, 2H), 2.79 –

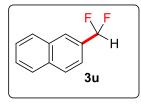
2.73 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.82 (d, J = 56.1 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 206.35 (s), 155.46 (s), 140.24 (t, J = 22.0 Hz), 139.05 (t, J = 1.6 Hz), 124.98 (t, J = 5.9 Hz), 124.35 (s), 124.15 (t, J = 6.2 Hz), 114.18 (t, J = 240.2 Hz), 36.53 (s), 25.96 (s). IR (neat, cm⁻¹) 3006, 2939, 2359, 1705, 1615, 1486, 1450, 1431, 1406, 1383, 1322, 1297, 1274, 1192, 1142, 1062, 1020, 965, 934, 898, 843, 778, 760, 710, 685. HRMS EI (m/z): [M]⁺ calcd. for C₁₀H₈OF₂: 182.0543 found: 182.0535.


1-(4-(difluoromethyl)phenyl)naphthalene (30): dtbpy (5 mol%), P(4-OMePh)₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **30** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless solid. (74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 12.0, 8.2 Hz, 2H), 7.83 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.55-7.52 (m, 1H), 7.51-7.48 (m, 1H), 7.47-7.39 (m, 2H), 6.75 (t, J = 56.5 Hz, 1H). ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -110.21 (d, J = 56.6 Hz). ¹³C NMR (101 MHz, CDCl}_3) \delta 143.51 (t, J = 2.0 Hz), 139.28 (s), 133.90 (s), 133.41 (t, J = 22.4 Hz), 131.49 (s), 130.52 (s), 128.52 (s), 128.29 (s), 127.12 (s), 126.45 (s), 126.09 (s), 125.79 (s), 125.69 (t, J = 6.0 Hz), 125.49 (s), 114.94 (t, J = 238.6 Hz). IR (neat, cm⁻¹) 3043, 2939, 2360, 1927, 1615, 1505, 1493, 1460, 1396, 1377, 1218, 1181, 1143, 1070, 1017, 964, 840, 798, 791, 775, 718, 734, 697, 626. HRMS EI (m/z): [M]⁺ calcd. for C₁₇H₁₂F₂: 254.0907 found: 254.0911

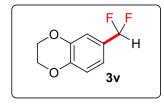

2-(4-(difluoromethyl)phenyl)naphthalene (3p): dtbpy (5 mol%), PPh₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3p** was purified with silica gel chromatography (PE) as a colorless solid (55% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.95 – 7.85 (m, 3H), 7.78 (d, J = 8.0 Hz, 2H), 7.72 (dd, J = 8.5, 1.6 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H),


7.55 – 7.46 (m, 2H), 6.71 (t, J = 56.5 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.28 (d, J = 56.5 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 143.72 (t, J = 2.0 Hz), 137.58 (s), 133.71 (s), 133.37 (t, J = 22.5 Hz), 132.98 (s), 128.79 (s), 128.41 (s), 127.81 (s), 126.64 (s), 126.45 (s), 126.31 (s), 126.25 (t, J = 6.1 Hz), 125.44 (s), 114.89 (t, J = 238.5 Hz). IR (neat, cm⁻¹) 3395, 2964, 2927, 2358, 1504, 1443, 1373, 1361, 1233, 1192, 1155, 1086, 1047, 880, 795, 768, 694, 677, 651, 637. HRMS EI (m/z): [M]⁺ calcd. for C₁₇H₁₂F₂: 254.0907 found: 254.0905.



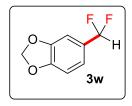
3-(difluoromethyl)-1,1'-biphenyl (3q): phen (5 mol%), dpph (5 mol%) were used as ligands, the reaction was run for 24 h. The product **3q** was purified with silica gel chromatography (PE) as a colorless oil (65% yield). This compound is known.^{7 1}H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.69 (d, J = 7.5 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.56- 7.42 (m, 4H), 7.38 (t, J = 7.3 Hz, 1H), 6.70 (t, J = 56.5 Hz,

1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.56 (d, J = 56.5 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 141.99 (s), 140.32 (s), 135.04 (t, J = 22.3 Hz), 129.58 (t, J = 1.9 Hz), 129.32 (s), 129.06 (s), 127.94 (s), 127.32 (s), 124.46 (td, J = 6.0, 4.6 Hz), 114.90 (t, J = 239.0 Hz).

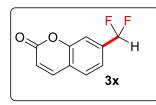

1-(difluoromethyl)-2-methylbenzene (3r): dtbpy (5 mol%), dpph (5 mol%) were used as ligands, the reaction was run for 48 h. This compound is known.¹⁰ Due to the low boiling point of the product, the yield (76%) was determined by ¹⁹F NMR using PhOCF₃ as an internal standard. This compound is known. The product was characterized by ¹⁹F NMR and GC-MS analysis.

1-(difluoromethyl)-2-fluorobenzene (3s): dtbpy (5 mol%), dpph (5 mol%) were used as ligands, the reaction was run for 48 h. This compound is known.¹¹ Due to the low boiling point of the product, the yield (67%) was determined by ¹⁹F NMR using PhOCF₃ as an internal standard. This compound is known. The product was characterized by ¹⁹F NM R and GC-MS analysis.

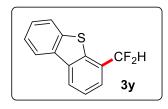
1-chloro-2-(difluoromethyl)benzene (3t): dtbpy (5 mol%), dpph (5 mol%) were used as ligands, the reaction was run for 48 h. This compound is known.¹² Due to the low boiling point of the product, the yield (62%) was determined by ¹⁹F NMR using PhOCF₃ as an internal standard. This compound is known. The product was characterized by ¹⁹F NMR and GC-MS analysis.


2-(difluoromethyl)naphthalene (3u): dtbpy (5 mol%), PPh₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3u** was purified with silica gel chromatography (PE/EA = 30:1) as a colorless solid (51% yield). This compound is known.⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.95 – 7.86 (m, 3H), 7.62 – 7.52 (m, 3H), 6.80 (t, J = 56.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃)

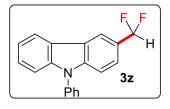
 δ -109.82 (d, J = 56.4 Hz).¹³C NMR (101 MHz, CDCl₃) δ 134.44 (s), 132.68 (s), 131.74 (t, J = 22.5 Hz), 129.03 (s), 128.66 (s), 128.02 (s), 127.54 (s), 126.95 (s), 126.03 (t, J = 7.1 Hz), 122.16 (t, J = 4.7 Hz), 115.18 (t, J = 238.9 Hz).


6-(difluoromethyl)-2,3-dihydrobenzo[*b*][1,4]dioxine (3v): dtbpy (5 mol%), PCy₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3v** was purified with silica gel chromatography (PE) as a colorless oil (68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.03 (s, 1H), 6.98 (d, J = 8.7 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.54 (t, J = 56.7 Hz, 1H), 4.28 (s, 4H). ¹⁹F NMR

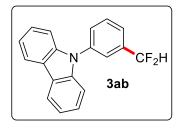
 $(376 \text{ MHz}, \text{CDCl}_3) \delta -108.63 \text{ (d, J} = 56.7 \text{ Hz}).$ ¹³C NMR (101 MHz, CDCl}3) $\delta 145.65 \text{ (t, J} = 1.8 \text{ Hz}),$ 143.75 (s), 127.82 (t, J = 22.8 Hz), 118.93 (t, J = 6.2 Hz), 117.69 (s), 115.01 (t, J = 6.1 Hz), 114.66 (t, J = 238.0 Hz), 64.55 (s), 64.40 (s). IR (neat, cm⁻¹) 3424, 3010, 2919, 2850, 2359, 1592, 1494, 1450, 1391, 1353, 1334, 1246, 1226, 1210, 1178, 1160, 1145, 1062, 1029, 924, 838, 805, 748, 720, 697, 667, 615, 639. HRMS EI (m/z): [M]⁺ calcd. for C₉H₈O₂F₂: 186.0492 found: 186.0500.


5-(difluoromethyl)benzo[*d*][1,3]dioxole (3w): dtbpy (5 mol%), PCy₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3w** was purified with silica gel chromatography (PE) as a colorless oil (62% yield). This compound is known.⁷ ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, J = 7.8 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 6.54 (t, J = 56.6 Hz, 1H), 6.02 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -

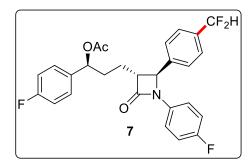
107.89 (d, J = 56.6 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 149.69 (t, J = 2.0 Hz), 148.18 (s), 128.43 (t, J = 22.7 Hz), 120.28 (t, J = 7.2 Hz), 114.76 (t, J = 238.1 Hz), 108.36 (s), 105.92 (t, J = 5.5 Hz), 101.71 (s).


7-(difluoromethyl)-2H-chromen-2-one (3x): dtbpy (5 mol%), dpph (5 mol%) were used as ligands, the reaction was run for 24 h. The product 3x was purified with silica gel chromatography (PE/EA = 20:1) as a colorless oil (53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 9.6 Hz, 1H), 7.60 (d, J = 7.9 Hz, 1H), 7.47 (s, 1H), 7.44 (d, J = 8.0 Hz, 1H), 6.72 (t, J = 56.0 Hz, 1H), 6.52 (d, J

= 9.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.06 (d, J = 56.0 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 160.16 (s), 154.02 (s), 142.72 (s), 137.86 (t, J = 20.1 Hz), 128.63 (s), 121.50 (t, J = 5.9 Hz), 120.61 (s), 118.38 (s), 114.59 (t, J = 6.6 Hz), 113.55 (t, J = 240.6 Hz). IR (neat, cm⁻¹) 3417, 3318, 2991, 2931, 2852, 2360, 1596, 1494, 1458, 1395, 1382, 1315, 1278, 1248, 1210, 1160, 1144, 1043, 991, 908, 924, 873, 850, 781, 749, 697, 668, 619. HRMS EI (m/z): [M]⁺ calcd. for C₁₄H₁₂F₂: 218.0907 found: 218.0914.

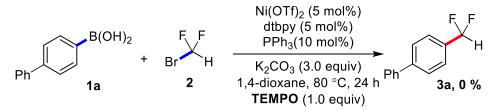

4-(difluoromethyl)dibenzo[b,d]thiophene (3y): dtbpy (5 mol%), P(4-OMePh)₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product **3y** was purified with silica gel chromatography (PE) as a colorless solid (51% yield). This compound is known.⁷ ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, J = 7.9, 1.0 Hz, 1H), 8.20 – 8.14 (m, 1H), 7.91 – 7.85 (m, 1H), 7.61

(dd, J = 7.4, 0.7 Hz, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.51 – 7.46 (m, 2H), 6.93 (t, J = 55.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.35 (d, J = 55.6 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 139.62 (s), 137.14 (s), 136.78 (t, J = 3.2 Hz), 134.77 (s), 128.67 (t, J = 22.9 Hz), 127.50 (s), 124.83 (s), 124.53 (s), 124.46 (t, J = 7.1 Hz), 123.89 (s), 122.85 (s), 121.83 (s), 114.60 (t, J = 239.6 Hz).

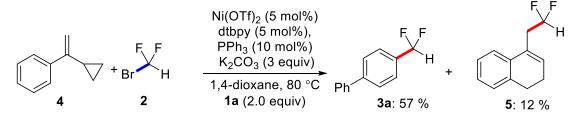

3-(difluoromethyl)-9-phenyl-9H-carbazole (3z): dtbpy (5 mol%), dpph (5 mol%) were used as ligands, the reaction was run for 24 h. The product **3z** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless solid (73 % yield). This compound is known.⁷ ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 0.5 Hz, 1H), 8.12 – 8.04 (m, 1H), 7.56 – 7.49 (m, 2H), 7.48 – 7.43 (m,

3H), 7.43 - 7.39 (m, 1H), 7.37 - 7.30 (m, 3H), 7.24 (ddd, J = 8.0, 6.8, 1.4 Hz, 1H), 6.76 (t, J = 56.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.25 (d, J = 56.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 142.20 (s), 141.65 (s), 137.35 (s), 130.16 (s), 128.05 (s), 127.29 (s), 126.75 (s), 126.29 (t, J = 22.5 Hz), 123.38 (t, J = 6.1 Hz), 123.33 (s), 123.13 (s), 120.63 (s), 120.62 (s), 118.27 (t, J = 6.5 Hz), 115.88 (t, J = 234.7 Hz), 110.23 (s), 110.13 (s).

9-(3-(difluoromethyl)phenyl)-9H-carbazole(3ab): dtbpy (5 mol%), PCy₃ (10 mol%) were used as ligands, the reaction was run for 48 h. The product **3ab** was purified with silica gel chromatography (PE) as a colorless solid (81 % yield). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 7.5 Hz, 2H), 7.73 (s, 1H), 7.69 (d, J = 5.0 Hz, 2H), 7.60 (t, J = 4.2 Hz, 1H), 7.45 – 7.35 (m, 4H), 7.35 – 7.26 (m, 2H), 6.73 (t, J = 56.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.02


(d, J = 56.3 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 140.73 (s), 138.45 (s), 136.50 (t, J = 22.7 Hz), 130.59 (s), 129.43 (t, J = 1.7 Hz), 126.27 (s), 124.62 (t, J = 6.0 Hz), 124.34 (t, J = 6.1 Hz), 123.67 (s), 114.22 (t, J = 239.7 Hz), 109.67 (s). IR (neat, cm⁻¹) 3042, 2939, 2359, 1594, 1496, 1478, 1457, 1448, 1389, 1366, 1334, 1313, 1245, 1226, 1210, 1178, 1160, 1146, 1120, 1058, 1019, 924, 907, 864, 794, 748, 720, 698, 668, 615. HRMS EI (m/z): [M]⁺ calcd. for C₁₉H₁₃NF₂: 293.1016 found: 293.1013.

(S)-3-(2S,3R-2-(4-(difluoromethyl)phenyl)-1-(4-fluorophenyl)-4-oxoazetidin-3-yl)-1-(4-fluorophenyl)propyl acetate(7): dtbpy (5 mol%), PPh₃ (10 mol%) were used as ligands, the reaction was run for 24 h. The product 7 was purified with silica gel chromatography (PE/EA = 5:1) as a colorless solid (81% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.31 – 7.24 (m, 2H), 7.23 – 7.17 (m, 2H), 7.02 (t, J =


8.6 Hz, 2H), 6.93 (t, J = 8.6 Hz, 2H), 6.64 (t, J = 56.3 Hz, 1H), 5.70 (t, J = 6.7 Hz, 1H), 4.65 (d, J = 2.0 Hz, 1H), 3.07 (td, J = 7.7, 2.1 Hz, 1H), 2.09 – 1.99 (m, 5H), 1.94 – 1.83 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.89 (d, J = 56.6 Hz), -113.68 (ddd, J = 18.2, 9.0, 5.5 Hz), -117.56 (ddd, J = 13.5, 8.7, 4.8 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 170.33 (s), 166.60 (s), 162.57 (d, J = 246.8 Hz), 159.21 (d, J = 243.8 Hz), 140.45 (s), 135.74 (d, J = 3.2 Hz), 134.98 (t, J = 22.6 Hz), 133.68 (d, J = 2.7 Hz), 128.39 (s), 128.31 (s), 126.80 (t, J = 6.0 Hz), 126.27 (s), 118.40 (d, J = 7.9 Hz), 116.09 (d, J = 22.7 Hz), 115.68 (d, J = 21.6 Hz), 114.31 (t, J = 239.1 Hz), 74.91 (s), 60.84 (s), 60.33 (s), 33.72 (s), 25.04 (s), 21.30 (s). IR (neat, cm⁻¹) 3426, 3012, 2937, 2360, 1742, 1595, 1509, 1496, 1479, 1457, 1448, 1388, 1354, 1334, 1312, 1244, 1159, 1146, 1120, 1017, 924, 907, 834, 795, 748, 720, 697, 668, 639. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₇H₂₃O₃NF₄Na: 508.1512 found: 508.1516.

Mechanistic Studies: 1. Radical Trapping Experiment with TEMPO

To a 5 mL sealed tube were added **1a** (2.0 equiv, 0.4 mmol), Ni(OTf)₂ (5 mol %, 0.01 mmol), dtbpy (5 mol %, 0.01 mmol), PPh₃ (10 mol%, 0.02 mol) and K₂CO₃ (3.0 equiv, 0.6 mmol) under air. The vessel was evacuated and backfilled wit N₂ (3 times) and 1,4-dioxane (2.0 mL) were added via syringe, then **2** (1.0 equiv, 0.2 mmol) and TEMPO (1.0 equiv, 0.2 mmol) were added. The reaction mixture was heated in a preheated oil bath at 80 °C for 24 h, and was cooled to room temperature. No product **3a** was detected by crude ¹⁹F NMR.

2. Radical Clock Experiment:

To a 5 mL sealed tube were added **1a** (2.0 equiv, 0.4 mmol), $Ni(OTf)_2$ (5 mol %, 0.01 mmol), dtbpy (5 mol %, 0.01 mmol), PPh₃ (10 mol%, 0.02 mol) and K₂CO₃ (3.0 equiv, 0.6 mmol) under air. The vessel was evacuated and backfilled wit N₂ (3 times) and 1,4-dioxane (2.0 mL) was added via syringe, then **2a** (1.0 equiv, 0.2 mmol) and **4** (2.0 equiv, 0.4 mmol) were added. The tube was screw capped and put into

a preheated oil bath at 80 °C for 24 h. After cooling to room temperature, the reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography (PE) to give product **3a** in 57% yield and the yield of product **5** was determined by crude ¹⁹F NMR. **Note**: The product **5** was isolated with silica gel chromatography (PE) to give a unseparated mixture with **3a** as a colorless solid, the yield (12% yield) was determined by the ratio of the mixture via ¹⁹F NMR analysis ¹⁹F NMR (376 MHz, CDCl₃) δ -113.93 (dt, J = 56.8, 16.5 Hz). HRMS EI (m/z): [M]⁺ calced. for C₁₂H₁₂F₂: 194.0907 found: 194.0914.

3.	Procedure	of Monoflu	oroalkylation	with Ni ⁰ u	ised as the catalyst	

\land	B(OH)₂ FF	dtk	i ⁰ (5 mol%) ppy (x mol%) Ph ₃ (y mol%)	F F
Ph	+ Br H 1a 2a	K ₂ C	O ₃ (3.0 equiv) ×ane, 80 °C, 24 h ^{Ph}	3a H
entry	Ni ⁰	х	У	yield (%) ^b
1	Ni(cod) ₂	0	0	trace
2	Ni(cod) ₂	5	0	4
3	Ni(cod) ₂	0	10	0
4	Ni(cod) ₂	5	10	84(90)

^a Unless otherwise noted, the reaction conditions were as follows: **1a** (2.0 equiv), **2a** (0.2 mmol, 1.0 equiv), Ni⁰ (5 mol%), bpy (x mol%), PPh₃ (y mol%), K₂CO₃ (3.0 equiv), 1,4-dioxane (2 mL), 80 °C, 24 h, N₂. 5 mL sealed tube. ^{*b*} Yields determined by ¹⁹ FNMR using PhOCF₃ as an internal standard; number in parenthese was isolated yields

References:

1 A. Hooper, A. Zambon and C. J. Springer, Org. Biomol. Chem., 2016, 14, 963.

2 J. Zielonka, A. Sikora, J. Joseph and B. Kalyanaraman, J. Biol. Chem. 2010, 285, 14210.

3 (a) Y.-M. Su, G.-S. Feng, Z.-Y. Wang, Q. Lan and X.-S. Wang, Angew. Chem. Int. Ed. 2015, 54,

6003. (b) P. Tang, T. Furuya and T. Ritter, J. Am. Chem. Soc. 2010, 132, 12150.

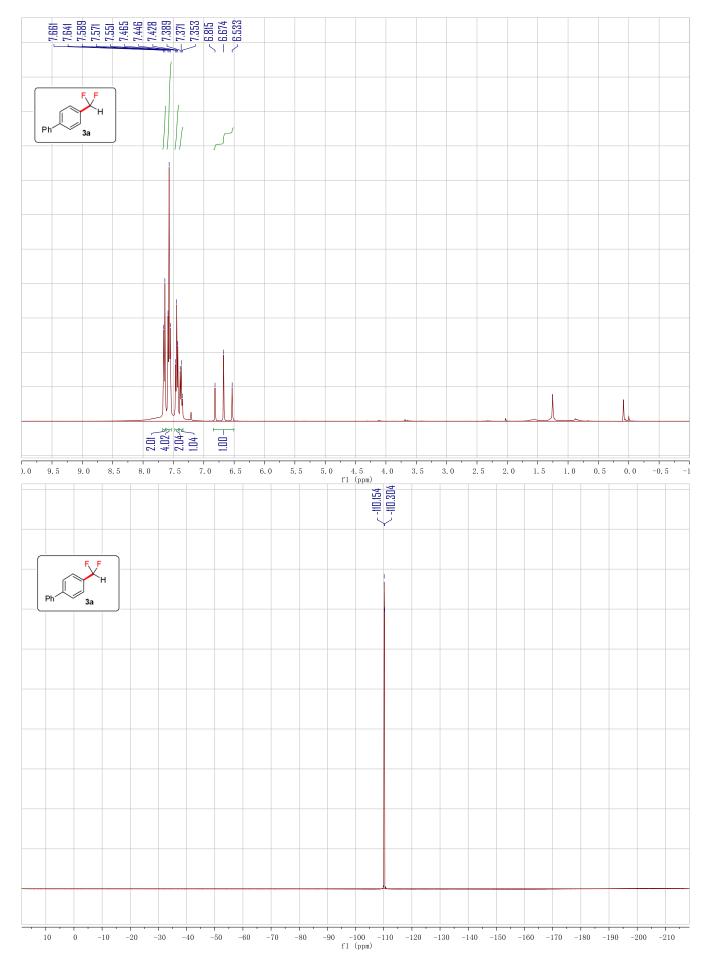
4 T. W. Liwosz and S. R. Chemler, Chem. Eur. J. 2013, 19, 12771.

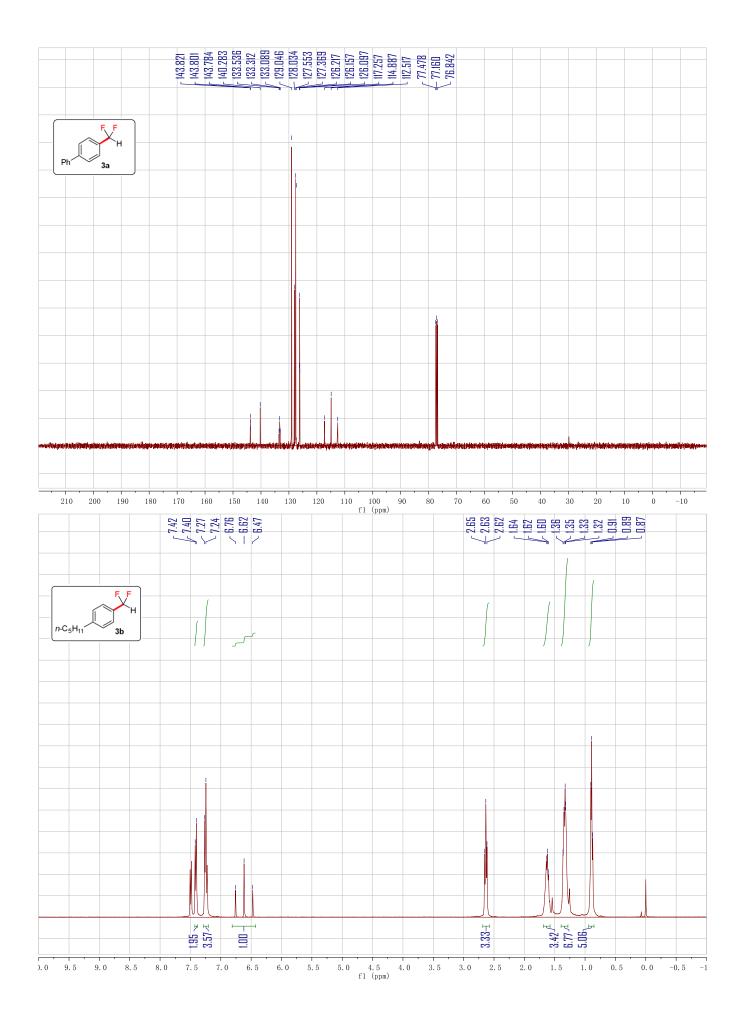
5 (a) Y. Ye and M. S. Sanford, J. Am. Chem. Soc., 2012, 134, 9034. (b) Y. Wu, H.-R. Zhang, R.-X.

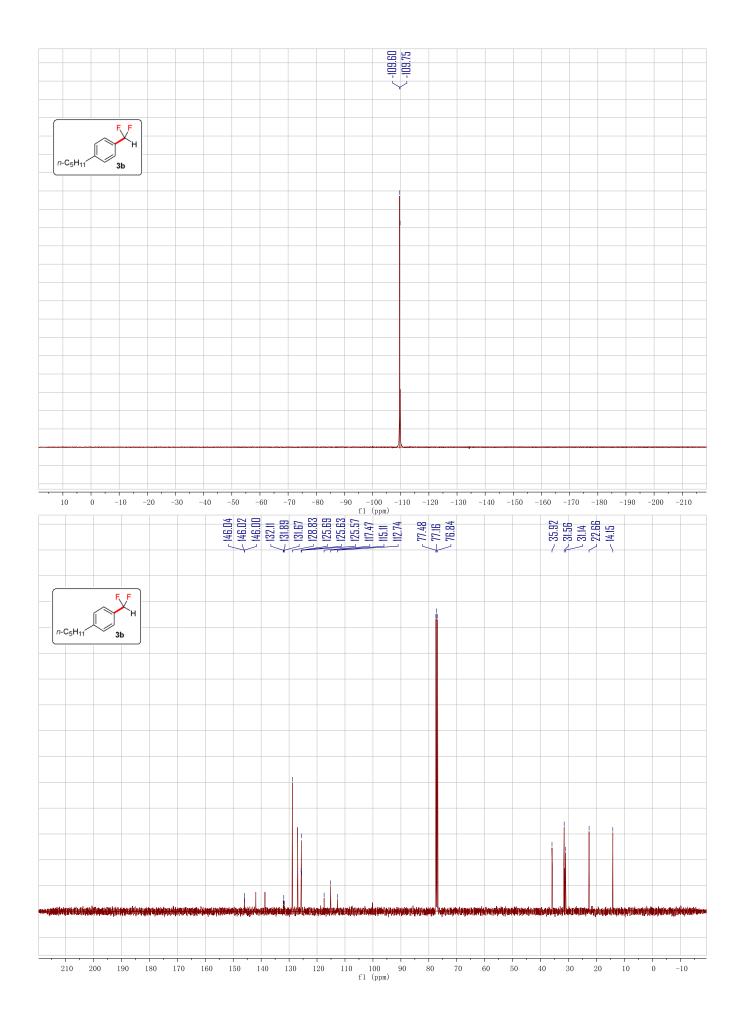
Jin, Q. Lan and X.-S Wang, Adv. Synth. Catal. 2016, 358, 3528.

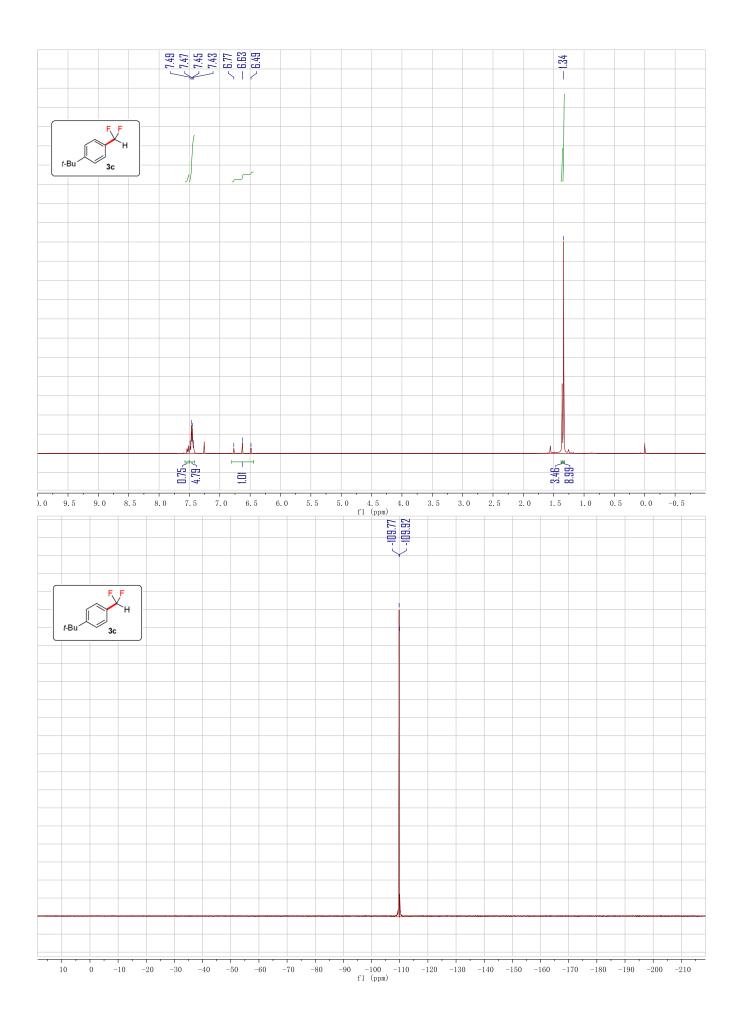
6 P. S. Fier and J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 5524.

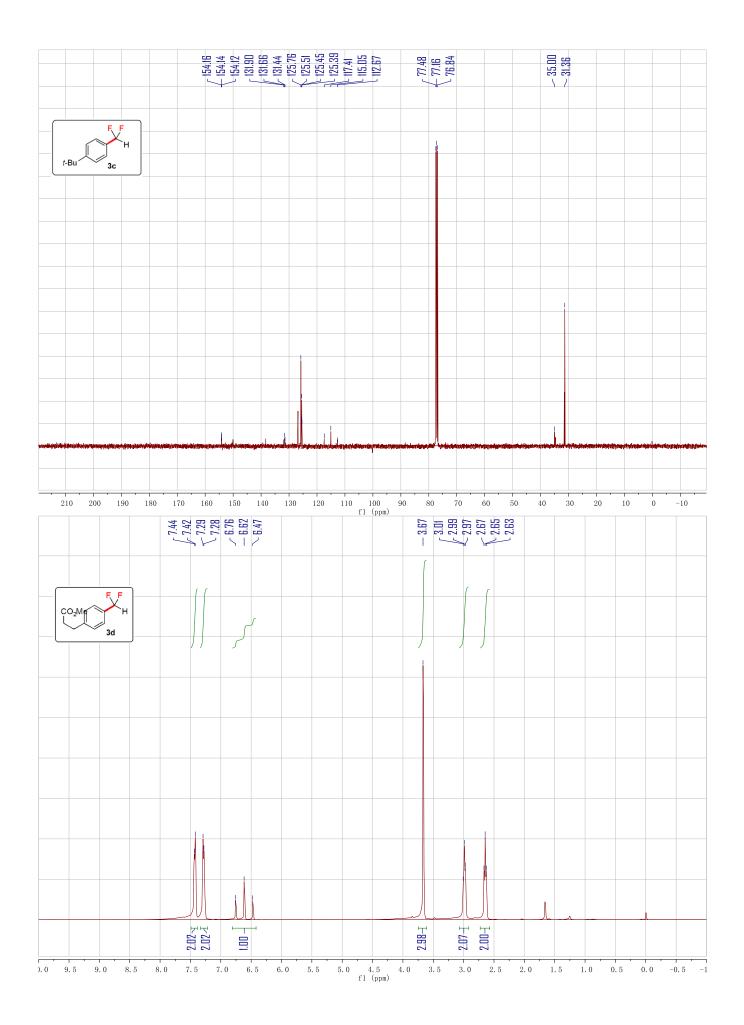
7 Z. Feng, Q.-Q. Min and X. Zhang, Org. Lett. 2016, 18, 44.


8 S. Ge, W. Chaładaj and J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 4149.


9 G. K. S. Rakash, S. K. Ganesh, J.-P. Jones, A. Kulkarni, K. Masood, J. K. Swabeck and G. A. Olah, *Angew. Chem. Int. Ed.* **2012**, *51*, 12090.


10 Y.Gu, D. Chang, X. Leng, Y. Gu and Q. Shen, Organometallics 2015, 34, 3065.


11 X. Li, J. Zhao, M. Hu, D. Chen, C. Ni, L. Wang, J. Hu, Chem. Commun., 2016, 52, 3657.


NMR Spectra of New Compounds (¹H NMR, ¹⁹F NMR, ¹³C NMR).

