Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

Enantioselective Total Synthesis of Periconiasin A

Zhixiong Zeng, Cheng Chen, Yandong Zhang*

Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.

Email: ydzhang@xmu.edu.cn

Table of Contents

1. General Information	S2
2. Experimental Procedure	S3
2.1 Syntheses of (Z, E, E) -skipped trienaldehyde	S3
2.2 Total synthesis of periconiasin A	S10
3. NMR Spectra Data	S17

1. General Information

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise stated. All the chemicals were purchased commercially and used without further purification, unless otherwise stated. The boiling point of petroleum ether (PE) is between 60-90 °C. Tetrahydrofuran (THF) was distilled from sodium-benzophenone. Dichloromethane (CH₂Cl₂) and diethyl ether (Et₂O) were distilled from calcium hydride under argon atmosphere. Toluene was distilled from sodium under argon atmosphere. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm Qingdao silica gel plates (60F-254) using UV lights as the visualizing agent and KMnO₄. Flash column chromatography was performed over Qingdao silica gel (200-300 mesh). Infrared spectra were recorded on a Nicolet AVATER FTIR380 spectrometer as thin film and are reported in reciprocal centimeter (cm⁻¹). High resolution mass spectra (HRMS) were recorded on a Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization. NMR spectra were recorded on Bruker AV-400, Bruker AV-500 and Bruker AV-600 instruments and were calibrated using residual undeuterated solvents (CHCl₃, $\delta_{\rm H}$ = 7.26; DMSO-*d*₆, $\delta_{\rm H}$ = 2.50) and deuterated solvents (CDCl₃, $\delta_{\rm C}$ = 77.0; DMSO- d_6 , δ_C = 39.6) as internal references. The data for ¹H NMR are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multipletor unresolved, brs = broad singlet), coupling constants (Hz) and integration.

2. Experimental Procedure

2.1 Syntheses of (Z,E,E)-skipped trienaldehyde

Synthesis of chiral diene ester 7

To a solution of chiral alcohol 8^1 (51.31 g, 144.7 mmol) and 3-methyl-3-butenoic acid 9^2 (36.22 g, 361.8 mmol) in CH₂Cl₂ (600 mL) at 0 °C were added DMAP (8.84 g, 72.36 mmol) and DCC (68.62 g, 332.8 mmol) in sequence. The reaction mixture was stirred at this temperature for 1 h and filtered through a pad of celite. The filtrate was dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 150:1) afforded 7 (60.62 g, 96% yield) as a colorless oil.

 $[α]_D^{25}$ +16.0 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.69 − 7.64 (m, 4H), 7.45 − 7.37 (m, 6H), 5.86 − 5.68 (m, 1H), 5.22 − 5.13 (m, 1H), 5.07 − 5.11 (m, 1H), 5.06 (brs, 1H), 4.88 (brs, 1H), 4.82 (brs, 1H), 3.70 (t, J = 6.4 Hz, 2H), 2.96 (s, 2H), 2.44 − 2.28 (m, 2H), 1.90 − 1.81 (m, 2H), 1.78 (s, 3H), 1.07 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 138.6, 135.54, 135.51, 133.7, 133.6, 133.5, 129.6, 127.6, 117.8, 114.5, 70.7, 60.1, 43.7, 38.7, 36.3, 26.8, 22.4, 19.1; IR (KBr, cm⁻¹) □ 3072, 2958, 2930, 2857, 1734, 1112, 702; HRMS (ESI, m/z) calcd for C₂₇H₃₆O₃Si [M+Na]⁺: 459.2326, found: 459.2327.

Synthesis of seven-membered lactone 6 via RCM reaction

To a solution of Grubbs' 2^{nd} (0.194 mg, 0.229 mmol) in CH₂Cl₂ (450 mL) under argon was added a solution of diene ester 7 (2.00 g, 4.58 mmol) in CH₂Cl₂ (8 mL). The reaction mixture was degassed twice with argon, heated to reflux for 15 h then cooled to rt. The reaction mixture was concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 50:1) afforded **6** (1.18 g, 63% yield) as a colorless oil. [α]_D²⁵ +3.3 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 4H), 7.46 – 7.36 (m, 6H), 5.45 – 5.37 (m, 1H), 5.03 – 4.94 (m, 1H), 3.96 – 3.86 (m, 1H), 3.80 – 3.67 (m, 2H), 2.83 (d, J = 15.9 Hz, 1H), 2.46 – 2.24 (m, 2H), 1.95 – 1.86 (m, 1H), 1.85 – 1.75 (m, 4H), 1.07 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 135.4, 133.6, 133.4, 129.7, 127.71, 127.69, 126.6, 122.4, 73.3, 59.6, 38.7, 38.0, 35.3, 26.8, 26.7, 19.2; IR (KBr, cm⁻¹) 3070, 2957, 2856, 1739, 1274, 1112, 703, 505; HRMS (ESI, m/z) calcd for C₂₅H₃₂O₃Si [M+Na]⁺: 431.2013, found: 431.2016.

OTBDPS	CH ₂ Cl ₂ , reflux	OTBDPS ⁺ TBDPSO	
Entry	Catalyst	Yield	
1	Grubbs' 1st	decomposed	
2	Grubbs' 2nd	6 (63%), 6a (14%)	
3	Grubbs' 3rd	low conversion	
4	Hoveyda-Grubbs' 1st	NR	
5	Hoveyda-Grubbs' 2nd	6 (36%), 6a (19%)	

Table S1. Optimization of RCM reaction.

Synthesis of Weinreb amide S1

To a solution of seven-membered lactone **6** (5.00 g, 12.24 mmol) and Me(OMe)NH•HCl (2.51 g, 25.70 mmol) in THF (90 mL) at 0 °C was added *i*-PrMgCl (25.70 mL, 51.41 mmol) dropwise. The reaction mixture was stirred at this temperature for 45 min then quenched with saturated NH₄Cl solution (40 mL). The reaction mixture was diluted with water, extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 4:1) afforded **S1** (5.71 g, 99 % yield) as a colorless oil.

 $[\alpha]_D^{25}$ –11.8 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.64 (m, 4H), 7.47 – 7.35 (m, 6H), 5.46 (t, J = 7.1 Hz, 1H), 3.96 – 3.78 (m, 3H), 3.69 (s, 3H), 3.61 (brs,

1H), 3.23 (brs, 2H), 3.19 (s, 3H), 2.22 (t, J = 7.1 Hz, 2H), 1.77 (s, 3H), 1.75 – 1.65 (m, 2H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 135.4, 135.3, 133.4, 133.3, 131.4, 129.5, 127.5, 124.9, 69.5, 62.3, 61.0, 38.8, 36.3, 34.7, 32.1, 26.7, 24.0, 18.9; IR (KBr, cm⁻¹) 2930, 2856, 2360, 1650, 1427, 1005, 703, 505; HRMS (ESI, m/z) calcd for C₂₇H₃₉NO₄Si [M+Na]⁺: 492.2541, found: 492.2545.

Synthesis of Weinreb amide 10

To a solution of secondary alcohol **S1** (500 mg, 1.06 mmol) in $CH_2Cl_2(10 \text{ mL})$ at 0 °C were added 2, 6-lutidine (0.24 mL, 2.12 mmol) and TBSOTf (0.36 mL, 1.59 mmol) in sequence. The reaction mixture was stirred at this temperature for 30 min then quenched with water (5 mL), extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 15:1) afforded **10** (615 mg, 99% yield) as a colorless oil.

[α]_D²⁵ +4.12 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.63 (m, 4H), 7.45 – 7.33 (m, 6H), 5.37 (t, J = 6.7 Hz, 1H), 3.96 – 3.86 (m, 1H), 3.78 – 3.68 (m, 2H), 3.64 (s, 3H), 3.20 (d, J = 15.4 Hz, 1H), 3.16 (s, 3H), 3.12 (d, J = 15.4 Hz, 1H), 2.18 (t, J = 6.7 Hz, 2H), 1.78 (s, 3H), 1.75 – 1.61 (m, 2H), 1.05 (s, 9H), 0.85 (s, 9H), 0.03 (s, 3H), 0.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 135.47, 135.46, 133.9, 130.2, 129.44, 129.43, 127.5, 124.8, 69.2, 60.9, 60.8, 39.9, 36.3, 35.5, 32.2, 26.8, 25.80, 23.9, 19.1, 18.0, -4.5, -4.8; **IR** (KBr, cm⁻¹) 2927, 2854, 1661, 1427, 1255, 1111, 702; **HRMS** (ESI, m/z) calcd for C₃₃H₅₃NO₄Si₂ [M+Na]⁺: 606.3405, found: 606.3411.

Synthesis of dibromide S2

To a solution of Weinreb amide **10** (200 mg, 0.342 mmol) in THF (6 mL) at 0 °C was added Red-Al (0.11 mL, 70 wt% in toluene ca. 3.5 M, 0.376 mmol) dropwise. The reaction mixture was stirred at this temperature for 15 min then quenched with water

carefully. The reaction mixture was washed with saturated Rochelle salt solution, extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The crude product aldehyde was used in next step without further purification.

To a solution of CBr₄ (249 mg, 0.752 mmol) in CH₂Cl₂ (6 mL) at 0 °C was added PPh₃ (395 mg, 1.505 mmol) in CH₂Cl₂ (2 mL), the reaction mixture was stirred at this temperature for 30 min. Then to the reaction mixture at 0 °C was added a solution of aldehyde (from previous step) in CH₂Cl₂ (2 mL). The reaction mixture was stirred at this temperature for 1 h then quenched with saturated NaHCO₃ solution, extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 100:1) afforded **S2** (150 mg, 64% from **10**) as a colorless oil.

[α]_D²⁵ +4.1 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.63 (m, 4H), 7.48 – 7.36 (m, 6H), 6.29 (t, J = 7.3 Hz, 1H), 5.27 (t, J = 6.8 Hz, 1H), 3.96 – 3.86 (m, 1H), 3.81 – 3.68 (m, 2H), 2.83 (dd, J = 15.1 Hz, 7.3 Hz, 1H), 2.77 (dd, J = 15.1 Hz, 7.3 Hz, 1H), 2.18 (t, J = 6.8 Hz, 2H), 1.73 (s, 3H), 1.72 – 1.66 (m, 2H), 1.08 (s, 9H), 0.88 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 135.6, 134.0, 132.3, 129.6, 129.5, 127.6, 123.9, 89.3, 69.3, 60.9, 39.9, 36.1, 35.9, 26.9, 25.9, 23.6, 19.2, 18.1, -4.4, -4.7; **IR** (KBr, cm⁻¹) 2927, 2854, 1722, 1428, 1113, 821, 702; **HRMS** (ESI, m/z) calcd for C₃₂H₄₈Br₂O₂Si₂ [M+Na]⁺: 703.1437, found: 703.1441.

Synthesis of terminal alkyne S3

To a solution of dibromide **S2** (1.99 g, 2.92 mmol) in THF (40 mL) at -78 °C was added MeLi (11.68 mL, 1 M in THF, 11.68 mmol) dropwise. The reaction mixture was stirred at -78 °C for 30 min then stirred at 0 °C for 30 min before being quenched with water carefully. The reaction mixture was extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 200:1) afforded **S3** (1.47 g, 97% yield) as a colorless oil.

[α]_D²⁵ +12.6 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.62 (m, 4H), 7.44 – 7.33 (m, 6H), 5.24 (t, J = 6.8 Hz, 1H), 3.95 – 3.86 (m, 1H), 3.77 – 3.65 (m, 2H), 2.90 (dd, J = 17.3 Hz, 1.9 Hz, 1H), 2.84 (dd, J = 17.3 Hz, 1.9 Hz, 1H), 2.16 (t, J = 6.8 Hz, 2H), 1.91 (t, J = 2.6 Hz, 1H), 1.82 (s, 3H), 1.70 – 1.62 (m, 2H), 1.04 (s, 9H), 0.85 (s, 9H), 0.03 (s, 3H), 0.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.58, 135.57, 134.0, 131.3, 129.54, 129.51, 127.6, 123.3, 82.0, 69.2, 68.3, 60.9, 39.9, 36.0, 26.9, 25.9, 23.1, 21.4, 19.2, 18.0, -4.4, -4.7; **IR** (KBr, cm⁻¹) 3312, 3071, 2956, 2929, 2856, 1428, 1256, 1089, 836, 504; **HRMS** (ESI, m/z) calcd for C₃₂H₄₈O₂Si₂ [M+Na]⁺: 543.3085, found: 543.3085.

Synthesis of (*E*)-vinyl iodide 5

To a solution of Cp₂ZrCl₂ (6.24 g, 21.36 mmol) in THF (120 mL) at 0 °C was added DIBAL-H (21.36 mL, 1 M in hexane, 21.36 mmol). The resultant suspension was stirred at 0 °C for 30 min. To the suspension at 0 °C was added a solution of terminal alkyne **S3** (3.72 g, 7.12 mmol) in THF (25 mL). The reaction mixture was stirred at rt for 2 h and then cooled to -78 °C before the addition of iodine (7.23 g, 28.48 mmol) in THF (25 mL) dropwise. The reaction mixture was stirred at -78 °C for 30 min then warmed to rt, quenched with saturated Na₂SO₃ solution carefully, and extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 200:1) afforded **5** (4.53 g, 98% yield) as a colorless oil.

[α]_D²⁵ +7.3 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.67 (m, 4H), 7.46 – 7.39 (m, 6H), 6.43 (dt, J = 14.3, 6.9 Hz, 1H), 6.01 (d, J = 14.3 Hz, 1H), 5.28 (t, J = 6.7 Hz, 1H), 3.95 – 3.86 (m, 1H), 3.80 – 3.70 (m, 2H), 2.76 (dd, J = 14.9 Hz, 6.9 Hz, 1H), 2.70 (dd, J = 14.9 Hz, 6.9 Hz, 1H), 2.15 (t, J = 6.7 Hz, 2H), 1.71 (s, 3H), 1.70 – 1.65 (m, 2H), 1.09 (s, 9H), 0.89 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 135.6, 133.9, 132.5, 129.6, 129.5, 127.6, 123.6, 75.4, 69.3, 60.8, 39.9, 38.6, 36.0, 26.9, 25.9, 23.5, 19.2, 18.1, -4.4, -4.7; IR (KBr, cm⁻¹) 2954, 2928, 2856, 1682, 1428, 1255, 836, 504; HRMS (ESI, m/z) calcd for C₃₂H₄₉IO₂Si₂ [M+Na]⁺: 671.2208, found: 671.2206.

Synthesis of (Z,E,E)-skipped triene 13 via Suzuki cross coupling

To a solution of (*E*)-vinyl iodide **5** (4.53 g, 6.98 mmol) in THF (40 mL) at rt was added Pd(dppf)Cl₂ (0.26 g, 0.35 mmol), degassed with argon for 5 min. To the mixture were added vinyl borate **12**³ (1.85 g, 9.07 mmol) and KOH (13.96 mL, 2 M, 27.92 mmol) aqueous. The reaction mixture was stirred at rt for 12 h then diluted with water, extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 200:1) afforded **13** (4.01 g, 99% yield) as a colorless oil.

[α]_D²⁵ +4.3 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.66 (m, 4H), 7.46 – 7.35 (m, 6H), 6.07 (d, *J* = 15.4 Hz, 1H), 5.50 – 5.40 (m, 2H), 5.22 (t, *J* = 7.0 Hz, 1H), 3.95 – 3.86 (m, 1H), 3.80 – 3.69 (m, 2H), 2.81 (dd, *J* = 14.7 Hz, 6.9 Hz, 1H), 2.76 (dd, *J* = 14.7 Hz, 6.9 Hz, 1H), 2.26 – 2.12 (m, 2H), 1.75 – 1.64 (m, 11H), 1.07 (s, 9H), 0.87 (s, 9H), 0.06 (s, 3H), 0.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.58, 135.56, 135.2, 134.4, 134.0, 129.51, 129.49, 127.6, 124.7, 124.1, 121.9, 69.6, 61.0, 39.9, 36.1, 35.5, 26.9, 25.9, 23.6, 19.2, 18.1, 13.7, 12.1, –4.4, –4.7; IR (KBr, cm⁻¹) 2956, 2929, 1721, 1472, 1257, 836, 702, 505; HRMS (ESI, m/z) calcd for C₃₆H₅₆O₂Si₂ [M+Na]⁺: 599.3711, found: 599.3728.

Table S2. Optimization of Suzuki Cross-Coupling

	OTBS OTBDPS	OTBS OTBDPS	OTBS OTBDPS	DTBS OTBDPS
	solvent	rt +	+ 13a	H H 13b
Entry	Catalyst (5 mol%)	Solvent	Base	Yield (%) (13/13a/13b)
1	$Pd(PPh_3)_4$	THF	Cs_2CO_3	(only 13b)
2	Pd(PPh ₃) ₄	THF/H ₂ O 4:1	Cs_2CO_3	35 (2.2:0:1)
3	$Pd(PPh_3)_4$	THF/ H ₂ O 4:1	KOH	94 (4:1:0)
4	$Pd(PPh_3)_4$	THF/ H ₂ O 4:1	NaOH	87 (5:1:0)
5	$Pd(PPh_3)_4$	THF/ H ₂ O 4:1	LiOH	86 (3.8:1:0.7)
6	$Pd(PPh_3)_4$	THF/ H ₂ O 4:1	Ag ₂ O	40 (2.9:0:1)
7	$Pd(PPh_3)_4$	THF	KOH (solid)	47 (3.3:0:1)
8	$Pd(PPh_3)_4$	THF	KOH (sat. aq)	89 (8.4:0:1)
9	Pd(dppf)Cl ₂	THF	KOH (2 M, aq)	99 (only 13)

Synthesis of primary alcohol S4

To a solution of (*Z*,*E*,*E*)-skipped triene **13** (1.43 g, 2.48 mmol) in MeOH (30 mL) at rt was added NH₄F (0.92 g, 24.8 mmol). The reaction mixture was stirred at rt for 48 h. Then the solvent was removed *in vacuo*. To the residue was added water, extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 40:1) afforded **S4** (0.67 g, 80% yield) as a colorless oil.

[α]_D²⁵ +6.3 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.05 (d, J = 15.5 Hz, 1H), 5.49 – 5.38 (m, 2H), 5.16 (t, J = 7.2 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.86 – 3.76 (m, 1H), 3.76 – 3.65 (m, 1H), 2.81 (dd, J = 15.4 Hz, 6.8 Hz, 1H), 2.77 (dd, J = 15.4 Hz, 6.8 Hz, 1H), 2.46 (brs, 1H), 2.35 – 2.17 (m, 2H), 1.84 – 1.77 (m, 1H), 1.72 – 1.67 (m, 9H), 1.66 – 1.59 (m, 1H), 0.89 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 135.6, 134.3, 124.9, 123.8, 121.2, 72.1, 60.3, 37.7, 35.5, 35.4, 25.8, 23.6, 17.9, 13.6, 12.0, -4.4, -4.9; **IR** (KBr, cm⁻¹) 3418, 2929, 2856, 1721, 1258, 1087, 837, 776; MS (ESI, m/z) calcd for C₂₀H₃₈O₂Si [M+H]⁺: 339.3, found: 339.2.

Synthesis of skipped trienaldehyde 4

To a solution of primary alcohol S4 (107 mg, 0.315 mmol) in CH_2Cl_2 (10 mL) at rt was added DMP (200 mg, 0.472 mmol). The reaction mixture was stirred at rt for 30 min then quenched with saturated Na₂SO₃ solution and saturated NaHCO₃ solution, extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 80:1) afforded 4 (77 mg, 73% yield) as a colorless oil.

[α]_D²⁵ +14.0 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.78 (t, J = 2.5 Hz, 1H), 6.05 (d, J = 15.4 Hz, 1H), 5.49 – 5.37 (m, 2H), 5.18 (t, J = 7.3 Hz, 1H), 4.25 – 4.13 (m, 1H), 2.83 – 2.72 (m, 2H), 2.50 (dd, J = 5.9, 2.5 Hz, 2H), 2.37 – 2.17 (m, 2H), 1.72 – 1.67 (m, 9H), 0.87 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.2, 136.8, 135.8, 134.2, 125.0, 123.6, 120.5, 68.5, 50.6, 36.3, 35.4, 25.7, 23.7, 18.0, 13.7, 12.1, –4.4, –4.9; **IR** (KBr, cm⁻¹) 3354, 2928, 2856, 2719, 1727, 1471, 1257, 1092, 776; **HRMS** (ESI, m/z) calcd for C₂₀H₃₆O₂Si [M+Na]⁺: 359.2377, found: 359.2376.

2.2 Total synthesis of periconiasin A

Synthesis of β-hydroxy lactam S5

To a solution of lactam 3^4 (151 mg, 0.615 mmol) in THF (10 mL) at -78 °C was added LiHMDS (0.67 mL, 1 M in THF, 0.671 mmol). The reaction mixture was stirred at -78 °C for 1 h before the addition of trienaldehyde 4 (188 mg, 0.559 mmol) in THF (2 mL). The reaction mixture was stirred at -78 °C for 2 h then quenched with saturated NH₄Cl solution, extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash

chromatography (PE/EtOAc = 40:1) afforded S5 (280 mg, 86% yield) as a colorless oil.

Data for one of the diastereomers: ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 3H), 7.45 – 7.39 (m, 2H), 6.05 (d, J = 15.5 Hz, 1H), 5.51 – 5.39 (m, 2H), 5.17 (t, J = 7.2 Hz, 1H), 4.63 – 4.54 (m, 1H), 4.17 (s, 1H), 4.04 – 3.92 (m, 2H), 2.85 – 2.71 (m, 3H), 2.34 – 2.25 (m, 1H), 2.23 – 2.14 (m, 1H), 1.96 (dd, J = 10.0, 4.9 Hz, 2H), 1.76 – 1.64 (m, 12H), 1.50 – 1.38 (m, 2H), 1.00 (d, J = 5.5 Hz, 3H), 0.98 (d, J = 5.5 Hz, 3H), 0.88 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 170.1, 135.7, 135.6, 134.8, 134.3, 132.0, 128.5, 127.9, 124.8, 123.9, 121.3, 69.0, 68.96, 53.9, 47.3, 43.0, 40.8, 36.2, 35.4, 27.0, 25.9, 25.5, 23.6, 23.4, 21.7, 18.0, 13.7, 12.1, -4.4, – 4.9; HRMS (ESI, m/z) calcd for C₃₅H₅₅NO₄Si [M+Na]⁺: 604.3793, found: 604.3793.

Synthesis of β -keto lactam 14

To a solution of TFAA (0.03 mL, 0.233 mmol) in CH₂Cl₂ (2 mL) at -78 °C was added a solution of DMSO (0.03 mL, 0.389 mmol) in CH₂Cl₂ (1 mL). The reaction mixture was stirred at -78 °C for 20 min before the addition of β -hydroxy lactam **S5** (49.2 mg, 0.078 mmol) in CH₂Cl₂ (2 mL). Then the mixture was stirred at -78 °C for 40 min before the addition of Et₃N (0.11 mL, 0.778 mmol). The resultant mixture was stirred -78 °C for 20 min then warmed to rt, quenched with water, extracted with CH₂Cl₂. The combined organic layer was dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 60:1) afforded **14** (30.1 mg, 61% yield, ketone/enol = 1:1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 11.64 (s, 0.07H), 11.58 (s, 0.49H), 7.63 – 7.50 (m, 3H), 7.45 – 5.35 (m, 2H), 6.12 – 5.98 (m, 1H), 5.51 – 5.35 (m, 2H), 5.25 – 5.09 (m, 1H), 4.58 – 4.37 (m, 1H), 4.26 – 4.06 (m, 1H), 3.93 (t, *J* = 8.4 Hz, 0.24H), 3.78 – 3.70 (m, 0.20H), 3.04 – 2.89 (m, 1H), 2.87 – 2.59 (m, 3H), 2.44 – 2.21 (m, 4H), 1.94 – 1.75 (m, 2H), 1.74 – 1.66 (m, 9H), 1.45 – 1.34 (m, 1H), 1.05 – 0.94 (m, 6H), 0.89 – 0.82 (m, 9H), 0.09 – -0.02 (m, 6H); **HRMS** (ESI, m/z) calcd for C₃₅H₅₃NO₄Si [M+Na]⁺: 602.3636, found: 602.3635. Synthesis of 15

To a solution of β -keto lactam 14 (52.0 mg, 0.0897 mmol) in THF (3 mL) at -78 °C was added LiHMDS (0.10 mL, 1 M in THF, 0.103 mmol). The reaction mixture was stirred at -78 °C for 1 h before the addition of PhSeCl (21.4 mg, 0.112 mmol) in THF (2 mL). The resultant mixture was stirred -78 °C for 1 h then warmed to rt, quenched with saturated NH₄Cl solution, extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 80:1) afforded 15 (58.9 mg, 89% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.30 (m, 10H), 56.10 – 6.00 (m, 1H), 5.51 – 5.34 (m, 2H), 5.23 (t, *J* = 7.1 Hz, 0.7H), 5.10 (t, *J* = 7.1 Hz, 0.3H), 4.35 – 4.14 (m, 2H), 3.41 – 3.13 (m, 2H), 3.07 – 2.69 (m, 3H), 2.36 – 2.24 (m, 2H), 2.19 – 2.08 (m, 1H), 1.94 – 1.75 (m, 2H), 1.71 – 1.62 (m, 9H), 1.46 – 1.32 (m, 1H), 0.88 (m, 15H), 0.09 – 0.03 (m, 6H); **HRMS** (ESI, m/z) calcd for C₄₁H₅₇NO₄SeSi [M+Na]⁺: 758.3114, found: 758.3115.

Synthesis of 9/6/5 tricyclic lactam 16 via intramolecular Diels-Alder reaction

To a solution of **15** (52.0 mg, 0.0897 mmol) in CH_2Cl_2 (4 mL) at 0 °C was added H_2O_2/H_2O (0.23 mL, 30% H_2O_2/H_2O (v/v) = 1:2). The reaction mixture was stirred at 0 °C for 45 min then quenched with cooled saturated NaHCO₃ solution, extracted with cooled CHCl₃. The combined organic layer was dried over MgSO₄, filtered through a pad of celite. The filtrate include crude product was used in next step.

CHCl₃ (20 mL) was added to the crude product (from previous step) in CHCl₃. The mixture was heated to 90 °C in a sealed tube under argon and stirred for 6 h, then cooled to rt and concentrated *in vacuo*. Purification of the residue by flash chromatography

(PE/EtOAc = 50:1) afforded **16***-endo* (10.5 mg, 36% yield over 2 steps) as a colorless oil, **16***-exo* (5.3 mg, 18% yield over 2 steps) as a colorless oil.

16-*endo*: $[\alpha]_D^{25}$ –34.8 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.50 (m, 3H), 7.46 – 7.40 (m, 2H), 5.51 (s, 1H), 5.18 (dd, J = 9.7, 7.1 Hz 1H), 4.27 (dd, J = 9.7, 3.6 Hz, 1H), 4.12 – 4.02 (m, 1H), 3.94 – 3.78 (m, 1H), 3.50 (brs, 1H), 2.72 – 2.50 (m, 4H), 2.42 – 2.30 (m, 1H), 2.10 – 2.01 (m, 1H), 1.78 (s, 3H), 1.76 – 1.64 (m, 3H), 1.62 (s, 3H), 1.60 – 1.57 (m, 1H), 1.28 (d, J = 6.3 Hz, 3H), 0.98 (d, J = 6.3 Hz, 3H), 0.90 (d, J = 6.3 Hz, 3H), 0.89 (s, 9H), 0.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 208.9, 175.2, 169.8, 139.9, 137.4, 134.7, 132.0, 129.3, 128.4, 128.0, 122.5, 70.5, 70.2, 54.0, 51.3, 48.4, 46.0, 45.6, 38.6, 34.7, 31.6, 25.8, 24.7, 23.5, 23.4, 21.6, 19.1, 18.0, 13.5, -4.8, -4.9; **IR** (KBr, cm⁻¹) 2957, 2927, 2855, 1731, 1698, 1462, 1287, 1069, 836; **HRMS** (ESI, m/z) calcd for C₃₅H₅₁NO₄Si [M+Na]⁺: 600.3480, found: 600.3475.

16-*exo*: $[\alpha]_D^{25}$ –43.6 (c 1.0, CHCl₃); ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (t, J = 7.1 Hz, 1H), 7.45 – 7.34 (m, 4H), 5.67 (d, J = 6.7 Hz, 1H), 5.22 (t, J = 8.12 Hz, 1H), 4.48 – 4.37 (m, 1H), 4.05 (d, J = 9.5 Hz, 1H), 3.33 (dd, J = 16.9, 10.7 Hz, 1H), 3.19 – 3.10 (m, 2H), 2.30 – 2.15 (m, 3H), 2.15 – 1.98 (m, 3H), 1.94 – 1.85 (m, 1H), 1.80 (s, 3H), 1.76 (s, 3H), 1.64 – 1.48 (m, 2H), 1.17 (d, J = 7.2 Hz, 3H), 1.04 (d, J = 6.8 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H), 0.87 (s, 9H), 0.09 (s, 3H), 0.05 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 206.3, 173.1, 170.3, 139.5, 138.6, 134.8, 132.0, 128.2, 128.0, 125.7, 118.9, 69.0, 67.9, 64.2, 44.4, 42.5, 41.1, 40.4, 40.2, 36.0, 32.5, 25.8, 25.2, 23.9, 23.8, 22.6, 21.7, 21.5, 18.0, -4.8; **IR** (KBr, cm⁻¹) 2956, 2928, 2855, 1734, 1701, 1472, 1287, 1070, 838; **HRMS** (ESI, m/z) calcd for C₃₅H₅₁NO₄Si [M+Na]⁺: 600.3480, found: 600.3480.

Synthesis of periconiasin A (1)

To a solution of lactam **16** (113 mg, 0.196 mmol) in MeOH (15 mL) at 0 °C was added NaOH (0.59 mL, 1 M, 0.588 mmol) aqueous. The reaction mixture was stirred at 0 °C for 1.5 h then diluted with water, extracted with Et_2O . The combined organic layer was dried over MgSO₄ and concentrated *in vacuo*. The crude product was used in the next step without further purification.

To a solution of the crude product (from previous step) in THF (15 mL) at rt was added

TBAF (0.78 mL, 1 M in THF, 0.784 mmol). The reaction mixture was heated to 35 °C for 4 h, then quenched with water, extracted with Et_2O . The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 1:1) afforded periconiasin A (1) (44.1 mg, 63% yield over 2 steps) as a colorless gum.

Periconiasin A (1): $[\alpha]_{D}^{20}$ -20.3 (c 0.1, MeOH), reported optical rotation⁵ for natural 1: $[\alpha]_D^{20}$ -21.7 (c 0.12, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 6.62 (s, 1H), 5.57 (s, 1H), 5.15 (dd, J = 9.5, 7.1 Hz, 1H), 3.88 (brs, 1H), 3.79 – 3.59 (m, 1H), 3.17 (d, J =9.5 Hz, 1H) 3.05 – 2.84 (m, 1H), 2.63 – 2.47 (m, 1H), 2.47 – 2.35 (m, 2H), 2.18 – 2.10 (m, 1H), 1.97 - 1.84 (m, 1H), 1.80 (d, J = 14.2 Hz, 1H), 1.73 (s, 3H), 1.67 (s, 3H), 1.65-1.56 (m, 1H), 1.27 - 1.22 (m, 2H), 1.18 (d, J = 7.2 Hz, 3H), 1.10 - 1.02 (m, 1H), 0.89 (d, J = 6.6 Hz, 3H), 0.87 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.4, 175.7, 140.1, 138.9, 129.8, 120.5, 70.5, 67.8, 52.3, 50.9, 48.3, 42.5, 36.1, 35.4, 31.8, 29.6, 24.8, 23.8, 23.5, 21.3, 19.6, 13.2; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.17 (s, 1H), 5.40 (s, 1H), 5.08 (dd, J = 10.4, 6.8 Hz, 1H), 4.81 (d, J = 4.0 Hz, 1H), 4.14 – 4.04 (m, 1H), 3.80 - 3.70 (m, 1H), 3.31 - 3.26 (m, 1H), 3.02 (brs, 1H), 2.69 (dd, J = 12.4, 10.4 Hz, 1H), 2.44 – 2.31 (m, 3H), 2.14 – 2.07 (m, 1H), 2.00 (dd, J = 12.4, 6.8 Hz, 1H), 1.70 (s, 3H), 1.63 - 1.55 (m, 2H), 1.54 (s, 3H), 1.11 (d, J = 7.2 Hz, 3H), 1.06 - 0.98 (m, 2H),0.83 (d, J = 6.4 Hz, 3H), 0.83 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 212.2, 175.7, 138.7, 136.6, 128.9, 122.7, 69.3, 65.9, 55.3, 49.6, 48.8, 46.7, 43.6, 37.3, 34.8, 30.9, 24.0, 23.6, 23.5, 21.7, 19.4, 12.9; **IR** (KBr, cm⁻¹) 3206, 2960, 2924, 2855, 1689, 1462, 1384, 1294, 1260, 1164, 1048, 897, 799, 659; HRMS (ESI, m/z) calcd for C₂₂H₃₃NO₃ [M+Na]⁺: 382.2353, found: 382.2352.

References

- 1 (a) J. A. Frick, J. B. Klassen, A. Bathe, J. M. Abramson and H. Rapoport, *Synthesis*, 1992, 621; (b) C. I. Grove and J. T. Shaw, *Synthesis*, 2012, 362.
- 2 L. C. Morrill, S. M. Smith, A. M. Slawin and A. D. Smith, J. Org. Chem., 2014, 79, 1640.
- 3 J. L. Y. Chen, H. K. Scott, M. J. Hesse, C. L. Willis and V. K. Aggarwal, *Journal of the American Chemical Society*, 2013, **135**, 5316.
- 4 S. M. Canham, L. E. Overman and P. S. Tanis, *Tetrahedron*, 2011, 67, 9837.
- 5 D. Zhang, H. Ge, D. Xie, R. Chen, J.-h. Zou, X. Tao and J. Dai, *Org. Lett.*, 2013, **15**, 1674.

Table S3. ¹H NMR (DMSO- d_6) spectroscopic data comparison of natural and synthetic periconiasin A.

	Natural	Synthetic	Err
D 10	δ ¹ H [ppm, mult, <i>J</i> (Hz)]	δ ¹ H [ppm, mult, <i>J</i> (Hz)]	(Natural–
Position	400 MHz	400 MHz	Synthetic)
			Δδ (ррт)
1			
2	8.19 (s, 1H)	8.17 (s, 1H)	0.02
3	3.02 (brs, 1H)	3.02 (brs, 1H)	0
4	2.11 (dd, <i>J</i> = 5.6, 1.6 Hz, 1H)	2.11 (m, 1H)	0
5	2.39 (overlapped, 1H)	2.39 (overlapped, 1H)	0
6			
7	5.40 (s, 1H)	5.40 (s, 1H)	0
8	2.41 (overlapped, 1H)	2.41 (overlapped, 1H)	0
9			
10	1.02 (m, 2H)	1.02 (m, 2H)	0
11	1.11 (d, <i>J</i> = 7.2 Hz, 3H)	1.11 (d, <i>J</i> = 7.2 Hz, 3H)	0
12	1.70 (s, 3H)	1.70 (s, 3H)	0.1
	4.08 (m, 1H)	4.08 (m, 1H)	0
13	1.58 (m, 1H)	1.58 (m, 1H)	0
14			
15	5.08 (dd, J = 10.4, 6.8 Hz, 1H)	5.08 (dd, J = 10.4, 6.8 Hz, 1H)	0
	2.69 (dd, <i>J</i> = 12.4, 10.4 Hz,	2.69 (dd, J = 12.4, 10.4 Hz, 1H)	0
16	1H)	2.00 (dd, <i>J</i> = 12.4, 6.8 Hz, 1H)	-0.01
	1.99 (dd, <i>J</i> = 12.4, 6.8 Hz, 1H)		
17	3.75 (m, 1H)	3.75 (m, 1H)	0
10	3.30 (m, 1H)	3.30 (m, 1H)	0
18	2.35 (overlapped, 1H)	2.35 (overlapped, 1H)	0
19			
20	1.60 (m, 1H)	1.60 (m, 1H)	0
21	0.83 (d, J = 6.4 Hz, 3H)	0.83 (d, <i>J</i> = 6.4 Hz, 3H)	0
22	0.83 (d, J = 6.4 Hz, 3H)	0.83 (d, J = 6.4 Hz, 3H)	0
23	1.54 (s, 3H)	1.54 (s, 3H)	0
—ОН	4.82 (d, $J = 4.0$ Hz, 1H)	4.81 (d, <i>J</i> = 4.0 Hz, 1H)	0.01

Table S4. ¹³C NMR (DMSO- d_6) spectroscopic data comparison of natural and synthetic periconiasin A.

	Natural	Synthetic	Err
Position	δ ¹³ C [ppm, mult, <i>J</i> (Hz)]	δ ¹³ C [ppm, mult, <i>J</i> (Hz)]	(Natural–Synthetic)
	100 MHz	100 MHz	Δδ (ppm)
1	175.7	175.7	0
2			
3	49.5	49.6	-0.1
4	55.3	55.3	0
5	34.8	34.8	0
6	138.7	138.7	0
7	128.9	128.9	0
8	43.6	43.6	0
9	65.9	65.9	0
10	48.8	48.8	0
11	12.9	12.9	0
12	19.4	19.4	0
13	30.8	30.9	-0.1
14	136.6	136.6	0
15	122.7	122.7	0
16	37.3	37.3	0
17	69.3	69.3	0
18	46.7	46.7	0
19	212.2	212.2	0
20	23.9	24.0	-0.1
21	21.6	21.7	-0.1
22	23.5	23.5	0
23	23.6	23.6	0