Supporting Information

Enantioselective Total Synthesis of Periconiasin A
Zhixiong Zeng, Cheng Chen, Yandong Zhang*Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, iChEM,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005,China.Email: ydzhang@xmu.edu.cn
Table of Contents

1. General Information S2
2. Experimental Procedure S3
2.1 Syntheses of (Z, E, E)-skipped trienaldehyde S3
2.2 Total synthesis of periconiasin A S10
3. NMR Spectra Data S17

1. General Information

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise stated. All the chemicals were purchased commercially and used without further purification, unless otherwise stated. The boiling point of petroleum ether (PE) is between $60-90^{\circ} \mathrm{C}$. Tetrahydrofuran (THF) was distilled from sodium-benzophenone. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled from calcium hydride under argon atmosphere. Toluene was distilled from sodium under argon atmosphere. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm Qingdao silica gel plates (60F-254) using UV lights as the visualizing agent and KMnO_{4}. Flash column chromatography was performed over Qingdao silica gel (200-300 mesh). Infrared spectra were recorded on a Nicolet AVATER FTIR380 spectrometer as thin film and are reported in reciprocal centimeter $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra (HRMS) were recorded on a Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization. NMR spectra were recorded on Bruker AV-400, Bruker AV500 and Bruker AV-600 instruments and were calibrated using residual undeuterated solvents $\left(\mathrm{CHCl}_{3}, \delta_{\mathrm{H}}=7.26 ;\right.$ DMSO- $\left.d_{6}, \delta_{\mathrm{H}}=2.50\right)$ and deuterated solvents $\left(\mathrm{CDCl}_{3}, \delta_{\mathrm{C}}\right.$ $=77.0 ;$ DMSO- $d_{6}, \delta_{\mathrm{C}}=39.6$) as internal references. The data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, brs = broad singlet), coupling constants (Hz) and integration.

2. Experimental Procedure

2.1 Syntheses of (\boldsymbol{Z}, E, E)-skipped trienaldehyde

Synthesis of chiral diene ester 7

To a solution of chiral alcohol $\mathbf{8}^{1}(51.31 \mathrm{~g}, 144.7 \mathrm{mmol})$ and 3-methyl-3-butenoic acid $\mathbf{9}^{2}(36.22 \mathrm{~g}, 361.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added DMAP $(8.84 \mathrm{~g}, 72.36$ $\mathrm{mmol})$ and DCC ($68.62 \mathrm{~g}, 332.8 \mathrm{mmol}$) in sequence. The reaction mixture was stirred at this temperature for 1 h and filtered through a pad of celite. The filtrate was dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=150: 1)$ afforded $7(60.62 \mathrm{~g}, 96 \%$ yield $)$ as a colorless oil.
$[\alpha]_{\mathbf{D}}{ }^{25}+16.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.45$ - $7.37(\mathrm{~m}, 6 \mathrm{H}), 5.86-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.06$ (brs, 1H), 4.88 (brs, 1H), 4.82 (brs, 1H), 3.70 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.96 (s, 2H), $2.44-$ $2.28(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,138.6,135.54,135.51,133.7,133.6,133.5,129.6,127.6,117.8,114.5$, 70.7, 60.1, 43.7, 38.7, 36.3, 26.8, 22.4, 19.1; IR (KBr, cm^{-1}) $\square 3072$, 2958, 2930, 2857, 1734, 1112, 702; HRMS (ESI, m/z) calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si} \quad[\mathrm{M}+\mathrm{Na}]^{+}: 459.2326$, found: 459.2327.

Synthesis of seven-membered lactone 6 via RCM reaction

To a solution of Grubbs' $2^{\text {nd }}(0.194 \mathrm{mg}, 0.229 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(450 \mathrm{~mL})$ under argon was added a solution of diene ester $7(2.00 \mathrm{~g}, 4.58 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The reaction mixture was degassed twice with argon, heated to reflux for 15 h then cooled to rt . The reaction mixture was concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=50: 1)$ afforded $6(1.18 \mathrm{~g}, 63 \%$ yield $)$ as a colorless oil.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+3.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.46-$ $7.36(\mathrm{~m}, 6 \mathrm{H}), 5.45-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.80-$ $3.67(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.85$ $-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,135.4,133.6,133.4$, 129.7, 127.71, 127.69, 126.6, 122.4, 73.3, 59.6, 38.7, 38.0, 35.3, 26.8, 26.7, 19.2; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3070$, 2957, 2856, 1739, 1274, 1112, 703, 505; HRMS (ESI, m/z) calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 431.2013$, found: 431.2016.

Table S1. Optimization of RCM reaction.

Synthesis of Weinreb amide S1

To a solution of seven-membered lactone $\mathbf{6}(5.00 \mathrm{~g}, \quad 12.24 \mathrm{mmol})$ and $\mathrm{Me}(\mathrm{OMe}) \mathrm{NH} \cdot \mathrm{HCl} \quad(2.51 \mathrm{~g}, 25.70 \mathrm{mmol})$ in THF $(90 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $i-\mathrm{PrMgCl}$ ($25.70 \mathrm{~mL}, 51.41 \mathrm{mmol}$) dropwise. The reaction mixture was stirred at this temperature for 45 min then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(40 \mathrm{~mL})$. The reaction mixture was diluted with water, extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}=4: 1$) afforded $\mathbf{S} 1(5.71 \mathrm{~g}, 99 \%$ yield $)$ as a colorless oil.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-11.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.47$ - 7.35 (m, 6H), 5.46 (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.61$ (brs,
$1 \mathrm{H}), 3.23$ (brs, 2H), 3.19 ($\mathrm{s}, 3 \mathrm{H}$), $2.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.65(\mathrm{~m}$, $2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,135.4,135.3,133.4,133.3$, 131.4, 129.5, 127.5, 124.9, 69.5, 62.3, 61.0, 38.8, 36.3, 34.7, 32.1, 26.7, 24.0, 18.9; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 2930, 2856, 2360, 1650, 1427, 1005, 703, 505; HRMS (ESI, m/z) calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 492.2541$, found: 492.2545 .

Synthesis of Weinreb amide 10

To a solution of secondary alcohol $\mathbf{S 1}(500 \mathrm{mg}, 1.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added 2, 6-lutidine ($0.24 \mathrm{~mL}, 2.12 \mathrm{mmol}$) and TBSOTf ($0.36 \mathrm{~mL}, 1.59 \mathrm{mmol}$) in sequence. The reaction mixture was stirred at this temperature for 30 min then quenched with water (5 mL), extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=15: 1)$ afforded $\mathbf{1 0}(615 \mathrm{mg}, 99 \%$ yield $)$ as a colorless oil.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+4.12\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.45$ $-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.37(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.64$ (s, 3H), $3.20(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$, $0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,135.47,135.46,133.9,130.2$, $129.44,129.43,127.5,124.8,69.2,60.9,60.8,39.9,36.3,35.5,32.2,26.8,25.80,23.9$, 19.1, 18.0, -4.5, -4.8; IR (KBr, cm ${ }^{-1}$) 2927, 2854, 1661, 1427, 1255, 1111, 702; HRMS (ESI, m/z) calcd for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{NO}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 606.3405$, found: 606.3411.

Synthesis of dibromide S2

To a solution of Weinreb amide $\mathbf{1 0}(200 \mathrm{mg}, 0.342 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added Red-Al ($0.11 \mathrm{~mL}, 70 \mathrm{wt} \%$ in toluene ca. $3.5 \mathrm{M}, 0.376 \mathrm{mmol}$) dropwise. The reaction mixture was stirred at this temperature for 15 min then quenched with water
carefully. The reaction mixture was washed with saturated Rochelle salt solution, extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product aldehyde was used in next step without further purification.
To a solution of $\mathrm{CBr}_{4}(249 \mathrm{mg}, 0.752 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added PPh_{3} ($395 \mathrm{mg}, 1.505 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, the reaction mixture was stirred at this temperature for 30 min . Then to the reaction mixture at $0^{\circ} \mathrm{C}$ was added a solution of aldehyde (from previous step) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The reaction mixture was stirred at this temperature for 1 h then quenched with saturated NaHCO_{3} solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography (PE/EtOAc $=100: 1)$ afforded $\mathbf{S} \mathbf{2}(150 \mathrm{mg}, 64 \%$ from $\mathbf{1 0})$ as a colorless oil.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+4.1\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.48-$ $7.36(\mathrm{~m}, 6 \mathrm{H}), 6.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 1 \mathrm{H})$, $3.81-3.68$ (m, 2H), 2.83 (dd, $J=15.1 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dd, $J=15.1 \mathrm{~Hz}, 7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.18(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}$, 9H), $0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.3,135.6,134.0$, $132.3,129.6,129.5,127.6,123.9,89.3,69.3,60.9,39.9,36.1,35.9,26.9,25.9,23.6$, 19.2, 18.1, -4.4, -4.7; IR (KBr, cm^{-1}) 2927, 2854, 1722, 1428, 1113, 821, 702; HRMS (ESI, m/z) calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 703.1437, found: 703.1441.

Synthesis of terminal alkyne S3

To a solution of dibromide $\mathbf{S} 2(1.99 \mathrm{~g}, 2.92 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\operatorname{MeLi}(11.68 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 11.68 mmol$)$ dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min then stirred at $0^{\circ} \mathrm{C}$ for 30 min before being quenched with water carefully. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=200: 1)$ afforded $\mathbf{S 3}(1.47 \mathrm{~g}, 97 \%$ yield) as a colorless oil.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+12.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.44$ $-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.90$ (dd, $J=17.3 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=17.3 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.91(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}$, $9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.58,135.57,134.0$, $131.3,129.54,129.51,127.6,123.3,82.0,69.2,68.3,60.9,39.9,36.0,26.9,25.9,23.1$, $21.4,19.2,18.0,-4.4,-4.7$; IR (KBr, cm^{-1}) 3312, 3071, 2956, 2929, 2856, 1428, 1256, 1089, 836, 504; HRMS (ESI, m/z) calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 543.3085$, found: 543.3085.

Synthesis of (E)-vinyl iodide 5

To a solution of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(6.24 \mathrm{~g}, 21.36 \mathrm{mmol})$ in THF $(120 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DIBAL-H ($21.36 \mathrm{~mL}, 1 \mathrm{M}$ in hexane, 21.36 mmol). The resultant suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . To the suspension at $0^{\circ} \mathrm{C}$ was added a solution of terminal alkyne $\mathbf{S 3}(3.72 \mathrm{~g}, 7.12 \mathrm{mmol})$ in THF (25 mL). The reaction mixture was stirred at rt for 2 h and then cooled to $-78^{\circ} \mathrm{C}$ before the addition of iodine ($7.23 \mathrm{~g}, 28.48 \mathrm{mmol}$) in THF (25 mL) dropwise. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min then warmed to rt , quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution carefully, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography (PE/EtOAc $=200: 1)$ afforded $5(4.53 \mathrm{~g}, 98 \%$ yield $)$ as a colorless oil.
$[\alpha]_{\mathbf{D}^{25}}+7.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.46-$ $7.39(\mathrm{~m}, 6 \mathrm{H}), 6.43(\mathrm{dt}, J=14.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=14.9 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70(\mathrm{dd}, J=14.9 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.65$ $(\mathrm{m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.3,135.6,133.9,132.5,129.6,129.5,127.6,123.6,75.4,69.3,60.8,39.9$, $38.6,36.0,26.9,25.9,23.5,19.2,18.1,-4.4,-4.7$; IR (KBr, $\left.\mathrm{cm}^{-1}\right) 2954,2928,2856$, 1682, 1428, 1255, 836, 504; HRMS (ESI, m/z) calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{IO}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 671.2208, found: 671.2206.

Synthesis of (Z, E, E)-skipped triene 13 via Suzuki cross coupling

To a solution of (E)-vinyl iodide $5(4.53 \mathrm{~g}, 6.98 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at rt was added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.26 \mathrm{~g}, 0.35 \mathrm{mmol})$, degassed with argon for 5 min . To the mixture were added vinyl borate $\mathbf{1 2}^{3}$ ($1.85 \mathrm{~g}, 9.07 \mathrm{mmol}$) and $\mathrm{KOH}(13.96 \mathrm{~mL}, 2 \mathrm{M}, 27.92 \mathrm{mmol}$) aqueous. The reaction mixture was stirred at rt for 12 h then diluted with water, extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=200: 1)$ afforded $\mathbf{1 3}$ ($4.01 \mathrm{~g}, 99 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}+4.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.46-$ $7.35(\mathrm{~m}, 6 \mathrm{H}), 6.07(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{dd}, J=14.7 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}$, $J=14.7 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 11 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.87$ (s, 9H), $0.06(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.58,135.56$, $135.2,134.4,134.0,129.51,129.49,127.6,124.7,124.1,121.9,69.6,61.0,39.9,36.1$, $35.5,26.9,25.9,23.6,19.2,18.1,13.7,12.1,-4.4,-4.7$; IR (KBr, $\left.\mathrm{cm}^{-1}\right) 2956,2929$, 1721, 1472, 1257, 836, 702, 505; HRMS (ESI, m/z) calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 599.3711, found: 599.3728.

Table S2. Optimization of Suzuki Cross-Coupling

Entry	Catalyst (5 mol\%)	Solvent	Base	$\begin{aligned} & \text { Yield (\%) } \\ & (\mathbf{1 3 / 1 3 a / 1 3 b}) \end{aligned}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	(only 13b)
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF/ $\mathrm{H}_{2} \mathrm{O} 4: 1$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	35 (2.2:0:1)
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF/ $\mathrm{H}_{2} \mathrm{O} 4: 1$	KOH	94 (4:1:0)
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF/ $\mathrm{H}_{2} \mathrm{O} 4: 1$	NaOH	87 (5:1:0)
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF/ $\mathrm{H}_{2} \mathrm{O} 4: 1$	LiOH	86 (3.8:1:0.7)
6	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF/ $\mathrm{H}_{2} \mathrm{O} 4: 1$	$\mathrm{Ag}_{2} \mathrm{O}$	40 (2.9:0:1)
7	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF	KOH (solid)	47 (3.3:0:1)
8	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF	KOH (sat. aq)	89 (8.4:0:1)
9	$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$	THF	$\mathrm{KOH}(2 \mathrm{M}, \mathrm{aq})$	99 (only 13)

Synthesis of primary alcohol S4

To a solution of (Z, E, E)-skipped triene $13(1.43 \mathrm{~g}, 2.48 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ at rt was added $\mathrm{NH}_{4} \mathrm{~F}(0.92 \mathrm{~g}, 24.8 \mathrm{mmol})$. The reaction mixture was stirred at rt for 48 h . Then the solvent was removed in vacuo. To the residue was added water, extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}$ $=40: 1)$ afforded $\mathbf{S 4}(0.67 \mathrm{~g}, 80 \%$ yield $)$ as a colorless oil.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+6.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.05(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.49-5.38(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.76(\mathrm{~m}, 1 \mathrm{H})$, $3.76-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=15.4 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.4 \mathrm{~Hz}, 6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46$ (brs, 1H), $2.35-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 9 \mathrm{H}), 1.66$ $-1.59(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.9,135.6,134.3,124.9,123.8,121.2,72.1,60.3,37.7,35.5,35.4,25.8,23.6,17.9$, 13.6, 12.0, -4.4, -4.9; IR ($\mathrm{KBr}^{2} \mathrm{~cm}^{-1}$) 3418, 2929, 2856, 1721, 1258, 1087, 837, 776;

MS (ESI, m/z) calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 339.3$, found: 339.2.
Synthesis of skipped trienaldehyde 4

To a solution of primary alcohol $\mathbf{S 4}(107 \mathrm{mg}, 0.315 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt was added DMP ($200 \mathrm{mg}, 0.472 \mathrm{mmol}$). The reaction mixture was stirred at rt for 30 min then quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution and saturated NaHCO_{3} solution, extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=80: 1)$ afforded $\mathbf{4}(77 \mathrm{mg}, 73 \%$ yield $)$ as a colorless oil.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}+14.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.05(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.37(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.13(\mathrm{~m}$, $1 \mathrm{H}), 2.83-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{dd}, J=5.9,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.72-$ $1.67(\mathrm{~m}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $202.2,136.8,135.8,134.2,125.0,123.6,120.5,68.5,50.6,36.3,35.4,25.7,23.7,18.0$, 13.7, 12.1, -4.4, -4.9; IR (KBr, cm ${ }^{-1}$) 3354, 2928, 2856, 2719, 1727, 1471, 1257, 1092, 776; HRMS (ESI, m/z) calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 359.2377, found: 359.2376 .

2.2 Total synthesis of periconiasin A

Synthesis of $\boldsymbol{\beta}$-hydroxy lactam S5

To a solution of lactam $3^{4}(151 \mathrm{mg}, 0.615 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added LiHMDS ($0.67 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.671 mmol). The reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 h before the addition of trienaldehyde $4(188 \mathrm{mg}, 0.559 \mathrm{mmol})$ in THF (2 mL). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash
chromatography $(\mathrm{PE} / \mathrm{EtOAc}=40: 1)$ afforded $\mathbf{S 5}(280 \mathrm{mg}, 86 \%$ yield $)$ as a colorless oil.

Data for one of the diastereomers: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.51(\mathrm{~m}$, $3 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.39(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 4.04-3.92(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.71(\mathrm{~m}$, $3 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=10.0,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-$ $1.64(\mathrm{~m}, 12 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.2,170.1$, 135.7, 135.6, 134.8, 134.3, 132.0, 128.5, 127.9, 124.8, 123.9, 121.3, 69.0, 68.96, 53.9, $47.3,43.0,40.8,36.2,35.4,27.0,25.9,25.5,23.6,23.4,21.7,18.0,13.7,12.1,-4.4,-$ 4.9; HRMS (ESI, m/z) calcd for $\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 604.3793, found: 604.3793.

Synthesis of β-keto lactam 14

To a solution of TFAA ($0.03 \mathrm{~mL}, 0.233 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a solution of DMSO $(0.03 \mathrm{~mL}, 0.389 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min before the addition of β-hydroxy lactam $\mathbf{S 5}(49.2 \mathrm{mg}$, $0.078 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Then the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 40 min before the addition of $\mathrm{Et}_{3} \mathrm{~N}(0.11 \mathrm{~mL}, 0.778 \mathrm{mmol})$. The resultant mixture was stirred $-78{ }^{\circ} \mathrm{C}$ for 20 min then warmed to rt , quenched with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=60: 1)$ afforded $14(30.1 \mathrm{mg}, 61 \%$ yield, ketone/enol = 1:1) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.64(\mathrm{~s}, 0.07 \mathrm{H}), 11.58(\mathrm{~s}, 0.49 \mathrm{H}), 7.63-7.50(\mathrm{~m}, 3 \mathrm{H})$, $7.45-5.35(\mathrm{~m}, 2 \mathrm{H}), 6.12-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.35(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.09(\mathrm{~m}, 1 \mathrm{H})$, $4.58-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=8.4 \mathrm{~Hz}, 0.24 \mathrm{H}), 3.78-3.70(\mathrm{~m}$, $0.20 \mathrm{H}), 3.04-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.59(\mathrm{~m}, 3 \mathrm{H}), 2.44-2.21(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.75(\mathrm{~m}$, $2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 9 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.94(\mathrm{~m}, 6 \mathrm{H}), 0.89-0.82(\mathrm{~m}$, 9H), $0.09-0.02(\mathrm{~m}, 6 \mathrm{H})$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 602.3636, found: 602.3635 .

Synthesis of 15

To a solution of β-keto lactam $14(52.0 \mathrm{mg}, 0.0897 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added LiHMDS ($0.10 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.103 mmol). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h before the addition of $\mathrm{PhSeCl}(21.4 \mathrm{mg}, 0.112 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. The resultant mixture was stirred $-78^{\circ} \mathrm{C}$ for 1 h then warmed to rt , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=80: 1)$ afforded $15(58.9 \mathrm{mg}, 89 \%$ yield $)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.30(\mathrm{~m}, 10 \mathrm{H}), 56.10-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.34$ $(\mathrm{m}, 2 \mathrm{H}), 5.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.35-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.41$ - 3.13 (m, 2H), $3.07-2.69(\mathrm{~m}, 3 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.94-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 9 \mathrm{H}), 1.46-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~m}, 15 \mathrm{H}), 0.09-0.03(\mathrm{~m}$, 6 H); HRMS (ESI, m/z) calcd for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{NO}_{4} \mathrm{SeSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 758.3114, found: 758.3115.

Synthesis of 9/6/5 tricyclic lactam 16 via intramolecular Diels-Alder reaction

To a solution of $\mathbf{1 5}(52.0 \mathrm{mg}, 0.0897 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\left(0.23 \mathrm{~mL}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})=1: 2\right)$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min then quenched with cooled saturated NaHCO_{3} solution, extracted with cooled CHCl_{3}. The combined organic layer was dried over MgSO_{4}, filtered through a pad of celite. The filtrate include crude product was used in next step.
$\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was added to the crude product (from previous step) in CHCl_{3}. The mixture was heated to $90^{\circ} \mathrm{C}$ in a sealed tube under argon and stirred for 6 h , then cooled to rt and concentrated in vacuo. Purification of the residue by flash chromatography
$(\mathrm{PE} / \mathrm{EtOAc}=50: 1)$ afforded 16-endo $(10.5 \mathrm{mg}, 36 \%$ yield over 2 steps $)$ as a colorless oil, 16-exo ($5.3 \mathrm{mg}, 18 \%$ yield over 2 steps) as a colorless oil.
16-endo: $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-34.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.50(\mathrm{~m}$, $3 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=9.7,7.1 \mathrm{~Hz} 1 \mathrm{H}), 4.27(\mathrm{dd}, J=9.7$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{brs}, 1 \mathrm{H}), 2.72-2.50(\mathrm{~m}$, $4 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.62$ (s, 3H), $1.60-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.9,175.2$, $169.8,139.9,137.4,134.7,132.0,129.3,128.4,128.0,122.5,70.5,70.2,54.0,51.3$, $48.4,46.0,45.6,38.6,34.7,31.6,25.8,24.7,23.5,23.4,21.6,19.1,18.0,13.5,-4.8,-$ 4.9; IR (KBr, cm ${ }^{-1}$) 2957, 2927, 2855, 1731, 1698, 1462, 1287, 1069, 836; HRMS (ESI, m / z) calcd for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 600.3480$, found: 600.3475 .

16-exo: $[\alpha]_{\mathbf{D}}{ }^{25}-43.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 4 \mathrm{H}), 5.67(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-$ $4.37(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=16.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.10(\mathrm{~m}$, 2H), $2.30-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.76$ (s, 3H), $1.64-1.48$ (m, 2H), 1.17 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.04 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.3,173.1,170.3,139.5,138.6,134.8,132.0,128.2,128.0,125.7,118.9,69.0,67.9$, 64.2, 44.4, 42.5, 41.1, 40.4, 40.2, 36.0, 32.5, 25.8, 25.2, 23.9, 23.8, 22.6, 21.7, 21.5, 18.0, -4.8; IR (KBr, cm ${ }^{-1}$) 2956, 2928, 2855, 1734, 1701, 1472, 1287, 1070, 838; HRMS (ESI, m/z) calcd for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 600.3480$, found: 600.3480 .

Synthesis of periconiasin A (1)

To a solution of lactam $\mathbf{1 6}(113 \mathrm{mg}, 0.196 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaOH}(0.59 \mathrm{~mL}, 1 \mathrm{M}, 0.588 \mathrm{mmol})$ aqueous. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h then diluted with water, extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was dried over MgSO_{4} and concentrated in vacuo. The crude product was used in the next step without further purification.

To a solution of the crude product (from previous step) in THF (15 mL) at rt was added

TBAF ($0.78 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.784 mmol). The reaction mixture was heated to $35^{\circ} \mathrm{C}$ for 4 h , then quenched with water, extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=1: 1)$ afforded periconiasin $\mathrm{A}(\mathbf{1})$ ($44.1 \mathrm{mg}, 63 \%$ yield over 2 steps) as a colorless gum.

Periconiasin A (1): $[\alpha]_{\mathbf{D}^{20}}-20.3$ (c $0.1, \mathrm{MeOH}$), reported optical rotation ${ }^{5}$ for natural 1: $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}-21.7(\mathrm{c} 0.12, \mathrm{MeOH}) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.62(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}$, $1 \mathrm{H}), 5.15$ (dd, $J=9.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (brs, 1H), $3.79-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}) 3.05-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.10$ $(\mathrm{m}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.65$ $-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.89$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.4$, $175.7,140.1,138.9,129.8,120.5,70.5,67.8,52.3,50.9,48.3,42.5,36.1,35.4,31.8$, 29.6, 24.8, 23.8, 23.5, 21.3, 19.6, 13.2; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.17$ ($\mathrm{s}, 1 \mathrm{H}$), $5.40(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.04(\mathrm{~m}$, $1 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.02$ (brs, 1H), 2.69 (dd, $J=12.4,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.44-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=12.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70$ (s, 3H), $1.63-1.55$ (m, 2H), 1.54 (s, 3H), 1.11 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-0.98$ (m, 2H), $0.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) δ 212.2, 175.7, 138.7, 136.6, 128.9, 122.7, 69.3, 65.9, 55.3, 49.6, 48.8, 46.7, 43.6, 37.3, $34.8,30.9,24.0,23.6,23.5,21.7,19.4,12.9$; IR (KBr, cm^{-1}) 3206, 2960, 2924, 2855, 1689, 1462, 1384, 1294, 1260, 1164, 1048, 897, 799, 659; HRMS (ESI, m/z) calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 382.2353$, found: 382.2352 .

References

1 (a) J. A. Frick, J. B. Klassen, A. Bathe, J. M. Abramson and H. Rapoport, Synthesis, 1992, 621; (b) C. I. Grove and J. T. Shaw, Synthesis, 2012, 362.

2 L. C. Morrill, S. M. Smith, A. M. Slawin and A. D. Smith, J. Org. Chem., 2014, 79, 1640.
3 J. L. Y. Chen, H. K. Scott, M. J. Hesse, C. L. Willis and V. K. Aggarwal, Journal of the American Chemical Society, 2013, 135, 5316.
4 S. M. Canham, L. E. Overman and P. S. Tanis, Tetrahedron, 2011, 67, 9837.
5 D. Zhang, H. Ge, D. Xie, R. Chen, J.-h. Zou, X. Tao and J. Dai, Org. Lett., 2013, 15, 1674.

Table S3. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) spectroscopic data comparison of natural and synthetic periconiasin A.

Position	$\begin{gathered} \text { Natural } \\ \delta^{1} \mathrm{H}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ \mathbf{4 0 0 ~ M H z} \end{gathered}$	Synthetic $\begin{gathered} \delta{ }^{1} \mathrm{H}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 400 \mathrm{MHz} \end{gathered}$	Err (Natural- Synthetic) $\Delta \delta(\mathrm{ppm})$
1			
2	8.19 (s, 1H)	8.17 (s, 1H)	0.02
3	3.02 (brs, 1H)	3.02 (brs, 1H)	0
4	2.11 (dd, $J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$	2.11 (m, 1H)	0
5	2.39 (overlapped, 1H)	2.39 (overlapped, 1H)	0
6			
7	5.40 (s, 1H)	5.40 (s, 1H)	0
8	2.41 (overlapped, 1H)	2.41 (overlapped, 1H)	0
9			
10	1.02 (m, 2H)	1.02 (m, 2H)	0
11	1.11 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$	1.11 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$	0
12	1.70 ($\mathrm{s}, 3 \mathrm{H})$	1.70 (s, 3H)	0.1
13	$\begin{aligned} & 4.08(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.58(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.08(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.58(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
14			
15	5.08 (dd, $J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H})$	5.08 (dd, $J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H})$	0
16	$2.69 \text { (dd, } J=12.4,10.4 \mathrm{~Hz},$ 1H) $1.99(\mathrm{dd}, J=12.4,6.8 \mathrm{~Hz}, 1 \mathrm{H})$	$\begin{gathered} 2.69(\mathrm{dd}, J=12.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}) \\ 2.00(\mathrm{dd}, J=12.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}) \end{gathered}$	$\begin{gathered} 0 \\ -0.01 \end{gathered}$
17	3.75 (m, 1H)	3.75 (m, 1H)	0
18	$\begin{gathered} 3.30(\mathrm{~m}, 1 \mathrm{H}) \\ 2.35 \text { (overlapped, 1H) } \end{gathered}$	$\begin{gathered} 3.30(\mathrm{~m}, 1 \mathrm{H}) \\ 2.35 \text { (overlapped, 1H) } \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
19			
20	1.60 (m, 1H)	1.60 (m, 1H)	0
21	0.83 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$	0.83 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$	0
22	0.83 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$	0.83 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$	0
23	1.54 (s, 3H)	1.54 (s, 3H)	0
-OH	4.82 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$	$4.81(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$	0.01

Table S4. ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) spectroscopic data comparison of natural and synthetic periconiasin A .

Position	Natural $\begin{gathered} \delta{ }^{13} \mathrm{C}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 100 \mathrm{MHz} \end{gathered}$	Synthetic $\begin{gathered} \delta{ }^{13} \mathrm{C}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 100 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { Err } \\ \text { (Natural-Synthetic) } \\ \Delta \delta(\mathbf{p p m}) \end{gathered}$
1	175.7	175.7	0
2			
3	49.5	49.6	-0.1
4	55.3	55.3	0
5	34.8	34.8	0
6	138.7	138.7	0
7	128.9	128.9	0
8	43.6	43.6	0
9	65.9	65.9	0
10	48.8	48.8	0
11	12.9	12.9	0
12	19.4	19.4	0
13	30.8	30.9	-0.1
14	136.6	136.6	0
15	122.7	122.7	0
16	37.3	37.3	0
17	69.3	69.3	0
18	46.7	46.7	0
19	212.2	212.2	0
20	23.9	24.0	-0.1
21	21.6	21.7	-0.1
22	23.5	23.5	0
23	23.6	23.6	0

