Supplementary Material (ESI) for *Organic Chemistry Frontiers* This journal is ^Q The Royal Society of Chemistry 2012

One-step rapid synthesis of π -conjugated large oligomers *via* C–H activation coupling

Shi-Yong Liu,*ab Di-Gang Wang,b Ai-Guo Zhongb and He-Rui Wen*a

^aSchool of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China ^b Department of Pharmacy & Chemistry, Taizhou University, Taizhou 317000, P. R. China

Contents

1	. Figs. S1	S2
2	2. Scheme S1	S2
3	5. Fig. S2 and 3	S3
4	- Fig. S4	S4
5	5. Fig. S5	S5
6	5. Fig. S6	S6
7	7. Fig. S7	S7
8	^{3.} ¹ H and ¹³ C NMR, and Maldi-TOF MS spectra	38-22

Fig. S1 The molecular structures of Herr Pd, Pd₂(dba)₃, PCy₃ and P(o-MeOPh)₃.

Scheme S1 The Pd-catalyzed DA reaction, the reduction of Pd^{II} pre-catalyst to Pd⁰ catalytic species, the catalytic cycle of the DA coupling, and the palladation of C-H bond.

Supplementary Material (ESI) for *Organic Chemistry Frontiers* This journal is ^Q The Royal Society of Chemistry 2012

Fig. S2 The reaction between DPP and *p*-dibromobenzene with and without ligand $P(o-MeOPh)_3$ using toluene as reaction medium (entries 10 and 11 in Table 1). Digital photos of (a) The reaction mixtures after reacting for 12 h and cooling to room temperature. (b) The TLC analysis of both reaction mixtures, using CH_2Cl_2 : hexane (2:1, v/v) as eluent, and the spots marked with green and red frame are the reactant DPP and target product *p*-**B**(**DPP**)₂, respectively.

Fig. S3 The TLC analysis of the reactions between DPP and *p*-dibromobenzene (left) or *p*-diiodobenzene (right). (see Entries 12 and 13 in Table 1). The spots marked with green and red frame are the reactant DPP and target product p-**B**(**DPP**)₂, respectively.

Fig. S4 Digital photos of TLC analysis of the synthetic reactions for the eight oligomers. From left to right are respectively *p*-**B**-(**DPP**)₂, *m*-**B**-(**DPP**)₂, *o*-**B**-(**DPP**)₂, **DPP-DPP-DPP**, **TB-(DPP)**₃, **Py-(DPP)**₄, **TBE-(DPP)**₄ and **SF-(DPP)**₄. For all the TLC plates, the spots on the left are the starting DPP, and the spots marked with red dotted frames are the target oligomers.

Fig. S5 The shortest pathways of π -electron delocalization (marked with blue color) of the phenyl-cored DPP-based oligomers *o*-**B**-(**DPP**)₂, *m*-**B**-(**DPP**)₂, *p*-**B**-(**DPP**)₂ and **TB**-(**DPP**)₃, and the corresponding normalized Uv-vis spectra (below).

Fig. S6 DFT optimized geometries of phenyl-cored DPP-based oligomers, *o*-**B**-(**DPP**)₂, *m*-**B**-(**DPP**)₂, *p*-**B**-(**DPP**)₂ and **TB**-(**DPP**)₃ (the alkyl chains replaced by methyl groups).

Fig. S7 The shortest pathways of π -electron delocalization (marked with blue color) of the **Py-**, **TBE-** and **SF-(DPP)**₄ oligomers, and the corresponding normalized Uv-vis spectra (below).

Supplementary Material (ESI) for *Organic Chemistry Frontiers* This journal is ^Q The Royal Society of Chemistry 2012

Fig. S8 The Uv-vis spectra of the starting DPP, oligomers *o*-**B**-(**DPP**)₂, *m*-**B**-(**DPP**)₂, **TB**-(**DPP**)₃, *p*-**B**-(**DPP**)₂, **Py**-(**DPP**)₄, **TBE**-(**DPP**)₄ and **SF**-(**DPP**)₄ in CHCl₃ at concentrations of 4.54, 2.54, 2.03, 1.55, 2.16, 1.89, 1.07, 1.69 and 1.27 ×10⁻⁵ mol/L.

Table S1 The extinction coefficients of the DPP materials at λ_{max} (×10 ⁴ M ⁻¹ cm
--

DPP	<i>о</i> -В-(DPP) ₂	m-B-(DPP) ₂	p-B-(DPP) ₂	TB-(DPP)₃	DPP-DPP- DPP	Py- (DPP) ₄	TBE- (DPP) ₄	SF-(DPP) ₄
2.02	4.47	5.82	4.38	6.94	7.12	12.61	12.74	14.08

Supplementary Material (ESI) for *Organic Chemistry Frontiers* This journal is ^Q The Royal Society of Chemistry 2012

Fig. S8 The ¹H and ¹³C NMR spectra of *p*-B-(DPP)₂ in CDCl₃.

Fig. S9 The ¹H and ¹³C NMR spectra of *m*-B-(DPP)₂ in CD₂Cl₂.

Supplementary Material (ESI) for *Organic Chemistry Frontiers* This journal is ^Q The Royal Society of Chemistry 2012

Fig. S10 The ¹H and ¹³C NMR spectra of *o*-B-(DPP)₂ in CD₂Cl₂.

Supplementary Material (ESI) for *Organic Chemistry Frontiers* This journal is ^Q The Royal Society of Chemistry 2012

Fig. S11 The ¹H and ¹³C NMR spectra of DPP-DPP-DPP in CDCl₃.

Supplementary Material (ESI) for *Organic Chemistry Frontiers* This journal is ^Q The Royal Society of Chemistry 2012

Fig. S12 The ¹H and ¹³C NMR spectra of TB-(DPP)₃ in CDCl₃.

Fig. S13 The ¹H and ¹³C NMR spectra of Py-(DPP)₄ in CD₂Cl₂.

Supplementary Material (ESI) for Organic Chemistry Frontiers

Fig. S14 The ¹H and ¹³C NMR spectra of TBE-(DPP)₄ in CD₂Cl₂ and in CDCl₃, respectively.

Supplementary Material (ESI) for *Organic Chemistry Frontiers* This journal is ^Q The Royal Society of Chemistry 2012

Fig. S15 The ¹H and ¹³C NMR spectra of SF-(DPP)₄ in CD₂Cl₂.

Supplementary Material (ESI) for Organic Chemistry Frontiers

Fig. S16 The MALDI-TOF MS spectrum of *p*-B-(DPP)₂, calcd. 1572.51, found 1572.43.

Supplementary Material (ESI) for Organic Chemistry Frontiers

This journal is ^Q The Royal Society of Chemistry 2012

Supplementary Material (ESI) for Organic Chemistry Frontiers

Fig. S19 The MALDI-TOF MS spectrum of DPP-DPP-DPP, calcd. 2007.13, found 2007.82.

Supplementary Material (ESI) for Organic Chemistry Frontiers

Fig. S20 The MALDI-TOF MS spectrum of TB-(DPP)₃, calcd. 2319.71, found 2319.77.

Supplementary Material (ESI) for *Organic Chemistry Frontiers* This journal is ^Q The Royal Society of Chemistry 2012

Fig. S21 The MALDI-TOF MS spectrum of Py-(DPP)₄, calcd. 3191.05, found 3191.63.

Fig. S22 The MALDI-TOF MS spectrum of TBE-(DPP)₄, calcd. 3321.34, found 3321.30.

Supplementary Material (ESI) for Organic Chemistry Frontiers

Fig. S23 The MALDI-TOF MS spectrum of SF-(DPP)₄, calcd. 3305.20, found 3305.50.