Supporting Information

Substrate Selective Synthesis of Indole, Tetrahydroquinoline and Quinoline Derivatives *via* Intramolecular Addition of Hydrazones and Imines

Rahul K. Maurya,^a Om P. S. Patel,^a Devireddy Anand,^a Prem P. Yadav^{*, a}

^aMedicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.

E-mail: pp_yadav@cdri.res.in, ppy_cdri@yahoo.co.in

Table of contents.

1.	General Information	S2
2.	Experimental Procedures	S3-S7
3.	Characterization Data for Compounds	S7-S26
4.	References	S27
5.	Copies of ¹ H, ¹³ C NMR, HRMS Spectra	S28-S117
6.	LC-ESIMS of Crude Reaction of Compound 3ac	S117-S118
7.	ESI-MS of crude reaction mixtures of 3aa and 6aa	S118-S119

1. General Information

Melting points were determined by a capillary melting point apparatus and are uncorrected. All the compounds were fully characterized by ¹H, ¹³C, IR and further confirmed through ESI-MS and ESI-HRMS analysis. ¹H NMR spectra were recorded on 400 and 500 MHz in CDCl₃ and DMSO- d_6 and ¹³C NMR spectra recorded on 100 and 125 MHz in CDCl₃ and DMSO- d_6 . Multiplicities are reported as follows: singlet (s), doublet (d), broad singlet (br s), doublet of doublets (dd), triplet (t), doublet of triplet (dt), triplet of doublet (td) multiplet (m) and quintet (quint). Chemical shift (δ) and coupling constants (*J*) are reported in parts per million (ppm) relative to the residual signal of TMS in deuterated solvents and hertz, respectively. IR spectra were recorded using an FT-IR spectrophotometer and values are reported in cm⁻¹. HRMS were recorded using a Q-TOF mass spectrometer. Column chromatography was performed over silica gel (60-120, 100-200 and 230-400 mesh) by using EtOAc-*n*-hexane as eluent. All chemicals and reagents were purchased from commercial vendors and used without further purification.

2. Experimental Procedures

General Experimental Procedure for the Preparation of Starting Materials 1.

The starting materials hydrazones of 2-aminobenzophenones **1a**, **1b**, **1d**, **1f and 1e'** (known compounds)¹ and **1c**, **1e**, **1b'-1d'** (unknown) were prepared by using known literature procedure.^{1a, 1b} Most of the substrates were prepared by the experimental procedure mentioned below.

Experimental procedure for the synthesis of 2-aminobenzophenone phenylhydrazone substrates (1a-1c, 1e').

To a well-stirred solution of phenylhydrazine (2.0 mL; 1 equiv) in MeOH (30% acetic acid, 20 mL) was added 2-aminobenzophenones (1.0 equiv) at room temperature. The resulting mixture was allowed to stir for 24 h at room temperature. After completion of the reaction (monitored by TLC), MeOH was evaporated under reduced pressure and the residue was treated with saturated aq. NaHCO₃ solution (20 mL) and extracted with DCM (50 mL x 3). The organic layer was washed with brine (20 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure gave a crude product which was purified by column chromatography on silica gel (60-120 mesh) eluting with EtOAc-*n*-Hexane (3:97) to afford the solid products **1**. The Trans-geometry of **1a** was confirmed with the help of 2D-NOESY experiment.

Experimental procedure for the synthesis of 2, 3-diaryl indole (3).

(*E*)-2-(phenyl(2-phenylhydrazono)methyl)aniline **1** (300 mg, 1 equiv) was added to a wellstirred solution of benzaldehyde **2a** (1.1 equiv), BF₃.OEt₂ (0.2 equiv) and DMSO (10 mL) in 100 mL round bottom flask. The reaction mixture was allowed to stir for 24 h at 120 °C. The completion of the reaction was monitored by TLC. The reaction mixture was allowed to cool at room temperature and quenched with saturated aq. NaHCO₃ (10 mL) solution and extracted with EtOAc (50 x 3 mL). The organic layer was washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure gave a crude product which was purified by silica gel (100-200 mesh) column chromatography by using EtOAc-*n*hexane (2:98) as an eluent to afford the respective products (**3**).

Experimental procedure for the synthesis of 2-aryl-4-(2-phenylhydrazono)-1, 2, 3, 4tetrahydroquinoline (4).

(*E*)-2-(1-(2-phenylhydrazono)ethyl)aniline **1** (300 mg, 1equiv) was added to a well-stirred solution of benzaldehyde **2** (1.1 equiv), $BF_3.OEt_2$ (0.2 equiv) and DMSO (10 mL) in 100 mL round bottom flask. The reaction mixture was allowed to stir for 48 h at room temperature.

The completion of the reaction was monitored by TLC. The reaction mixture was quenched with 10 mL of saturated aq. NaHCO₃ solution and extracted with EtOAc (50 x 3 mL). The organic layer was washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure gave a crude product which was purified by silica gel (100-200 mesh) column chromatography by using EtOAc-*n*-Hexane (2: 98) as an eluent to afford respective products (**4**). The Trans-geometry of **4de** was confirmed with the help of 2D-NOESY experiment.

Experimental procedure for the synthesis of substituted quinoline (6).

Corresponding (*E*)-2-(aryl/methyl(2-phenylhydrazono)methyl)aniline **1** (300 mg, 1 equiv) was added to a well-stirred solution of ketone **5** (1.1 equiv), BF₃.OEt₂ (0.2 equiv) and DMSO (10 mL) in 100 mL round bottom flask. The reaction mixture was allowed to stir for 48 h at room temperature. The completion of the reaction was monitored by TLC. The reaction mixture was quenched with 10 mL of saturated aq. NaHCO₃ solution and extracted with EtOAc (50 x 3 mL). The organic layer was washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure gave a crude product which was purified by silica gel (100-200 mesh) column chromatography by using EtOAc-*n*-Hexane (1: 99) as an eluent to afford respective products (**6**).

Experimental procedure for three component synthesis of 3aa in one pot *via* successive addition:

2-aminobenzophenone (300 mg, 1 equiv) and phenylhydrazine (1 equiv) was stirred in DMSO (10 mL) at 120 °C for 5 h in 100 mL round bottom flask followed by addition of aldehyde (1.1 equiv) and BF₃.OEt₂ (0.2 equiv) and subsequent stirring of reaction mixture at 120 °C for another 19 h. The progress of the reaction was monitored by TLC. The reaction mixture was allowed to cool at room temperature and quenched with saturated aq. NaHCO₃ (10 mL) solution and extracted with EtOAc (50 x 3 mL). The organic layer was washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure gave a crude mixture of products which was further analyzed by ESI-MS data.

Experimental procedure for the synthesis of 1, 5-diazocine side product (7):

To a well stirred solution of 2-amino-5-chlorobenzophenone (300 mg, 1 equiv) in DMSO (10 mL) was added BF₃.OEt₂ (0.2 equiv) in 100 mL round bottom flask. The reaction mixture was allowed to stir for 24 h at 120 °C. The completion of the reaction was monitored by TLC. The reaction mixture was allowed to cool at room temperature and quenched with saturated aq.

NaHCO₃ (10 mL) solution and extracted with EtOAc (50 x 3 mL). The organic layer was washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure gave a crude product which was purified by silica gel (100-200 mesh) column chromatography by using EtOAc-*n*-hexane (1:99) as an eluent to afford the respective products (**7**) in 40% yield.

3. Characterization data for compounds

2-(*Phenyl*(2-*phenylhydrazono*)*methyl*)*aniline* (*1a*): White solid (816 mg, 56%), mp 160-163 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.29 (s, 1H), 7.61(t, 2H, *J* = 6.9 Hz), 7.56-7.52 (m, 1H), 7.30-7.28 (m, 2H), 7.21 (t, 2H, *J* = 8.3 Hz), 7.05 (d, 2H, *J* = 7.72 Hz), 7.00-6.96 (m, 1H), 6.91 (s, 2H), 6.80-6.75 (m, 2H), 6.46 (dd, 1H, *J* = 7.9, 1.3 Hz), 6.39-6.35 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 148.9 (C), 147.4 (C), 145.5 (C), 134.1 (C), 130.4 (CH), 129.9 (2xCH), 129.5 (2xCH), 129.38 (CH), 129.31 (2xCH), 128.7 (CH), 119.6 (CH), 119.2 (C), 116.2 (CH), 115.1 (CH), 112.9 (2xCH). FT-IR (KBr, *v*max/cm⁻¹) 3465, 3332, 1602, 1501, 1448, 1252, 1119, 1068, 750; HRMS (ESI): calcd for C₁₉H₁₈N₃ [M+H]⁺ 288.1501, found: 288.1493.

(*E*)-4-Chloro-2-(phenyl(2-phenylhydrazono)methyl)aniline (1b): White solid (241 mg, 58%), mp 151-153 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.52 (s, 1H), 7.61-7.51(m, 3H), 7.28-7.21 (m, 4H), 7.08-7.05 (m, 2H), 6.99-6.95 (m, 1H), 6.82 (br s, 2H) 6.77 (dd, 1H, *J* = 8.1, 0.9 Hz), 6.43 (dd, 1H, *J* = 8.0, 1.5 Hz), 6.37-6.33 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.7 (C), 145.7 (C), 144.8 (C), 132.9 (C), 129.6 (2xCH), 129.2 (CH), 129.0 (2xCH), 128.8 (2xCH), 128.5 (CH), 127.6 (CH), 120.0 (C), 119.4 (CH), 117.7 (C), 117.2 (CH), 112.5

(2xCH).FT-IR (KBr, *v*max/cm⁻¹) 3468, 3331, 1602, 1501, 1251, 1176, 750; HRMS (ESI): calcd for C₁₉H₁₇ClN₃ [M+H]⁺ 322.1111, found: 322.1103.

(*E*)-4-Chloro-2-((2-fluorophenyl)(2-phenylhydrazono)methyl)aniline (1c): Yellow solid (159 mg, 39%), mp 155-157 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.57(m, 1H), 7.41 (dt, 1H, *J* = 7.5, 1.0), 7.37-7.26 (m, 4H), 7.21 (br s, 1H), 6.82 (br s, 2H) 7.04 (dd, 1H, *J* = 8.6, 2.4 Hz), 6.96-6.88 (m, 3H), 6.72 (d, 1H, *J* = 8.6 Hz), 6.64 (dd, 1H, *J* = 2.3, 0.5 Hz), 6.11 (br s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.2 (d, *J* = 244 Hz, C), 144.5 (C), 144.8 (C), 140.6 (C), 131.9 (d, *J* = 8.0 Hz, CH), 131.1 (d, *J* = 4.0 Hz, CH), 129.0 (2xCH), 127.7 (CH), 127.5 (CH), 125.7 (d, *J* = 3.0 Hz, CH), 120.2 (d, *J* = 18 Hz, C), 119.6 (CH), 119.4 (CH), 118.1 (C), 117.3 (CH), 116.7 (d, *J* = 21 Hz, C), 112.6 (2xCH). FT-IR (KBr, *v*max/cm⁻¹) 3471, 3334, 3056, 1603, 1501, 1403, 1252, 1222, 1176, 1096, 756; HRMS (ESI): calcd for C₁₉H₁₆ClFN₃ [M+H]⁺ 340.1017, found: 340.1006.

(*E*)-2-(1-(2-Phenylhydrazono)ethyl)aniline (1d): Yellow solid (375 mg, 75%), mp 102-103 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 9.09 (s, 1H), 7.34(d, 1H, J = 7.9 Hz), 7.22 (t, 2H, J = 7.4 Hz), 7.08 (d, 2H, J = 8.4 Hz), 6.99 (t, 1H, J = 8.0 Hz), 6.76 (t, 1H, J = 7.2 Hz) 6.71 (d, 1H, J = 8.0 Hz), 6.63 (br s, 2H), 6.56 (t, 1H, J = 7.9 Hz), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 146.7 (C), 146.0 (C), 145.7 (C), 129.0 (2xCH), 128.1 (CH), 128.0 (CH), 119.8 (C), 118.7 (CH), 115.7 (CH), 115.1 (CH), 112.3 (2xCH), 14.4. FT-IR (KBr, vmax/cm⁻¹) 3453, 1603, 1496, 1252, 1216, 1159, 751; HRMS (ESI): calcd for C₁₄H₁₆N₃ [M+H]⁺ 226.1344, found: 226.1336.

2, 3-Diphenyl-1H-indole (3aa):² White solid (227 mg, 81%), mp 113-114 (lit.^{5e} 108-110 °C);
¹H NMR (400 MHz, CDCl₃): δ = 8.24 (br s, 1H), 7.69 (d, 1H, J = 8.0 Hz), 7.47-7.42 (m, 5H),

7.40-7.24 (m, 7H), 7.18-7.14 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 136.0 (C), 135.2 (C), 134.2 (C), 132.8 (C), 130.3 (2xCH), 128.9 (C), 128.8 (2xCH), 128.6 (2xCH), 128.3 (2xCH), 127.8 (CH), 126.3 (CH), 122.8 (CH), 120.5 (CH), 119.8 (CH), 115.2 (C), 111.0 (CH). FT-IR (KBr, ν_{max}/cm^{-1}) 3398, 3019, 2399, 1645, 1403, 1156, 1069, 928, 669; HRMS (ESI): calcd for C₂₀H₁₆N [M+H]⁺ 270.1283, found: 270.1273.

2-(4-Fluorophenyl)-3-phenyl-1H-indole (3*ab*):³ White solid (230 mg, 77%), mp 176-180 (lit.¹⁵ 174-176 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.19 (br s, 1H), 7.68 (d, 1H, J = 8.0 Hz), 7.44-7.36 (m, 7H), 7.31-7.24 (m, 2H), 7.18-7.14 (m, 1H), 7.06-7.00 (m, 2H).¹³C NMR (100 MHz, CDCl₃): δ 162.4 (d, J = 246 Hz, C), 136.0 (C), 134.9 (C), 133.3 (C), 130.2 (2xCH), 130.0 (d, J = 8 Hz, CH), 129.0 (d, J = 2.8 Hz, C), 128.8 (C), 128.7 (2xCH), 126.4 (CH), 122.9 (CH), 120.6 (CH), 119.8 (CH), 115.9 (d, J = 22 Hz, CH), 115.2 (C), 111.0 (CH). FT-IR (KBr, ν_{max}/cm^{-1}) 3745, 3392, 3019, 2924, 1645, 1512, 1403, 1158, 1047, 928, 839, 669; HRMS (ESI): calcd for C₂₀H₁₅FN [M+H]⁺ 288.1189, found: 288.1191.

2-(4-Chlorophenyl)-3-phenyl-1H-indole (3ac):⁴ White solid (253 mg, 80%), mp 197-200 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.20 (br s, 1H), 7.67 (d, 1H, J = 8.0 Hz), 7.44-7.24 (m, 11H), 7.18-7.14 (m, 1H).¹³C NMR (100 MHz, CDCl₃): $\delta = 136.1$ (C), 134.8 (C), 133.7 (C), 132.9 (C), 131.3 (C), 130.2 (2xCH), 129.4 (2xCH), 129.0 (2xCH), 128.7 (CH), 126.6 (CH), 123.1 (CH), 120.7 (CH), 119.9 (CH), 115.7 (C), 111.0 (CH). FT-IR (KBr, ν_{max}/cm^{-1}) 3399, 3019, 1644, 1215, 1155, 1069, 928, 669; HRMS (ESI): calcd for C₂₀H₁₅ClN [M+H]⁺ 304.0893, found: 304.0888.

2-(4-Bromophenyl)-3-phenyl-1H-indole (3ae):³ White solid (272 mg, 75%), mp 140-143 °C;
¹H NMR (400 MHz, CDCl₃): δ 8.19 (br s, 1H), 7.67 (d, 1H, J = 8.0 Hz), 7. 46-7.37 (m, 7H),
7.33-7.24 (m, 4H), 7.18-7.14 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 136.1 (C), 134.8 (C), s9

132.9 (C), 132.0 (2xCH), 131.7 (C), 130.2 (2xCH), 129.7 (2xCH), 128.88 (C), 128.80 (2xCH), 126.6 (CH), 123.2 (CH), 121.9 (C), 120.7 (CH), 119.9 (CH), 115.8 (C), 111.0 (CH).FT-IR (KBr, ν_{max}/cm^{-1}) 3398, 3019, 1645, 1402, 1216, 1155, 1068, 669; HRMS (ESI): calcd for C₂₀H₁₅BrN [M+H]⁺ 348.0388, found: 348.0375.

2-(3-Bromophenyl)-3-phenyl-1H-indole (3af):^{4a} White solid (254 mg, 70%), mp 124-126 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.24 (br s, 1H), 7.67 (d, 1H, J = 6.4 Hz), 7.61 (t, 1H, J = 1.4Hz), 7.44-7.38 (m, 6H), 7.33-7.25 (m, 3H), 7.18-7.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 136.1 (C), 134.9 (C), 134.6 (C), 132.4 (C), 130.7 (CH), 130.6 (CH), 130.28 (CH), 130.24 (2xCH), 128.7 (2xCH), 127.1 (CH), 126.7 (CH), 123.3 (CH), 122.8 (C), 120.7 (CH), 120.0 (CH), 116.1 (C), 111.1 (CH). FT-IR (KBr, ν_{max}/cm^{-1}) 3399, 3019, 2400, 1644, 1402, 1215, 1155, 1069, 928, 669; HRMS (ESI): calcd for C₂₀H₁₅BrN [M+H]⁺ 348.0388, found: 348.0380.

2-(2, 4-Dichlorophenyl)-3-phenyl-1H-indole (3ag): White solid (254 mg, 72%), mp 128-130 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.35 (br s, 1H), 7.80 (d, 1H, J = 8.0 Hz), 7.50 (d, 1H, J = 1.8 Hz), 7.45 (d, 1H, J = 8.1), 7.35-7.25 (m, 6H), 7.23-7.13 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 136.0 (C), 134.9 (C), 134.6 (C), 134.4 (C), 134.1 (CH), 130.4 (C), 130.3 (C), 130.2 (CH), 129.7 (2xCH), 128.6 (2xCH), 127.3 (CH), 126.4 (CH), 123.3 (CH), 120.6 (CH), 120.0 (CH), 117.6 (C), 111.1 (CH). FT-IR (KBr, ν_{max}/cm^{-1}) 3393, 3019, 1644, 1216, 1155, 1069, 1023, 928, 771, 669; HRMS (ESI): calcd for C₂₀H₁₄Cl₂N [M+H]⁺ 338.0503, found: 338.0512. 2-(2, 3-Dichlorophenyl)-3-phenyl-1H-indole (3ah): White solid (250 mg, 71%), mp 137-139 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.36 (br s, 1H), 7.81 (d, 1H, J = 7.9 Hz), 7.46 (d, 2H, J = 8.6 Hz), 7.34-7.28 (m, 5H), 7.26-7.16 (m, 3H), 7.10 (t, 1H, J = 7.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 135.9 (C), 134.6 (C), 134.2 (C), 133.9 (C), 132.4 (C), 131.7 (CH), 131.0 (C), 130.5

(CH), 129.7 (2xCH), 128.6 (2xCH), 127.4 (CH), 127.2 (C), 126.3 (CH), 123.3 (CH), 120.6 (CH), 120.1 (CH), 117.4 (C), 111.2 (CH).FT-IR (KBr, ν_{max}/cm^{-1}) 3461, 3019, 2343, 1602, 1522, 1475, 1021, 848, 669; HRMS (ESI): calcd for C₂₀H₁₄Cl₂N [M+H]⁺ 338.0503, found: 338.0506.

2-(2, 6-Dichlorophenyl)-3-phenyl-1H-indole (3ai): White solid (240 mg, 68%), mp 194-197 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.11 (br s, 1H), 7.85 (dd, 1H, J = 7.9, 0.8 Hz), 7.47-7.45 (m, 1H), 7.38-7.36 (m, 4H), 7.32-7.27 (m, 4H), 7.25-7.19 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.2$ (2xC), 136.2 (C), 134.8 (C), 131.6 (C), 130.7 (CH), 128.8 (2xCH), 128.6 (C), 128.4 (2xCH), 128.2 (2xCH), 127.1 (C), 126.2(CH), 123.0 (CH), 120.4 (CH), 120.1 (CH), 118.1 (C), 111.3 (CH). FT-IR (KBr, v_{max}/cm^{-1}) 3390, 1643, 1402, 1068, 831, 769; HRMS (ESI): calcd for C₂₀H₁₄Cl₂N [M+H]⁺ 338.0503, found: 338.0495.

2-(2-Chloro-6-fluorophenyl)-3-phenyl-1H-indole (3aj): White solid (218 mg, 65%), mp 137-139 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.21 (br s, 1H), 7.84 (d, 1H, J = 8.0 Hz), 7.46 (d, 1H, J = 8.1 Hz), 7.38-7.18 (m, 9H), 7.04-7.00 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 161.5 (d, J = 250 Hz, C), 136.3 (C), 134.9 (C), 130.9 (d, J = 10 Hz, C), 128.9 (2xCH), 128.5 (2xCH), 127.1 (C), 126.3 (CH), 125.6 (d, J = 3 Hz, CH), 124.6 (C), 123.1 (CH), 121.0 (d, J = 19 Hz, C), 120.4 (CH), 120.0 (CH), 118.9 (C), 114.5 (d, J = 23 Hz, CH), 111.2 (CH). FT-IR (KBr, v_{max}/cm^{-1}) 3399, 3021, 1611, 1216, 1068, 767, 670; HRMS (ESI): calcd for C₂₀H₁₄CIFN [M+H]⁺ 322.0799, found: 322.0794.

4-(3-Phenyl-1H-indol-2-yl)benzonitrile (3ak):⁵ Yellow solid (252 mg, 82%), mp 176-179 (lit.^{5a} 168-170 °C); ¹H NMR (400 MHz, CDCl₃): δ8.30 (br s, 1H), 7.61 (d, 1H, *J*= 8.1), 7.55-7.53 (m, 2H), 7.48-7.45 (m, 2H), 7.42 (d, 1H, *J*= 8.2), 7.38-7.35 (m, 4H), 7.33-7.29 (m, 1H), 7.28-7.22 (m, 1H), 7.15-7.11 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ137.3 (C), 136.5 (C),

134.3 (C), 132.5 (2xCH), 131.7 (C), 130.2 (2xCH), 129.0 (2xCH), 128.9 (C), 128.3 (2xCH), 127.1 (CH), 123.9 (CH), 121.0 (CH), 120.3 (CH), 118.8 (C), 117.7 (C), 111.2 (CH), 110.8 (C). FT-IR (KBr, *ν*max/cm⁻¹) 3745, 3390, 3019, 2227, 1607, 1511, 1329, 1216, 1155, 1070, 928, 842, 669; HRMS (ESI): calcd for C₂₁H₁₅N₂ [M+H]⁺ 295.1235, found: 295.1233

2-(4-Nitrophenyl)-3-phenyl-1H-indole(3al):⁶ Red solid (239 mg, 73%), mp 168-171 °C (lit.^{2g} 173-175 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.36 (br s, 1H), 8.17-8.14 (m, 2H), 7.65 (d, 1H, J= 7.9), 7.57-7.54 (m, 2H), 7.48-7.34 (m, 6H), 7.33-7.29 (m, 1H), 7.20-7.16 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.7 (C), 139.2 (C), 136.7 (C), 134.2 (C), 131.4 (C), 130.2 (2xCH), 129.0 (2xCH), 128.9 (C), 128.3 (2xCH), 127.2 (CH), 124.24 (CH), 124.21 (CH), 121.1 (CH), 120.4 (CH), 118.4 (C), 111.3 (CH). FT-IR (KBr, v_{max}/cm^{-1}) 3390, 1645, 1402, 1068, 770; HRMS (ESI): calcd for C₂₀H₁₅N₂O₂ [M+H]⁺ 315.1134, found: 315.1134.

3-Phenyl-2-(p-tolyl)-1H-indole (3am):^{6b, 7} Yellow oil (236 mg, 59%); ¹H NMR (400 MHz, CDCl₃): δ 8.18 (br s, 1H), 7.71 (d, 1H, *J*= 7.9), 7.49-7.14 (m, 12H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 137.7 (C), 135.9 (C), 135.3 (C), 134.3 (C), 130.3 (2xCH), 129.9 (C), 129.5 (2xCH), 128.9 (C), 128.6 (2xCH), 128.1 (2xCH), 126.2 (CH), 122.6 (CH), 120.5 (CH), 119.7 (CH), 114.7 (C), 110.9 (CH), 21.3. FT-IR (neat, *v*max/cm⁻¹) 3400, 3019, 1642, 1402, 1216, 1069, 669; HRMS (ESI): calcd for C₂₁H₁₈N [M+H]⁺ 284.1439, found: 284.1428.

Ethyl-2-(4-(3-phenyl-1H-indol-2-yl)phenoxy)acetate (3an): White solid (217 mg, 56%), mp 141-144 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.21 (br s, 1H), 7.67 (d, 1H, *J* = 7.6 Hz), 7.43-7.12 (m, 10H), 6.86 (d, 2H, *J* = 8.2 Hz), 4.62 (s, 2H), 4.27 (q, 2H, *J* = 6.7 Hz), 1.30 (t, 3H, *J* = 6.9 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 168.9 (C), 157.5 (C), 135.9 (C), 135.2 (C), 133.9 (C), 130.2 (2xCH), 129.6 (2xCH), 128.9 (C), 128.6 (2xCH), 126.4 (C), 126.2 (CH), 122.6 (CH), 120.5 (CH), 119.6 (CH), 115.0 (2xCH), 114.5 (C), 110.9 (CH), 65.5 (CH₂), 61.6 (CH₂),

14.3. FT-IR (KBr, *v*_{max}/cm⁻¹) 3390, 3019, 1642, 1402, 1216, 1069, 668; HRMS (ESI): calcd for C₂₄H₂₂NO₃ [M+H]⁺ 372.1600, found: 372.1595.

3-Phenyl-2-(3, 4, 5-trimethoxyphenyl)-1H-indole (3aq):^{5a} White solid (232 mg, 62%), mp 235-238 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.34 (br s, 1H), 7.65 (d, 1H, *J* = 7.9 Hz), 7.48-7.37 (m, 5H), 7.32-7.24 (m, 2H), 7.18-7.14 (m, 1H), 6.64 (s, 2H), 3.88 (s, 3H), 3.67 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 153.4 (2xC), 137.8 (C), 135.9 (C), 135.3 (C), 134.0 (C), 130.5 (2xCH), 129.0 (C), 128.6 (2xCH), 128.1 (C), 126.4 (CH), 122.8 (CH), 120.6 (CH), 119.7 (CH), 115.2 (C), 110.9 (CH), 105.4 (2xCH), 61.0, 56.0. FT-IR (KBr, *v*max/cm⁻¹) 3684, 3019, 1602, 1407, 1128, 1032, 928, 669; HRMS (ESI): calcd for C₂₃H₂₂NO₃ [M+H]⁺ 360.1600, found: 360.1586.

2-(*Furan-2-yl*)-3-phenyl-1H-indole(3ar):³ Yellow Oil (108 mg, 40%); ¹H NMR (400 MHz, CDCl₃): δ 8.64 (br s, 1H), 7.60-7.57 (m, 3H), 7.50 (t, 2H, J = 7.4 Hz), 7.44-7.38 (m, 3H), 7.27-7.23 (m, 1H), 7.14 (t, 1H, J = 7.4 Hz), 6.39-6.37 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 147.2$ (C), 141.4 (CH), 135.6 (C), 134.7 (C), 130.3 (2xCH), 128.9 (C), 128.7 (2xCH), 127.0 (CH), 125.3 (C), 123.0 (CH), 120.5 (CH), 119.6 (CH), 114.6 (C), 111.9 (CH), 110.9 (CH), 106.9 (CH). FT-IR (neat, ν_{max}/cm^{-1}) 3391, 3019, 1644, 1403, 1215, 1069, 928, 669; HRMS (ESI): calcd for C₁₈H₁₄NO [M+H]⁺ 260.1075, found: 260.1068.

3-Phenyl-2-(*thiophen-2-yl*)-**1H-***indole* (**3***as*):^{3, 8} White solid (195 mg, 68%), mp 120-123 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.23 (br s, 1H), 7.59 (d, 1H, *J* = 8.0 Hz), 7.55-7.53 (m, 2H), 7.48-7.37 (m, 4H), 7.29-7.26 (m, 2H), 7.18-7.14 (m, 1H), 7.12 (d, 1H, *J* = 3.5 Hz), 7.03-7.01 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 135.8 (C), 134.68 (C), 134.61 (C), 130.6 (2xCH), 129.1 (C), 128.6 (2xCH), 128.4 (C), 127.6 (CH), 126.9 (CH), 125.49 (CH), 125.43 (CH), 123.1 (CH), 120.6 (CH), 119.8 (CH), 115.9 (C), 110.8 (CH). FT-IR (KBr, *v*max/cm⁻¹) 3399, 3019, 1652, 1402, 1215, 1068, 668; HRMS (ESI): calcd for C₁₈H₁₄NS [M+H]⁺ 276.0847, found: 276.0838.

3-Phenyl-1H, 1'H-2, 3'-bündole (3at):^{4a, 9} Yellow solid (206 mg, 64%), mp 212-214 °C (lit.¹⁰ 220-221 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.80 (br s, 1H), 9.52 (br s, 1H), 7.66 (d, 1H, *J* = 7.3 Hz), 7.47-6.96 (m, 13H). ¹³C NMR (100 MHz, CDCl₃):δ 136.2 (C), 136.0 (C), 130.2 (C), 129.6 (2xCH), 128.1 (3xCH), 125.9 (C), 125.3 (CH), 124.5 (CH), 121.8 (CH), 121.3 (C), 120.1 (CH), 119.7 (CH), 119.6 (CH), 118.5 (CH), 113.2 (C), 111.4 (CH), 110.9 (CH), 108.2 (C). FT-IR (KBr, *v*max/cm⁻¹) 3464, 3019, 1602, 1406, 1334, 1156, 1053, 928, 669; HRMS (ESI): calcd for C₂₂H₁₇N₂ [M+H]⁺ 309.1392, found: 309.1384.

*1-Benzyl-2, 3-diphenyl-1H-indole (3ea):*¹¹ White solid (154 mg, 54%), mp 155-158 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.85-7.83 (m, 1H), 7.36-7.17 (m, 16H), 7.03 (d, 2H, *J* = 6.8 Hz), 5.31 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 138.2 (C), 138.0 (C), 137.1 (C), 135.2 (C), 131.9 (C), 131.2 (2xCH), 130.0 (2xCH), 128.8 (2xCH), 128.5 (2xCH), 128.3 (3xCH), 127.5 (C), 127.3 (CH), 126.2 (2xCH), 125.7 (CH), 122.5 (CH), 120.5 (CH), 119.8 (CH), 115.8 (C), 110.6 (CH), 47.7 (CH₂). FT-IR (KBr, ν max/cm⁻¹) 3399, 3019, 1660, 1601, 1475, 1420, 1027, 928, 669; HRMS (ESI): calcd for C₂₇H₂₂N [M+H]⁺ 360.1752, found: 360.1778.

5-Chloro-2, 3-diphenyl-1H-indole (3ba):^{10, 12} White solid (243 mg, 86%), mp 113-114 °C (lit.^{22a} 110-112 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.26 (br s, 1H), 7.64 (d, 1H, J = 1.4 Hz), 7.42-7.39 (m, 6H), 7.34-7.32 (m, 5H), 7.19 (dd, 1H, J = 8.6, 1.9 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 135.5 (C), 134.5 (C), 134.3 (C), 132.3 (C), 130.1 (2xCH), 130.0 (C), 128.89 (2xCH), 128.81 (2xCH), 128.2 (2xCH), 128.1 (CH), 126.6 (CH), 126.3 (C), 123.0 (CH), 119.2 (CH), 114.9 (C), 112.0 (CH). FT-IR (KBr, ν_{max}/cm^{-1}) 3391, 3019, 1644, 1404, 1215, 1156, 1026, 929, 669; HRMS (ESI): calcd for C₂₀H₁₅ClN [M+H]⁺ 304.0893, found: 304.0886.

5-Chloro-2-(2-chlorophenyl)-3-phenyl-1H-indole (3bd): White solid (262 mg, 83%), mp 202-205 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.44 (br s, 1H), 7.77 (d, 1H, J = 1.8 Hz), 7.49 (dd, 1H, J = 8.0, 0.9 Hz), 7.38 (d, 1H, J = 8.6 Hz), 7.34-7.31 (m, 4H), 7.30-7.23 (m, 4H), 7.19 (td, 1H, J = 7.6, 1.1 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 134.29 (C), 134.22 (C), 133.7 (C), 133.3 (CH), 132.8 (C), 131.3 (C), 130.3 (CH), 129.9 (CH), 129.6 (2xCH), 128.6 (2xCH), 128.5 (C), 126.9 (CH), 126.5 (CH), 126.3 (C), 123.3 (CH), 119.4 (CH), 116.8 (C), 112.1 (CH). FT-IR (KBr, vmax/cm⁻¹) 3461, 3019, 1602, 1457, 1334, 1067, 929, 668; HRMS (ESI): calcd for C₂₀H₁₄Cl₂N [M+H]⁺ 338.0503, found: 338.0505.

5-Chloro-2-(2, 3-dichlorophenyl)-3-phenyl-1H-indole (3bh): White solid (281 mg, 81%), mp 137-139 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.41 (br s, 1H), 7.77 (d, 1H, J = 1.8 Hz), 7.50 (dd, 1H, J = 7.8, 1.8 Hz), 7.40-7.31 (m, 5H), 7.30-7.25 (m, 2H), 7.19-7.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 134.24 (C), 134.0 (C), 133.9 (C), 133.6 (C), 132.3 (C), 131.5 (CH), 130.8 (CH), 129.6 (2xCH), 128.7 (2xCH), 128.3 (C), 127.4 (CH), 126.7 (CH), 126.4 (C), 123.6 (CH), 119.5 (CH), 117.2 (C), 112.2 (CH). FT-IR (KBr, ν_{max}/cm^{-1}) 3390, 3019, 1645, 1403, 1215, 1155, 669; HRMS (ESI): calcd for C₂₀H₁₃Cl₃N [M+H]⁺ 372.0111, found: 372.0114.

4-(5-Chloro-3-phenyl-1H-indol-2-yl)benzonitrile (3bk): Yellow solid (257 mg, 84%), mp 236-240 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.39 (br s, 1H), 7.59-7.57 (m, 3H), 7.50-7.48 (m, 2H), 7.44-7.40 (m, 2H), 7.38-7.34 (m, 4H), 7.26-7.22 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 136.8 (C), 134.8 (C), 133.7 (C), 133.0 (C), 132.6 (2xCH), 130.1 (2xCH), 129.9 (C), 129.1 (2xCH), 128.4 (2xCH), 127.4 (CH), 126.8 (C), 124.2 (CH), 119.7 (CH), 118.7 (C), 117.3 (C), 112.3 (CH), 111.2 (C). FT-IR (KBr, ν_{max}/cm^{-1}) 3391, 3019, 2229, 1607, 1403, 1215, 1068, 669; HRMS (ESI): calcd for C₂₁H₁₅N₂ [M+H]⁺ 329.0846, found: 329.0846.

5-Chloro-2-(4-nitrophenyl)-3-phenyl-1H-indole (3bl): Yellow solid (282 mg, 87%), mp 242-244 °C; ¹H NMR (400 MHz, CDCl₃): δ 12.07 (br s, 1H), 8.22 (d, 2H, J = 8.9 Hz), 7.67 (d, 2H, J = 8.9 Hz), 7.51 (d, 1H, J = 8.6 Hz), 7.47-7.42 (m, 3H), 7.39-7.34 (m, 3H), 7.23 (dd, 1H J =8.6, 2.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 146.3 (C), 138.4 (C), 135.0 (C), 133.7 (C), 133.1 (C), 129.7 (2xCH), 129.0 (2xCH), 128.9 (C), 128.8 (2xCH), 127.0 (CH), 124.8 (C), 123.8 (2xCH), 123.2 (CH), 118.0 (CH), 115.7 (C), 113.5 (CH). FT-IR (KBr, ν_{max}/cm^{-1}) 3398, 3019, 1644, 1403, 1216, 1068, 669; HRMS (ESI): calcd for C₂₀H₁₄ClN₂O₂ [M+H]⁺ 349.0744, found: 349.0744.

5-Chloro-3-phenyl-2-(p-tolyl)-1H-indole(3bm):^{7b} Yellow solid (201 mg, 68%), mp 142-143 °C (lit.^{7b} 140-142 °C);¹H NMR (400 MHz, CDCl₃): δ 8.22 (br s, 1H), 7.62 (d, 1H, J = 1.9 Hz), 7.41-7.36 (m, 4H), 7.33-7.29 (m, 4H), 7.19-7.13 (m, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 138.1 (C), 135.7 (C), 134.6 (C), 134.2 (C), 130.1 (2xCH), 129.6 (2xCH), 129.4 (C), 128.7 (2xCH), 128.1 (2xCH), 126.6 (CH), 126.2 (C), 122.8 (CH), 119.1 (CH), 114.5 (C), 111.9 (CH), 21.4. FT-IR (KBr, ν_{max}/cm^{-1}) 3391, 3019, 1644, 1403, 1215, 1068, 669; HRMS (ESI): calcd for C₂₁H₁₇ClN [M+H]⁺ 318.1050, found: 318.1045.

5-Chloro-2-(2, 4-dimethoxyphenyl)-3-phenyl-1H-indole (3bp): White solid (248 mg, 73%), mp 187-190 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.96 (br s, 1H), 7.62 (s, 1H), 7.39-7.25 (m, 6H), 7.15-7.12 (m, 2H), 6.55 (s, 1H), 6.34 (d, 1H, J = 7.9 Hz), 3.84 (s, 3H) 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.9 (C), 158.0 (C), 135.5 (C), 133.7 (C), 132.87 (C), 132.80 (CH), 130.1 (2xCH), 129.2 (C), 128.7 (2xCH), 126.3 (CH), 125.7 (C), 122.3 (CH), 118.6 (CH), 114.6 (C), 113.3 (C), 111.7 (CH), 105.1 (CH), 99.3 (CH), 55.8, 55.5. FT-IR (KBr, ν_{max}/cm^{-1}) 3391, 3019, 1610, 1522, 1215, 1028, 928, 669; HRMS (ESI): calcd for $C_{22}H_{19}CINO_2 [M+H]^+$ 364.1104, found: 364.1091. 5-Chloro-3-phenyl-2-(3, 4, 5-trimethoxyphenyl)-1H-indole (3bq): White solid (253 mg, 69%), mp 235-237 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.36 (br s, 1H), 7.58 (s, 1H), 7.44-7.38 (m, 4H), 7.35-7.28 (m, 2H), 7.18 (d, 1H, *J* = 8.2 Hz), 6.60 (s, 2H), 3.86 (s, 3H), 3.66 and 3.65 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 153.4 (2xC), 138.0 (C), 135.4 (C), 134.6 (C), 134.2 (C), 130.3 (2xCH), 130.1 (C), 128.7 (2xCH), 127.6 (C), 126.8 (CH), 126.3 (C), 123.0 (CH), 119.1 (CH), 114.9 (C), 112.0 (CH), 105.4 (2xCH), 61.0, 56.0. FT-IR (KBr, *v*max/cm⁻¹) 3369, 3019, 1651, 1403, 1217, 1068, 668; HRMS (ESI): calcd for C₂₃H₂₁ClNO₃ [M+H]⁺ 394.1210, found: 394.1205.

5-Chloro-3-(2-fluorophenyl)-2-phenyl-1H-indole (3ca): White solid (165 mg, 58%), mp 142-144 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.37 (br s, 1H), 7.47 (s, 1H), 7.40-7.31 (m, 8H), 7.20-7.13 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.5 (d, J = 246 Hz, C), 136.7 (C), 134.2 (C), 132.8 (CH), 132.3 (C), 130.2 (C), 129.0 (CH), 128.9 (2xCH), 128.3 (CH), 127.5 (2xCH), 126.3 (C), 124.4 (CH), 123.1 (CH), 122.1 (d, J = 16 Hz, C), 119.4 (CH), 116.2 (d, J = 22 Hz, CH), 112.0 (CH), 108.3 (C). FT-IR (KBr, ν_{max}/cm^{-1}) 3390, 3019, 1644, 1402, 1215, 1067, 669; HRMS (ESI): calcd for C₂₀H₁₄CIFN [M+H]⁺ 322.0799, found: 322.0789.

5-Chloro-2-(4-chlorophenyl)-3-(2-fluorophenyl)-1H-indole (3cc): White solid (163 mg, 52%), mp 166-169 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.34 (br s, 1H), 7.46 (s, 1H), 7.37-7.28 (m, 7H), 7.21-7.13 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.4 (d, J = 246 Hz, C), 135.5 (C) 134.3 (d, J = 7 Hz, C), 132.7 (d, J = 3 Hz, C), 130.8 (C), 130.1 (C), 129.2 (3xCH), 128.7 (3xCH), 126.5 (C), 124.5 (d, J = 3 Hz, CH), 123.4 (CH), 121.8 (d, J = 16 Hz, C), 119.4 (CH), 116.3 (d, J = 22 Hz, CH), 112.1 (CH), 108.7 (C). FT-IR (KBr, v_{max}/cm^{-1}) 3749, 3399, 3019, 1644, 1216, 1154, 1066, 669; HRMS (ESI): calcd for C₂₀H₁₃Cl₂FN [M+H]⁺ 356.0409, found: 356.0413.

4-(5-Chloro-3-(2-fluorophenyl)-1H-indol-2-yl)benzonitrile (3ck): White solid (171 mg, 56%), mp 195-197 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.47 (br s, 1H), 7.60 (s, 2H, J = 8.4 Hz), 7.49-7.47 (m, 3H), 7.41-7.34 (m, 3H), 7.26-7.22 (m, 2H), 7.20-7.14 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 160.2 (d, J = 246 Hz, C), 136.8 (C) 134.7 (C), 134.2 (C), 132.7 (2xCH), 132.5 (d, J = 3 Hz, CH), 130.0 (C), 129.6 (d, J = 8 Hz, CH), 127.7 (2xCH), 126.9 (CH), 124.7 (d, J = 4 Hz, CH), 124.3 (CH), 121.3 (d, J = 16 Hz, C), 119.7 (d, J = 2 Hz, CH), 118.7 (C), 116.5 (d, J = 22 Hz, CH) 112.4 (CH), 111.5 (C), 110.4 (C). FT-IR (KBr, ν_{max}/cm^{-1}) 3388, 3021, 2400, 1608, 1418, 1216, 1066, 671; HRMS (ESI): calcd for C₂₁H₁₃ClFN₂ [M+H]⁺ 347.0751, found: 347.0748.

(*E*)-2-Phenyl-4-(2-phenylhydrazono)-1, 2, 3, 4-tetrahydroquinoline (4da): White solid (209 mg, 50%), mp 188-190 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.33 (m, 4H), 7.29-7.24 (m, 2H), 7.21-7.15 (m, 3H), 7.14-7.09 (m, 2H), 6.98 (d, 2H, *J* = 7.8 Hz), 6.83-6.77 (m, 2H), 6.73-6.69 (m, 1H), 5.18 (dd, 1H, *J* = 12.2, 7.3 Hz), 3.94 (dd, 1H, *J* = 16.8, 12.2 Hz), 3.26 (dd, 1H, *J* = 16.8, 7.3 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 149.0 (C), 145.3 (C), 144.7 (C), 142.6 (C), 129.5 (CH), 129.2 (2xCH), 129.1 (2xCH), 128.4 (CH), 127.7 (CH), 126.0 (2xCH), 119.2 (CH), 117.4 (CH), 116.4 (CH), 115.4 (C), 113.3 (2xCH), 63.2 (CH), 45.17 (CH₂). FT-IR (KBr, ν_{max}/cm^{-1}) 3391, 3019, 1613, 1499, 1326, 1155, 1068, 669; HRMS (ESI): calcd for C₂₁H₂₀N₃ [M+H]⁺ 314.1657, found: 314.1650.

(*E*)-2-(4-Chlorophenyl)-4-(2-phenylhydrazono)-1, 2, 3, 4-tetrahydroquinoline (4dc): White solid (280 mg, 60%), mp 202-203 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 7.81 (d, 2H, J = 8.1 Hz), $\delta = 7.48$ (d, 2H, J = 8.1 Hz), 7.20-7.13 (m, 3H), 7.08 (t, 1H, J = 7.8 Hz), 6.89 (d, 2H, J = 8.1 Hz), 6.81 (d, 2H, J = 8.1 Hz), 6.75-6.72 (m, 3H), 5.54 (t, 1H, J = 7.4 Hz), 5.49 (dd, 1H, J = 12.0, 6.0 Hz), 4.01 (dd, 1H, J = 17.2, 12.1 Hz), 3.21 (dd, 1H, J = 17.2, 6.1 Hz). ¹³C NMR S18

(100 MHz, DMSO-*d*₆): δ 149.8 (C), 147.0 (C), 144.0 (C), 141.5 (C), 131.8 (C), 129.3 (CH),
129.0 (2xCH), 128.9 (2xCH), 128.7 (CH), 127.9 (2xCH), 118.5 (CH), 115.1 (CH), 115.0 (CH) 113.0 (C), 112.6 (2xCH), 60.7 (CH), 44.3 (CH₂). FT-IR (KBr, *v*max/cm⁻¹) 3387, 2361,
1597, 1512, 1450, 1342, 1265, 748; HRMS (ESI): calcd for C₂₁H₁₉ClN₃ [M+H]⁺ 348.1268, found: 348.1259.

(*E*)-2-(2, 4-Dichlorophenyl)-4-(2-phenylhydrazono)-1, 2, 3, 4-tetrahydroquinoline (4dg): White solid (296 mg, 58%), mp 209-210 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 7.72 (d, 1H, J = 2.1 Hz), 7.34 (dd, 1H, J = 8.4, 2.1 Hz), 7.23-7.19 (m, 2H), 7.14 (dd, 1H, J = 7.9, 1.4 Hz), 7.10-7.05 (m, 2H), 6.83-6.80 (m, 3H), 6.77-6.73 (m, 3H), 6.56-6.52 (m, 1H), 5.55 (dd, 1H, J = 12.1, 6.0 Hz), 4.08 (dd, 1H, J = 17.2, 12.2 Hz), 3.18 (dd, 1H, J = 17.2, 6.1 Hz). ¹³C NMR (100 MHz, DMSO- d_6): δ 150.1 (C), 147.0 (C), 143.6 (C), 138.0 (C), 132.8 (C), 132.2 (C), 129.49 (CH), 129.45 (CH), 129.2 (2xCH), 128.8 (CH), 128.6 (CH), 128.0 (CH), 118.7 (CH), 115.1 (CH), 115.0 (CH), 112.8 (C), 112.3 (2xCH), 58.4 (CH), 42.8 (CH₂). FT-IR (KBr, vmax/cm⁻¹) 2361, 2353, 1597, 1497, 1389, 1327, 833; HRMS (ESI): calcd for C₂₁H₁₈Cl₂N₃ [M+H]⁺382.0878, found: 382.0867.

(E)-2-(3, 4-Dichlorophenyl)-4-(2-phenylhydrazono)-1, 2, 3, 4-tetrahydroquinoline (4dv):
White solid (293 mg, 57%), mp 184-185 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.60-7.56 (m, 2H), 7.24-7.17 (m, 3H), 7.14 (dd, 1H, J = 7.8, 1.0 Hz), 7.10-7.06 (m, 1H), 6.91 (d, 2H, J = 7.8 Hz), 6.82 (d, 2H, J = 8.1 Hz), 6.76-6.72 (m, 3H), 6.57-6.53 (m, 1H), 5.41 (dd, 1H, J = 11.9, 6.1 Hz), 3.97 (dd, 1H, J = 17.2, 12.0 Hz), 3.24 (dd, 1H, J = 17.3, 6.2 Hz).¹³C NMR (100 MHz, DMSO-d₆): δ 150.03 (C), 147.0 (C), 143.9 (C), 143.6 (C), 131.3 (C), 131.2 (CH), 129.8 (C), 129.4 (CH), 129.0 (2xCH), 128.7 (CH), 128.1 (CH), 126.2 (CH), 118.7 (CH), 115.1

(CH), 115.0 (CH) 112.9 (C), 112.6 (2xCH), 60.3 (CH), 44.1 (CH₂). FT-IR (KBr, *v*_{max}/cm⁻¹) 3387, 2924, 2361, 1597, 1327, 1265, 1126, 748; HRMS (ESI): calcd for C₂₁H₁₈Cl₂N₃ [M+H]⁺ 382.0878, found: 382.0869.

(*E*)-2-(4-Bromophenyl)-4-(2-phenylhydrazono)-1, 2, 3, 4-tetrahydroquinoline (4de): White solid (302 mg, 58%), mp 203-205 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 7.52 (d, 2H, J = 8.3 Hz), 7.24 (d, 2H, J = 8.3 Hz), 7.18-7.12 (m, 3H), 7.08-7.04 (m, 1H), 6.89 (d, 2H, J = 8.2 Hz), 6.80 (d, 1H, J = 8.1 Hz), 6.73-6.69 (m, 3H), 6.54 (t, 1H, J = 7.4 Hz), 5.37 (dd, 1H, J = 12.0, 6.1 Hz), 3.97 (dd, 1H, J = 17.2, 12.1 Hz), 3.17 (dd, 1H, J = 17.2, 6.2 Hz). ¹³C NMR (100 MHz, DMSO- d_6): δ 149.8 (C), 146.9 (C), 144.0 (C), 141.9 (C), 131.8 (2xCH), 129.3 (CH), 129.0 (2xCH), 128.7 (CH), 128.2 (2xCH), 120.3 (C), 118.5 (CH), 115.1 (CH), 115.0 (CH), 113.0 (C), 112.6 (2xCH), 60.8 (CH), 44.26 (CH₂). FT-IR (KBr, v_{max}/cm^{-1}) 3389, 3020, 2401, 1595, 1494, 1384, 1120, 1067, 929, 670; HRMS (ESI): calcd for C₂₁H₁₉BrN₃ [M+H]⁺ 392.0762, found: 392.0760.

(*E*)-4-(4-(2-Phenylhydrazono)-1, 2, 3, 4-tetrahydroquinolin-2-yl)benzonitrile (4dk): Yellow (318 mg, 70%), mp 193-194 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.39 (d, 2H, J = 8.5 Hz), 7.30 (d, 2H, J = 8.5 Hz), 7.19-7.13 (m, 3H), 7.09-7.05 (m, 1H), 6.90 (d, 2H, J = 7.9 Hz), 6.82-6.70 (m, 4H), 6.55 (t, 1H, J = 7.8 Hz) 5.39 (dd, 1H, J = 11.9, 6.1 Hz), 3.97 (dd, 1H, J = 17.2, 12.0 Hz), 3.18 (dd, 1H, J = 17.2, 6.2 Hz). ¹³C NMR (100 MHz, DMSO-d₆): δ 149.9 (C), 148.1 (C), 147.0 (C), 143.9 (C), 132.9 (2xCH), 129.4 (CH), 129.1 (2xCH), 128.7 (CH), 127.1 (2xCH), 118.7 (CH), 118.6 (C), 115.1 (CH), 115.0 (CH), 112.9 (C), 112.6 (2xCH), 110.2 (C), 61.0 (CH), 44.1 (CH₂). FT-IR (KBr, ν max/cm⁻¹) 3397, 3294, 2361, 1597, 1497, 1327, 1265, 748; HRMS (ESI): calcd for C₂₂H₁₉N₄ [M+H]⁺ 339.1610, found: 339.1604.

(*E*)-2-(4-Nitrophenyl)-4-(2-phenylhydrazono)-1, 2, 3, 4-tetrahydroquinoline (4dl): Orange solid (327 mg, 68%), mp 155-156 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 8.21 (d, 2H, J = 8.7 Hz), 7.57 (d, 2H, J = 8.7 Hz), 7.20-7.10 (m, 3H), 7.08 (t, 1H, J = 8.1 Hz), 6.90 (d, 2H, J = 8.0 Hz), 6.82 (d, 1H, J = 8.1 Hz), 6.76-6.72 (m, 3H), 5.55 (t, 1H, J = 7.7 Hz), 5.56 (dd, 1H, J = 12.0, 6.2 Hz), 4.04 (dd, 1H, J = 17.2, 12.2 Hz), 3.24 (dd, 1H, J = 17.3, 6.3 Hz).¹³C NMR (100 MHz, DMSO- d_6): δ 150.1 (C), 149.9 (C), 147.0 (C), 146.8 (C), 143.9 (C), 129.4 (CH), 129.0 (2xCH), 128.7 (CH), 127.3 (2xCH), 124.2 (2xCH), 118.7 (CH), 115.1 (CH), 115.0 (CH) 112.8 (C), 112.6 (2xCH), 60.8(CH), 44.1 (CH₂). FT-IR (KBr, ν_{max}/cm^{-1}) 3387, 2924, 2361, 1597, 1443, 1350, 1342, 1119, 748; HRMS (ESI): calcd for C₂₂H₁₉N₄O₂ [M+H]⁺ 359.1508, found: 359.1498.

(*E*)-4-(2-Phenylhydrazono)-2-(*p*-tolyl)-1, 2, 3, 4-tetrahydroquinoline (4dm): White solid (183 mg, 42%), mp 155-156 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 6.16-7.14 (m, 7H), 7.07 (t, 1H, *J* = 7.8 Hz), 6.91 (d, 1H, *J* = 7.8 Hz), 7.08 (t, 1H, *J* = 8.1 Hz), 6.90 (d, 2H, *J* = 8.0 Hz), 6.82 (d, 1H, *J* = 8.1 Hz), 6.70(t, 1H, *J* = 7.2 Hz), 6.55 (t, 1H, *J* = 7.3 Hz), 5.24 (dd, 1H, *J* = 11.6, 6.1 Hz), 3.95 (dd, 1H, *J* = 17, 12.1 Hz), 3.14 (dd, 1H, *J* = 17.0, 6.1 Hz). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 149.7 (C), 146.7 (C), 144.2 (C), 139.6 (C), 136.4 (C), 129.4 (2xCH), 129.2 (CH), 128.8 (2xCH), 128.6 (CH), 125.8 (2xCH), 118.3 (CH), 115.2 (CH), 115.0 (CH) 113.3 (C), 112.6 (2xCH), 61.2(CH), 44.5 (CH₂), 20.6. FT-IR (KBr, *v*max/cm⁻¹) 3672, 3394, 3032, 2908, 1597, 1497, 1327, 1018, 879; HRMS (ESI): calcd for C₂₂H₂₂N₃ [M+H]⁺ 328.1814, found: 328.1817.

(*E*)-2-(4-Methoxyphenyl)-4-(2-phenylhydrazono)-1, 2, 3, 4-tetrahydroquinoline (4do): White solid (201 mg, 44%), mp 168-170 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.24 (m, 2H), 7.21-7.17 (m, 2H), 7.15-7.09 (m, 2H), 6.98 (d, 2H, J = 7.8 Hz), 6.86 (d, 2H, J = 8.7 Hz), 6.80-6.76 (m, 2H), 6.70-6.66 (m, 1H), 5.95 (br s, 2H), 5.13 (dd, 1H, J = 12.1, 7.2 Hz), 3.91 (dd, 1H, J = 16.8, 12.2 Hz), 3.23 (dd, 1H, J = 16.8, 7.3 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 159.1 (C), 149.2 (C), 146.1 (C), 144.9 (C), 134.7 (C), 129.4 (CH), 129.0 (2xCH), 128.4 (CH), 127.2 (2xCH), 119.1 (CH), 116.8 (CH), 115.9 (CH), 115.0 (C), 114.6 (2xCH), 113.3 (2xCH), 62.7 (CH), 55.4, 45.2 (CH₂). FT-IR (KBr, ν_{max}/cm^{-1}) 3400, 3019, 1644, 1402, 1216, 1068, 669; HRMS (ESI): calcd for C₂₂H₂₂N₃O [M+H]⁺ 344.1763, found: 344.1759.

(*E*)-2-(2, 4-Dimethoxyphenyl)-4-(2-phenylhydrazineylidene)-1, 2, 3, 4-tetrahydroquinoline (*4dp*): Yellow oil (215 mg, 43%); ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.18-7.12 (m, 3H), 7.07-7.03 (m, 1H), 6.85-6.78 (m, 4H), 6.71-6.68 (m, 3H), 6.63 (d, 1H, *J* = 2.3 Hz), 6.55-6.51 (m, 1H), 6.39 (dd, 1H, *J* = 8.5, 2.4 Hz), 5.42 (dd, 1H, *J* = 11.9, 5.8 Hz), 3.94-3.87 (m, 4H), 3.70 (s, 3H), 3.05 (dd, 1H, *J* = 17.1, 5.8 Hz). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.8 (C), 157.0 (C), 150.1 (C), 146.8 (C), 144.0 (C), 129.1 (CH), 128.9 (CH), 129.45 (2xCH), 128.6 (CH), 126.7 (CH), 121.4 (C), 118.0 (CH), 115.1 (CH), 114.9 (CH), 113.3 (C), 112.2 (2xCH), 105.0 (CH), 98.8 (CH), 55.7 , 55.6 (CH), 55.1, 42.8 (CH₂). FT-IR (neat, *v*max/cm⁻¹) 3379, 2924, 2361, 1612, 1504, 1203, 1119, 748; HRMS (ESI): calcd for C₂₃H₂₄N₃O₂ [M+H]⁺ 374.1869, found: 374.1860.

(*E*)-6-(4-Chlorophenyl)-8-(2-phenylhydrazono)-5, 6, 7, 8-tetrahydro- [1, 3]dioxolo [4, 5g]quinolone (4fc): Yellow solid (204 mg, 46%), mp 205-206 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 7.39 (d, 2H, J = 8.4 Hz), 7.29 (d, 2H, J = 8.4 Hz), 7.15 (t, 2H, J = 7.5 Hz), 6.87 (br s, 2H), 6.72 (br s, 4H), 6.45 (s, 1H), 5.87 (br s, 2H), 5.32 (br s, 1H), 3.90 (dd, 1H, J = 17.2, 12.0 Hz), 3.13 (dd, 1H, J = 17.1, 6.0 Hz). ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 150.4$ (C), 149.0 (C), 144.7 (C), 144.4 (C), 142.1 (C), 138.4 (C), 132.2 (C), 129.4 (4xCH), 128.4 (2xCH), 118.7 (CH), 113.0 (2xCH), 107.6 (CH), 105.5 (C), 100.9 (CH₂), 96.5 (CH), 61.1 (CH), 45.2 (CH₂). FT-IR (KBr, ν_{max}/cm^{-1}) 3425, 2924, 2361, 1597, 1412, 1234, 741; HRMS (ESI): calcd for C₂₂H₁₉ClN₃O₂ [M+H]⁺ 392.1166, found: 392.1173.

(*E*)-2-*Ethyl*-4-(2-*phenylhydrazono*)-1, 2, 3, 4-tetrahydroquinoline (4*dw*): White solid (128 mg, 36%), mp 112-113 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 7.28-7.22 (m, 3H), 7.09-7.02 (m, 3H), 6.80-6.74 (m, 2H), 6.62-6.58 (m, 1H), 4.37-4.31 (m, 1H), 3.50 (dd, 1H, *J* = 17.1, 11.2 Hz), 3.18-3.13 (m, 1H), 1.76-1.67 (m, 1H), 1.56-1.45 (m, 1H), 0.84 (t, 3H, *J* = 7.4 Hz). ¹³C NMR (100 MHz, DMSO- d_6): δ 150.4 (C), 146.7 (C), 143.9 (C), 129.1 (2xCH), 128.9 (CH), 128.5 (CH), 118.0 (CH), 115.0 (CH), 114.9 (CH) 113.5 (C), 112.5 (2xCH), 58.2 (CH), 38.4 (CH₂), 24.3 (CH₂), 8.5. FT-IR (KBr, ν_{max}/cm^{-1}) 3371, 3032, 2955, 2361, 1597, 1497, 1388, 1296, 1337, 1134, 748; HRMS (ESI): calcd for C₁₇H₂₀N₃ [M+H]⁺ 266.1657, found: 266.1658.

9-Phenyl-1, 2, 3, 4-tetrahydroacridine (6aa):¹³ White solid (147 mg, 54%), mp 156-157 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, 1H, J = 8.4Hz), 7.61-7.57 (m, 1H), 7.54-7.50 (m, 2H), 7.48-7.44 (m, 1H), 7.33-7.30 (m, 2H), 7.24-7.22 (m, 2H), 3.20 (t, 2H, J = 13.2, 6.6 Hz), 2.60 (t, 2H, J = 13.0, 6.5 Hz), 2.00-1.93 (m, 2H), 1.82-1.76 (m, 2H).¹³C NMR (100 MHz, CDCl₃): δ 159.2 (C), 146.6 (C), 146.4 (C), 137.2 (C), 129.2 (2xCH), 128.7 (2xCH), 128.49 (2xCH), 128.46 (C), 127.8 (CH), 126.8 (C), 125.9 (CH), 125.4 (CH), 34.3 (CH₂), 28.1 (CH₂), 23.1 (CH₂), 23.0 (CH₂). FT-IR (KBr, ν_{max}/cm^{-1}) 3433, 2924, 2361, 1628, 1481, 1134, 671; HRMS (ESI): calcd for C₁₉H₁₈N [M+H]⁺ 260.1439, found: 260.1431. 2-Methyl-4-phenylquinoline (6ab):¹⁴ Yellow oil (115 mg, 50%); ¹H NMR (400 MHz, CDCl₃): δ 8.10 (br d, 1H, J = 8.4 Hz), 7.85 (dd, 1H, J = 8.4, 0.9 Hz), 7.68 (ddd, 1H, J = 8.3, 6.8, 1.4 Hz), 7.53-7.47 (m, 5H), 7.42 (ddd, 1H, 8.2, 6.9, 1.2 Hz), 7.23 (s, 1H), 2.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.5 (C), 148.6 (C), 148.4 (C), 138.2 (C), 129.5 (2xCH), 129.4 (CH), 129.0 (CH), 128.6 (2xCH), 128.4 (CH), 125.8 (CH), 125.7 (CH), 125.1 (C), 122.3 (CH), 25.4. FT-IR (neat, ν_{max}/cm^{-1}) 3402, 3063, 2361, 1597, 1489, 1404, 1196, 764; HRMS (ESI): calcd for C₁₆H₁₄N [M+H]⁺220.1126, found: 220.1118.

9-Phenyl-2, 3-dihydro-1H-cyclopenta [b]quinoline (6ac):¹⁵ Yellow oil (144 mg, 56%); ¹H NMR (400 MHz, DMSO-d₆): δ 8.07-8.05 (m, 1H), 7.63-7.59 (m, 2H), 7.54-7.50 (m, 2H), 7.48-7.43 (m, 1H), 739-7.35 (m, 3H), 3.23 (t, 2H, J = 7.64 Hz), 2.90 (t, 2H, J = 7.36 Hz), 2.16 (quint, 2H, J = 7.5 Hz). ¹³C NMR (100 MHz, DMSO-d₆): δ 167.5 (C), 148.0 (C), 142.8 (C), 136.9 (C), 133.7 (C), 129.4 (2xCH), 128.9 (CH), 128.6 (2xCH), 128.3 (CH), 128.1 (CH), 126.3 (C), 125.7 (CH), 125.6 (CH), 35.3 (CH₂), 30.4 (CH₂), 23.6 (CH₂). FT-IR (neat, *v*max/cm⁻¹) 3433, 2962, 2924, 2361, 1597, 1389, 1342, 1126, 764; HRMS (ESI): calcd for C₁₈H₁₆N [M+H]⁺246.1283, found: 246.1274.

6-Chloro-3-methyl-2, 4-diphenylquinoline (6bd):¹⁶ Yellow oil (169 mg, 55%); ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, 1H, J = 9.0 Hz), 7.61-7.58 (m, 3H), 7.57-7.54 (m, 2H), 7.52-7.48 (m, 3H), 7.46-7.42 (m, 1H), 7.35 (d, 1H, J = 2.2 Hz), 7.30-7.28 (m, 2H), 2.14 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.2 (C), 147.2 (C), 144.7 (C), 141.2 (C), 137.1 (C), 132.2 (C), 131.2 (CH), 129.6 (CH), 129.3 (2xCH), 129.0 (4xCH), 128.5 (2xCH), 128.4 (CH), 128.3 (CH), 127.98 (C), 127.95 (C), 124.8 (CH), 18.8. FT-IR (neat, νmax/cm⁻¹) 3402, 2932, 2361, 1628,

1381, 1196, 1119, 756; HRMS (ESI): calcd for C₂₂H₁₇ClN [M+H]⁺ 330.1050, found: 330.1044.

2, 4-Dimethylquinoline (6da):¹⁷ Yellow oil (105 mg, 50%); ¹H NMR (400 MHz, DMSO-d₆): δ 8.00 (dd, 1H, J = 8.3, 0.5 Hz), 7.91 (dd, 1H, J = 8.3, 1.0 Hz), 7.64 (ddd, 1H, J = 8.3, 6.9, 1.4Hz), 7.47 (ddd, 1H, 8.2, 6.9, 1.2 Hz), 7.09 (d, 1H, J = 0.6 Hz), 2.67 (br s, 3H), 2.62 (d, 3H, J = 0.9 Hz). ¹³C NMR (100 MHz, DMSO-d₆): δ 158.7 (C), 147.7 (C), 144.2 (C), 129.2 (CH), 129.1 (CH), 126.6 (C), 125.4 (CH), 123.6 (CH), 122.7 (CH), 25.2, 18.6. FT-IR (neat, v_{max}/cm^{-1}) 3703, 3402, 3063, 2950, 2361, 1612, 1574, 1389, 1342, 1196, 756; HRMS (ESI): calcd for C₁₁H₁₂N [M+H]⁺ 158.0970, found: 158.0959.

9-Methyl-1, 2, 3, 4-tetrahydroacridine (6db):¹⁸ Yellow oil (128 mg, 49%); ¹H NMR (400 MHz, CDCl₃): δ 7.98-7.95 (m, 2H), 7.66-7.57 (m, 1H), 7.48-7.43 (m, 1H), 3.12-3.10 (m, 2H), 2.92-2.89 (m, 2H), 2.56 (s, 3H), 1.95-1.92 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.7 (C), 146.0 (C), 141.4 (C), 129.0 (CH), 128.8 (C), 128.2 (CH), 127.0 (C), 125.4 (CH), 123.4 (CH), 34.6 (CH₂), 27.2 (CH₂), 23.3 (CH₂), 22.9 (CH₂), 13.6. FT-IR (neat, *v*max/cm⁻¹) 3433, 2962, 2361, 1597, 1402, 1226, 764; HRMS (ESI): calcd for C₁₄H₁₆N [M+H]⁺ 198.1283, found: 198.1284.

9-Methyl-2, 3-dihydro-1H-cyclopenta [b]quinoline (6dc):¹⁹ Yellow oil (130 mg, 53%); ¹H
NMR (400 MHz, CDCl₃): δ 7.99 (dd, 1H, J = 8.4, 0.6 Hz), 7.88 (dd, 1H, J = 8.3, 1.1 Hz),
7.57 (ddd, 1H, J = 8.3, 6.9, 1.4 Hz), 7.43 (ddd, 1H, J = 8.2, 6.9, 1.2 Hz), 3.13 (t, 2H, J = 7.7 Hz), 2.99 (t, 2H, J = 7.5 Hz), 2.51 (s, 3H), 2.15 (quint, 2H, J = 7.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 166.9 (C), 147.4 (C), 138.1 (C), 134.0 (C), 129.1 (CH), 128.0 (CH), 127.0 (C),
125.2 (CH), 123.3 (CH), 35.11 (CH₂), 29.6 (CH₂), 22.9 (CH₂), 14.8. FT-IR (neat, vmax/cm⁻¹)

3402, 3063, 2955, 2361, 1612, 1443, 1342, 1119, 756; HRMS (ESI): calcd for C₁₃H₁₄N [M+H]⁺ 184.1126, found: 184.1126.

2, 8-dichloro-6, 12-diphenyldibenzo [b, f] [1, 5]diazocine (7):²⁰ Yellow solid (220 mg, 40%), mp 120-122 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.75-7.73 (m, 4H), 7.46-7.42 (m, 2H), 7.38-7.34 (m, 4H), 7.31 (dd, 2H, *J*= 2.4, 8.6 Hz), 7.00-6.96 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 168.9 (C), 150.3 (C), 137.3 (C), 131.6 (CH), 130.2 (CH), 129.5 (2xCH), 129.2 (C), 128.5 (2xCH), 128.2 (C), 127.3 (CH), 122.6 (CH). HRMS (ESI): calcd for C₂₆H₁₇Cl₂N₂ [M+H]⁺ 427.0769, found: 427.0763.

4. References

- (a) S. A. Andronati, A. A. Mazurov and A. S. Yavorskii, *Ukr. Khim. Zh. (Russ. Ed.)*, 1980, 46, 823-827. (b) A. Z. Hussain, A. Sankar and M. N. Meeran, *Elixir Int. J.*, 2013, 17737-17739. (c) R. J. Armstrong, M. D'Ascenzio and M. D. Smith, *Synlett*, 2016, 27, 6-10. (d) EP433526A1, 1991. (e) J. Fetter, K. Lempert and J. Moller, *Tetrahedron*, 1978, 34, 2557-2563.
- 2. B. Z. Lu, W. Zhao, H. X. Wei, M. Dufour, V. Farina and C. H. Senanayake, *Org. Lett.*, 2006, **8**, 3271-3274.
- 3. H. Yan, H. Wang, X. Li, X. Xin, C. Wang and B. Wan, *Angew. Chem., Int. Ed.*, 2015, **54**, 10613-10617.
- 4. (a) A. Fuerstner and D. N. Jumbam, *Tetrahedron*, 1992, **48**, 5991-6010. (b) G. A. Kraus and H. Guo, *J. Org. Chem.*, 2009, **74**, 5337-5341.
- (a) J.-h. Chen, Z.-c. Chen, H. Zhao, T. Zhang, W.-j. Wang, Y. Zou, X.-j. Zhang and M. Yan, Org. Biomol. Chem., 2016, 14, 4071-4076. (b) T. Rukkijakan, L. Ngiwsara, K. Lirdprapamongkol, J. Svasti, N. Phetrak and P. Chuawong, Bioorg. Med. Chem. Lett., 2016, 26, 2119-2123.
- (a) N. Phetrak, T. Rukkijakan, J. Sirijaraensre, S. Prabpai, P. Kongsaeree, C. Klinchan and P. Chuawong, J. Org. Chem., 2013, 78, 12703-12709. (b) M. Thangaraj, S. S. Bhojgude, S. Jain, R. G. Gonnade and A. T. Biju, J. Org. Chem., 2016, 81, 8604-8611.
- (a) Z. Zhou, G. Liu, Y. Chen and X. Lu, *Adv. Synth. Catal.*, 2015, **357**, 2944-2950. (b) X. Fan and Y. Zhang, *Tetrahedron*, 2003, **59**, 1917-1923.
- 8. L. Gu, C. Jin, W. Wang, Y. He, G. Yang and G. Li, *Chem. Commun. (Cambridge, U. K.)*, 2017, **53**, 4203-4206.
- 9. P. S. Naidu, S. Kolita, M. Sharma and P. J. Bhuyan, J. Org. Chem., 2015, **80**, 6381-6390.
- 10. D. Zhao, Z. Shi and F. Glorius, Angew. Chem., Int. Ed., 2013, 52, 12426-12429.
- 11. (a) Y. Liang and N. Jiao, *Angew. Chem., Int. Ed.*, 2016, **55**, 4035-4039. (b) B. Li, H. Xu, H. Wang and B. Wang, *ACS Catal.*, 2016, **6**, 3856-3862.
- 12. H. Wang, M. Moselage, M. J. Gonzalez and L. Ackermann, ACS Catal., 2016, 6, 2705-2709.
- 13. (a) X. Chen, Y. Xie, C. Li, F. Xiao and G.-J. Deng, *Eur. J. Org. Chem.*, 2017, **2017**, 577-581. (b) N. Anand, S. Koley, B. J. Ramulu and M. S. Singh, *Org. Biomol. Chem.*, 2015, **13**, 9570-9574.
- (a) H. Wang, Q. Xu, S. Shen and S. Yu, *J. Org. Chem.*, 2017, 82, 770-775. (b) M. Ramanathan and S.-T. Liu, *Tetrahedron*, 2017, 73, 4317-4322. (c) Y. Wang, C. Chen, J. Peng and M. Li, *Angew. Chem.*, *Int. Ed.*, 2013, 52, 5323-5327.
- 15. M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier and K. Kirchner, *J. Am. Chem. Soc.*, 2016, **138**, 15543-15546.
- 16. Z. Zhang and H. Du, *Org. Lett.*, 2015, **17**, 2816-2819.
- 17. (a) J. Jin and D. W. C. MacMillan, *Nature (London, U. K.)*, 2015, **525**, 87-90. (b) J. Jin, S. Guidi, Z. Abada, Z. Amara, M. Selva, M. W. George and M. Poliakoff, *Green Chem.*, 2017, **19**, 2439-2447.
- 18. G. Vanajatha and V. Prabhakar Reddy, Synth. Commun., 2016, 46, 1953-1961.
- 19. P. Bandyopadhyay, G. K. Prasad, M. Sathe, P. Sharma, A. Kumar and M. P. Kaushik, *RSC Adv.*, 2014, **4**, 6638-6645.
- 20. T. Chanda, R. K. Verma and M. S. Singh, *Chem. Asian J.*, 2012, **7**, 778-787.

Copies of ¹H, ¹³C NMR, HRMS spectra

¹³C NMR spectrum of 1a

DEPT 135 spectrum of 1a

Expanded COSY spectrum of 1a

Expanded HSQC spectrum of 1a

Expanded HMBC spectrum of 1a

Expanded NOESY spectrum of 1a

HRMS spectrum of 1a

¹³C NMR spectrum of 1b

¹H NMR spectrum of 1c

¹³C NMR spectrum of 1c

HRMS spectrum of 1c

¹³C NMR spectrum of 1d

¹H NMR spectrum of 3aa
DEPT 135 spectrum of 3aa

¹³C NMR spectrum of 3aa

Expanded HSQC spectrum of 3aa

Expanded HMBC spectrum of 3aa

HRMS spectrum of 3aa

¹H NMR spectrum of 3ab

¹³C NMR spectrum of 3ab

HRMS spectrum of 3ab

¹H NMR spectrum of 3ac

¹³C NMR spectrum of 3ac

DEPT 135 spectrum of 3ac

Expanded COSY spectrum of 3ac

Expanded HSQC spectrum of 3ac

Expanded HMBC spectrum of 3ac

HRMS spectrum of 3ac

¹³C NMR spectrum of 3ae

¹H NMR spectrum of 3af

¹³C NMR spectrum of 3af

HRMS spectrum of 3af

¹H NMR spectrum of 3ag

¹³C NMR spectrum of 3ag

HRMS spectrum of 3ag

¹H NMR spectrum of 3ah

¹³C NMR spectrum of 3ah

HRMS spectrum of 3ah

¹³C NMR spectrum of 3ai

¹H NMR spectrum of 3aj

¹³C NMR spectrum of 3aj

HRMS spectrum of 3aj

¹³C NMR spectrum of 3ak

¹H NMR spectrum of 3al

¹³C NMR spectrum of 3al

HRMS spectrum of 3al

¹³C NMR spectrum of 3am

HRMS spectrum of 3am

¹H NMR spectrum of 3an

¹³C NMR spectrum of 3an

HRMS spectrum of 3an

¹³C NMR spectrum of 3aq

¹H NMR spectrum of 3ar

¹³C NMR spectrum of 3ar

HRMS spectrum of 3ar

¹³C NMR spectrum of 3as

¹H NMR spectrum of 3at

MH

¹³C NMR spectrum of 3at

HRMS spectrum of 3at

¹³C NMR spectrum of 3ea

¹H NMR spectrum of 3ba

¹³C NMR spectrum of 3ba

HRMS spectrum of 3ba

¹H NMR spectrum of 3bh

¹³C NMR spectrum of 3bh

HRMS spectrum of 3bh

¹H NMR spectrum of 3bk

¹³C NMR spectrum of 3bk

¹H NMR spectrum of 3bl

¹³C NMR spectrum of 3bl

HRMS spectrum of 3bl

¹³C NMR spectrum of 3bm

¹H NMR spectrum of 3bp

¹³C NMR spectrum of 3bp

HRMS spectrum of 3bp

¹³C NMR spectrum of 3bq

¹H NMR spectrum of 3ca

6

5

4

3

2

1

12

11

10

9

8

1.00

7

1.07 8.38 3.26 F2 - Process SI 6 SF 400. WDW SSB 0 LB GB 0 PC

ppm

HRMS spectrum of 3ca

¹³C NMR spectrum of 3cc

¹H NMR spectrum of 3ck

¹³C NMR spectrum of 3ck

HRMS spectrum of 3ck

¹³C NMR spectrum of 4da

¹H NMR spectrum of 4dc

¹³C NMR spectrum of 4dc

HRMS spectrum of 4dc

¹³C NMR spectrum of 4dg

HRMS spectrum of 4dg

¹H NMR spectrum of 4dv

HRMS spectrum of 4dv

¹H NMR spectrum of 4de

¹³C NMR spectrum of 4de

COSY spectrum of 4de

Expanded COSY spectrum of 4de

HSQC spectrum of 4de

Expanded HSQC spectrum of 4de

HMBC spectrum of 4de

NOESY spectrum of 4de

HRMS spectrum of 4de

¹H NMR spectrum of 4dk

¹³C NMR spectrum of 4dk

S96

8/23/2017 1:33:51 PM

Dr. YADAV/RAHUL

D:\INTERNALS\2017\AUGUST17\RKM-352E

¹H NMR spectrum of 4dm

¹³C NMR spectrum of 4dm

HRMS spectrum of 4dm

¹H NMR spectrum of 4do

¹³C NMR spectrum of 4do

¹H NMR spectrum of 4dp

¹³C NMR spectrum of 4fc

Expanded HSQC spectrum of 4fc

¹³C NMR spectrum of 4dw

HRMS spectrum of 4dw

¹H NMR spectrum of 6aa

¹³C NMR spectrum of 6aa

HRMS spectrum of 6aa

¹³C NMR spectrum of 6ab

¹H NMR spectrum of 6ac

¹³C NMR spectrum of 6ac

HRMS spectrum of 6ac

¹³C NMR spectrum of 6bd

S110

¹H NMR spectrum of 6da

HRMS spectrum of 6da

¹³C NMR spectrum of 6db

¹H NMR spectrum of 6dc

S114

¹³C NMR spectrum of 6dc

HRMS spectrum of 6dc

HRMS Spectra of compound 7

5. LC-ESIMS of crude reaction of Compound 3ac

LC-ESI-MS spectrum (-ve mode) of Crude Reaction mixture (8 h) of Compound 3ac

LC-ESI-MS spectrum (+ve mode) of Crude Reaction mixture (8 h) of Compound 3ac

6. ESI-MS of crude reaction mixtures of 3aa and 6aa

ESI-MS of crude reaction mixture for the synthesis of 3aa in one pot *via* successive addition

Openlynx Report SAIF, CSIR-CDRI, Lucknow			Page 1
Sample: 227 File:ESMS17I110CT10 Description:RKM-364	Vial:1:10 Date:11-Oct-2017	ID:ESMS17I110CT10 Time:12:45:35	
Printed: Wed Oct 11 15:41:54 2017			

ESI-MS of crude reaction mixture of 6aa (reaction at 120 °C)