Rhodium(III)-catalyzed Oxidative Coupling of *N*-Methoxybenzamides and Ethenesulfonyl fluoride: a C-H Bond Activation Strategy for the Preparation of 2-Aryl ethenesulfonyl fluorides and Sulfonyl fluoride Substituted  $\gamma$ -Lactams.

Shi-Meng Wang,<sup>a</sup> Chen Li,<sup>a</sup> Jing Leng,<sup>a</sup> Syed Nasir Abbas Bukhari<sup>a</sup> and Hua-Li Qin\*<sup>a</sup>

School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China

Email: qinhuali@whut.edu.cn

Table of content

| 1.  | General considerations                                                  | S2                |
|-----|-------------------------------------------------------------------------|-------------------|
| 2.  | Screening the optimized conditions for oxidative coupling of 1a or 6a   | with <b>2</b> via |
|     | rhodium(III)-catalyzed monoselective ortho-C-H activation               | S2                |
| 3.  | Procedure for the synthesis of <b>3</b>                                 | S6                |
| 4.  | Procedure for the synthesis of <b>5</b>                                 | S14               |
| 5.  | Procedure for the synthesis of 7                                        | S15               |
| 6.  | Competition reaction between methyl acrylate and ESF as coupling p      | paterners in      |
|     | the Rh(III)-catalyzed C-H coupling reaction.                            |                   |
| 7.  | Diverse derivations of <b>3</b>                                         | S22               |
| 8.  | NMR spectra of <b>3</b> , <b>5</b> , <b>7</b> , <b>10</b> and <b>11</b> | S23               |
| 9.  | Data of crystal structures                                              |                   |
| 10. | References                                                              | S114              |

## 1. General considerations

All reactions were carried out under an air atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl<sub>3</sub> on a 500 MHz (for <sup>1</sup>H), 471 MHz (for <sup>19</sup>F), and 126 MHz (for <sup>13</sup>C) spectrometer. All chemical shifts were reported in ppm relative to TMS (<sup>1</sup>H NMR, 0 ppm) as internal standards. The HPLC experiments were carried out on a Waters e2695 instrument (column: J&K, RP-C18, 5  $\mu$ m, 4.6 × 150 mm), and the yields of the products were determined by using the corresponding pure compounds as the external standards. Ethenesulfonyl fluoride<sup>[1]</sup> and N-methoxybenzamides<sup>[2]</sup> were prepared according to literature. Melting points of the products were measured on a micro melting point apparatus (SGW X-4) and uncorrected. HRMS experiments were performed on a TOF-Q ESI or CI/EI instrument. Reagents used in the reactions were all purchased from commercial sources and used without further purification.

2. Screening the optimized conditions for oxidative coupling of 1a or 6a with 2 Table 1 The reaction of 1a with 2 in the presence of different oxidants <sup>a</sup>

| O<br>N<br>OMe<br>1a | [<br>+ SO₂F -<br><b>2</b> (1.5 equiv.) <sup>C</sup> | [Cp*RhCl <sub>2</sub> ] <sub>2</sub> (2.5 mol%)<br>AgSbF <sub>6</sub> (10 mol%)<br>oxidant (20 mol%)<br>dioxane, 80 °C, 15 h, air | O<br>N<br>OMe<br>3a SO <sub>2</sub> F |
|---------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Entr                | у                                                   | oxidant                                                                                                                           | Yield (%) <sup>b</sup>                |
| 1                   |                                                     | $Cu(OAc)_2$                                                                                                                       | 48                                    |
| 2                   |                                                     | CuO                                                                                                                               | trace                                 |
| 3                   |                                                     | CuI                                                                                                                               | trace                                 |
| 4                   |                                                     | AgOTf                                                                                                                             | trace                                 |
| 5                   |                                                     | $Ag_2CO_3$                                                                                                                        | trace                                 |
| 6                   |                                                     | AgTFA                                                                                                                             | trace                                 |
| 7                   |                                                     | Ag <sub>2</sub> O                                                                                                                 | trace                                 |
| 8                   |                                                     | $K_2S_2O_8$                                                                                                                       | trace                                 |

<sup>a</sup> Reaction conditions: A mixture of **1a** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), oxidant (20 mol%) and dioxane (2.0 mL) was reacted at 80 °C for 15h. <sup>b</sup> The yield was determined by HPLC using **3a** ( $t_R = 8.879 \text{ min}$ ,  $\lambda_{max} = 270 \text{ nm}$ , water / methanol = 50 : 50 (v / v)) as the external standard.

Table 2 The reaction of 1a with 2 in the presence of different solvents.<sup>a</sup>

| 0<br>N-C<br>1a | DMe<br>+ SO <sub>2</sub> F<br><b>2</b> (1.5 equiv.) | [Cp*RhCl <sub>2</sub> ] <sub>2</sub> (2.5 mol%)<br>AgSbF <sub>6</sub> (10 mol%)<br>Cu(OAc) <sub>2</sub> (20 mol%)<br>solvent, 80 °C, 15 h, a | o<br>N-OMe<br>ir 3a SO <sub>2</sub> F |
|----------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                | Entry                                               | solvent                                                                                                                                      | Yield (%) <sup>b</sup>                |
|                | 1                                                   | DCE                                                                                                                                          | 53                                    |
|                | 2                                                   | THF                                                                                                                                          | 50                                    |
|                | 3                                                   | HFIP                                                                                                                                         | 19                                    |
|                | 4                                                   | dioxane                                                                                                                                      | 48                                    |
|                | 5                                                   | AcOH                                                                                                                                         | 14                                    |
|                | 6                                                   | acetone                                                                                                                                      | 34                                    |

<sup>a</sup> Reaction conditions: A mixture of **1a** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), Cu(OAc)<sub>2</sub> (20 mol%) in solvent (2.0 mL) was reacted at 80 °C for 15h. <sup>b</sup> The yield was determined by HPLC using **3a** (t<sub>R</sub> = 8.879 min,  $\lambda_{max} = 270$  nm, water / methanol = 50 : 50 (v / v)) as the external standard.

Table 3 The reaction of 1a with 2 in the presence of different additives.<sup>a</sup>

| N <sup>OMe</sup> - |       | $\begin{array}{c} [Cp*RhCl_2]_2 (2.5 \text{ mol}\%) \\ & \qquad \qquad$ | 3a SO <sub>2</sub> F |
|--------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                    | Entry | Additive                                                                                                                                                                                | Yield (%) b          |
|                    | 1     | 1 equiv. AcOH                                                                                                                                                                           | 9                    |
|                    | 2     | 1 equiv. NaOPiv                                                                                                                                                                         | trace                |
|                    | 3     | 1 equiv. K <sub>3</sub> PO <sub>4</sub>                                                                                                                                                 | trace                |
|                    | 4     | 1 equiv. $Cs_2CO_3$                                                                                                                                                                     | trace                |
|                    | 5     | 20 mol% Pyridine                                                                                                                                                                        | trace                |
|                    | 6     | 20 mol% 2-Picoline                                                                                                                                                                      | trace                |
|                    | 7     | 20 mol% 2,6-Lutidine                                                                                                                                                                    | trace                |

<sup>a</sup> Reaction conditions: A mixture of **1a** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), Cu(OAc)<sub>2</sub> (20 mol%) and additive in 1,4-dioxane (2.0 mL) was reacted at 80 °C for 15h. <sup>b</sup> The yield was determined by HPLC using **3a** ( $t_R = 8.879$  min,  $\lambda_{max} = 270$  nm, water / methanol = 50 : 50 (v / v)) as the external standard.

Table 4 The reaction of 1a with 2 under different temperatures.<sup>a</sup>

| 0<br>N<br>1a | DMe<br>+ SO<br><b>2</b> (1.5 equ | ${}_{2}F = \frac{\text{AgSbF}_{6} (10 \text{ mol}\%)}{\text{Cu}(\text{OAc})_{2} (2.5 \text{ mol}\%)}$<br>dioxane, temp., 15 h, a | o<br>N-OMe<br>ir 3a SO <sub>2</sub> F |
|--------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|              | Entry                            | Temp (°C)                                                                                                                        | Yield (%) <sup>b</sup>                |
|              | 1                                | 80                                                                                                                               | 48                                    |
|              | 2°                               | 80                                                                                                                               | 90                                    |
|              | 3                                | 100                                                                                                                              | 92                                    |
|              | 4                                | 120                                                                                                                              | 75                                    |
|              | 5 <sup>d</sup>                   | 100                                                                                                                              | trace                                 |
|              | 6 <sup>e</sup>                   | 100                                                                                                                              | trace                                 |

<sup>a</sup> Reaction conditions: A mixture of **1a** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), Cu(OAc)<sub>2</sub> (20 mol%) in 1,4-dioxane (2.0 mL) was reacted at different temperature for 15h. <sup>b</sup> The yield was determined by HPLC using **3a** ( $t_R = 8.879 \text{ min}$ ,  $\lambda_{max} = 270 \text{ nm}$ , water / methanol = 50 : 50 (v / v)) as the external standard. <sup>c</sup> AgSbF<sub>6</sub> (1.0 equiv.) was used. <sup>d</sup> Without Cu(OAc)<sub>2</sub>. <sup>e</sup> Without AgSbF<sub>6</sub>.

Table 5 The reaction of 6a with 2 in the presence of different oxidants<sup>a</sup>

| O<br>N<br>OMe<br>6a | [<br>+ SO <sub>2</sub> F -<br><b>2</b> (1.5 equiv.) | Cp*RhCl <sub>2</sub> ] <sub>2</sub> (2.5 mol%)<br>AgSbF <sub>6</sub> (10 mol%)<br>oxidant (2 equiv.)<br>dioxane, 100 °C, air | N-OMe<br>7a SO <sub>2</sub> F |
|---------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Entry               | /                                                   | oxidant                                                                                                                      | Yield (%) <sup>b</sup>        |
| 1                   |                                                     | Cu(OAc) <sub>2</sub>                                                                                                         | 52                            |
| 2                   |                                                     | CuO                                                                                                                          | trace                         |
| 3                   |                                                     | CuI                                                                                                                          | trace                         |
| 4                   |                                                     | CuF <sub>2</sub>                                                                                                             | 38                            |
| 5                   |                                                     | AgOTf                                                                                                                        | 40                            |
| 6                   |                                                     | $Ag_2CO_3$                                                                                                                   | trace                         |
| 7                   |                                                     | AgF                                                                                                                          | trace                         |
| 8                   |                                                     | AgTFA                                                                                                                        | trace                         |
| 9                   |                                                     | Ag <sub>2</sub> O                                                                                                            | trace                         |
| 10                  |                                                     | DDQ                                                                                                                          | trace                         |
| 11                  |                                                     | m-CPBA                                                                                                                       | trace                         |
| 12                  |                                                     | $K_2S_2O_8$                                                                                                                  | trace                         |
| 13°                 |                                                     | $Cu(OAc)_2$                                                                                                                  | 84                            |

<sup>a</sup> Reaction conditions: A mixture of **6a** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), oxidant (2 equiv.) in dioxane (2.0 mL) was reacted at 100 °C for 15h. <sup>b</sup> The yield was determined by HPLC using **7a** (t<sub>R</sub> = 4.592 min,  $\lambda_{max}$  = 230 nm, water / methanol = 50 : 50 (v / v)) as the external

standard. <sup>c</sup> Cu(OAc)<sub>2</sub> (20 mol%) was used.

| O<br>N<br>H<br>6a | OMe + SO <sub>2</sub> F - | $\frac{\text{Cp*RhCl}_2]_2 (2.5 \text{ mol}\%)}{\text{AgSbF}_6 (10 \text{ mol}\%)}$ Cu(OAc) <sub>2</sub> (2 equiv.) solvent, 100 °C, air | N-OMe<br>7a SO <sub>2</sub> F |
|-------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                   | Entry                     | solvent                                                                                                                                  | Yield (%) <sup>b</sup>        |
|                   | 1                         | dioxane                                                                                                                                  | 52                            |
|                   | 2                         | toluene                                                                                                                                  | 28                            |
|                   | 3                         | DMF                                                                                                                                      | trace                         |
|                   | 4                         | DMSO                                                                                                                                     | trace                         |
|                   | 5                         | THF                                                                                                                                      | 57                            |
|                   | 6                         | DCE                                                                                                                                      | 53                            |
|                   | 7                         | MeCN                                                                                                                                     | trace                         |

Table 6 The reaction of 6a with 2 in the presence of different solvents <sup>a</sup>

<sup>a</sup> Reaction conditions: A mixture of **6a** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), Cu(OAc) (0.4 mmol, 2 equiv.) in solvent (2.0 mL) was reacted at 100 °C for 15h. <sup>b</sup> The yield was determined by HPLC using **7a** ( $t_R = 4.592 \text{ min}$ ,  $\lambda_{max} = 230 \text{ nm}$ , water / methanol = 50 : 50 (v / v)) as the external standard.

| 0<br>N<br>H<br>6a | ,OMe <sub>+</sub> | <br>SO <sub>2</sub> F -<br><b>2 (</b> 1.5 equiv.) | Cp*RhCl <sub>2</sub> ] <sub>2</sub> (2.5 mol%)<br>AgSbF <sub>6</sub> (10 mol%)<br>Cu(OAc) <sub>2</sub> (20 mol%)<br>dioxane, 100 °C, air<br>additive | N-OMe<br>7a SO <sub>2</sub> F |
|-------------------|-------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| _                 | Entry             |                                                   | additive                                                                                                                                             | Yield (%) <sup>b</sup>        |
|                   | 1                 |                                                   | 10 mol% PPh <sub>3</sub>                                                                                                                             | 35                            |
|                   | 2                 |                                                   | 10 mol% DPPP                                                                                                                                         | trace                         |
|                   | 3                 |                                                   | 10 mol% bpy                                                                                                                                          | trace                         |
|                   | 4                 |                                                   | 10 mol% 1,10-Phen                                                                                                                                    | 38                            |
|                   | 5                 |                                                   | 1 equiv. AcOH                                                                                                                                        | 47                            |
|                   | 6                 |                                                   | 1 equiv. TFA                                                                                                                                         | 41                            |
|                   | 7                 |                                                   | 1 equiv. NaHCO <sub>3</sub>                                                                                                                          | trace                         |
|                   | 8                 |                                                   | 1 equiv. NaOAc                                                                                                                                       | trace                         |
|                   | 9                 |                                                   | 1 equiv. Pyridine                                                                                                                                    | 59                            |
|                   | 10                |                                                   | 1 equiv Et <sub>3</sub> N                                                                                                                            | trace                         |

Table 7 The reaction of 6a with 2 in the presence of different additives <sup>a</sup>

<sup>a</sup> Reaction conditions: A mixture of **6a** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), Cu(OAc) (20 mol%) and additive in dioxane (2.0 mL) was reacted at 100 °C for 15h. <sup>b</sup> The yield was determined by HPLC using **7a** ( $t_R = 4.592 \text{ min}$ ,  $\lambda_{max} = 230 \text{ nm}$ , water / methanol = 50 : 50 (v / v)) as the external standard.

| O<br>N<br>H<br>6a | OMe + SO <sub>2</sub> F -<br><b>2 (</b> 1.5 equiv.) | $[Cp*RhCl_2]_2 (2.5 mol\%) \\ AgSbF_6 (10 mol\%) \\ Cu(OAc)_2 (20 mol\%) \\ dioxane, temp., air$ | N-OMe<br>7a SO <sub>2</sub> F |
|-------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------|
|                   | Entry                                               | Temp. (°C)                                                                                       | Yield (%) <sup>b</sup>        |
|                   | 1                                                   | 100                                                                                              | 84                            |
|                   | 2                                                   | 120                                                                                              | 61                            |
|                   | 3                                                   | 80                                                                                               | 90                            |
|                   | 4                                                   | 60                                                                                               | 50                            |

Table 8 The reaction of 6a with 2 in the presence of different temperature<sup>a</sup>

<sup>a</sup> Reaction conditions: A mixture of **6a** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), Cu(OAc) (20 mol%) in dioxane (2.0 mL) was reacted at different temperature for 15h. <sup>b</sup> The yield was determined by HPLC using **7a** ( $t_R = 4.592 \text{ min}$ ,  $\lambda_{max} = 230 \text{ nm}$ , water / methanol = 50 : 50 (v / v)) as the external standard.

Table 9 The reaction of 5a with 2 in the presence of different  $AgSbF_6$  loading <sup>a</sup>

| N H | ,OMe <sub>+</sub> | (<br>SO <sub>2</sub> F - | $\frac{[Cp*RhCl_2]_2 (2.5 mol\%)}{AgSbF_6 (X mol\%)}$ | N-OMe                  |
|-----|-------------------|--------------------------|-------------------------------------------------------|------------------------|
| 08  |                   | <b>2</b> (1.5 equiv.)    | dioxane, 80 °C, air                                   | ∕a ∽ <sub>SO2</sub> F  |
| -   | Entry             |                          | Х                                                     | Yield (%) <sup>b</sup> |
|     | 1                 |                          | 10                                                    | 84                     |
|     | 2                 |                          | 25                                                    | 80                     |
|     | 3                 |                          | 100                                                   | 95                     |

<sup>a</sup> Reaction conditions: A mixture of **6a** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (2.5 mol%), AgSbF<sub>6</sub> (X mol%), Cu(OAc) (20 mol%) in dioxane (2.0 mL) was reacted at 80 °C for 15h. <sup>b</sup> The yield was determined by HPLC using **7a** ( $t_R = 4.592 \text{ min}$ ,  $\lambda_{max} = 230 \text{ nm}$ , water / methanol = 50 : 50 (v / v)) as the external standard.

### 3. Procedures for the synthesis of 3

An oven-dried screw cap test tube was charged with *N*-methoxy-*N*-methylbenzamide (1, 0.5 mmol), ethenesulfonyl fluoride (ESF, 2, 0.75 mmol, 1.5 equiv.),  $[Cp*RhCl_2]_2$  (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), Cu(OAc)<sub>2</sub> (20 mol%) and 1,4-dioxane (5 mL) under an air atomosphere. The resulting mixture was stirred at 100 °C for 15 h before concentrating under vacuum. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as eluents to give the desired product (3).



(*E*)-2-(2-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (**3a**). Petroleum ether / ethyl acetate = 5 : 1 (v /v) as eluent for column chromatography. Yellow oil, 123.0 mg, 90% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, *J* = 15.5 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.56-7.47 (m, 3H), 6.87 (d, *J* = 15.5 Hz, 1H), 3.42 (s, 3H), 3.36 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.8 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.5 (s), 146.0 (d, *J* = 2.0 Hz), 136.6 (s), 131.8 (s), 130.1 (s), 128.6 (s), 128.0 (s), 127.4 (s), 120.2 (d, *J* = 27.7 Hz), 61.3 (s), 32.7 (s). HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>12</sub>FNO<sub>4</sub>SNa: 296.0363, found: 296.0359.



(*E*)-2-(2-(methoxy(methyl)carbamoyl)-5-methylphenyl)ethenesulfonyl fluoride (**3b**). Petroleum ether / ethyl acetate = 5 : 1 (v /v) as eluent for column chromatography. White solid, 104.9 mg, 73% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, *J* = 15.5 Hz, 1H), 7.43 (s, 1H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 1H), 6.85 (d, *J* = 15.4 Hz, 1H), 3.45 (s, 3H), 3.35 (s, 3H), 2.43 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.9 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.7 (s), 146.3 (d, *J* = 1.3 Hz), 140.4 (s), 133.8 (s), 132.6 (s), 128.6 (s), 128.1 (s), 127.9 (s), 119.8 (d, *J* = 28.6 Hz), 61.3 (s), 32.8 (s), 21.3 (s). Mp 98-100 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>12</sub>H<sub>14</sub>FNO<sub>4</sub>SNa: 310.0520, found: 310.0520.



(*E*)-2-(2-(methoxy(methyl)carbamoyl)-4-methylphenyl)ethenesulfonyl fluoride (**3c**). Petroleum ether / ethyl acetate = 5 : 1 (v /v) as eluent for column chromatography. White solid, 99.1 mg, 69% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, *J* = 15.5 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.28 (s, 1H), 6.82 (d, J = 15.6 Hz, 1H), 3.34 (br, 6H), 2.43 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  62.1 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.9 (s), 146.0 (d, *J* = 2.0 Hz), 143.0 (s), 136.8 (s), 130.9 (s), 128.5 (s), 127.4 (s), 125.7 (s), 118.9 (d, *J* = 30.2 Hz), 61.3 (s), 32.6 (s), 21.5 (s).

Mp 80-82 °C. HRMS ESI (m/z):  $[M+Na]^+$  calcd for  $C_{12}H_{14}FNO_4SNa$ : 310.0520, found: 310.0515.

(*E*)-2-(2-(methoxy(methyl)carbamoyl)-3-methylphenyl)ethenesulfonyl fluoride (**3d**). Petroleum ether / ethyl acetate = 5 : 1 (v /v) as eluent for column chromatography. White solid, 90.5 mg, 63% yield. The product were obtained as two rotational isomers. Major : minor = 1 : 0.25. Major: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (d, *J* = 15.4 Hz, 1H), 7.45-7.44 (m, 1H), 7.37-7.36 (m, 2H), 6.86 (dd, *J* = 15.4, 2.2 Hz, 1H), 3.41 (s, 3H), 3.36 (s, 3H), 2.34 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.9 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  169.3 (s), 146.3 (d, *J* = 2.8 Hz), 137.1 (s), 136.1 (s), 133.7 (s), 129.3 (s), 127.8 (s), 124.6 (s), 120.0 (d, *J* = 28.2 Hz), 61.4 (s), 32.5 (s), 19.2 (s). Minor: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, *J* = 15.5 Hz, 0.25H), 7.45-7.44 (m, 0.36H), 7.40-7.39 (m, 0.56H), 6.92 (dd, *J* = 15.5, 1.9 Hz, 0.26H), 3.94 (s, 0.75H), 3.01 (s, 0.73H), 2.37 (s, 0.81H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.8 (s, 0.23F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.9 (s), 145.1 (d. *J* = 2.7 Hz), 136.2 (s), 136.1 (s), 134.3 (s), 130.0 (s), 127.9 (s), 125.4 (s), 121.0 (d, *J* = 28.5 Hz), 61.0 (s), 35.7 (s), 18.9 (s). Mp 77-79 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>12</sub>H<sub>14</sub>FNO<sub>4</sub>SNa: 310.0520, found: 310.0515.



(*E*)-2-(5-methoxy-2-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (**3e**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. Yellow solid, 110.7 mg, 73% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, *J* = 15.4 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.07 (s, 1H), 7.06 (d, *J* = 11.6 Hz, 1H), 6.83 (d, *J* = 15.3 Hz, 1H), 3.88 (s, 3H), 3.46 (s, 3H), 3.34 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.9 (s). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.2 (s), 160.7 (s), 146.3 (s), 130.5 (s), 123.0 (s), 128.7 (s), 120.2 (d, *J* = 28.2 Hz), 117.2 (s), 112.4 (s), 61.2 (s), 55.6 (s), 33.3 (s). Mp 89-92 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>12</sub>H<sub>14</sub>FNO<sub>5</sub>SNa: 326.0469, found: 326.0465.



(E)-2-(3-methoxy-2-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (3f). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. White solid, 109.2 mg, 72% yield. The product were obtained as two rotational isomers. Major : minor = 1 : 0.28. Major: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, J = 15.5 Hz, 1H), 7.42 (t, J = 8.1 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.07 (d, J = 8.3 Hz, 1H), 6.88 (dd, J = 15.5, 1.9 Hz, 1H), 3.86 (s, 3H), 3.41 (s, 3H), 3.39 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ 61.8 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 167.1 (s), 156.4 (s), 145.6 (d, J = 2.4 Hz), 130.5 (s), 129.1 (s), 127.0 (s), 120.7 (d, J = 28.3 Hz), 119.4 (s), 114.4 (s), 61.4 (s), 56.2 (s), 32.4 (s). Minor: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.79 (d, J = 15.5 Hz, 0.28H), 7.42 (t, J = 8.1 Hz, 0.36H), 7.19 (d, J = 7.8 Hz, 0.39H), 7.07 (d, J= 8.3 Hz, 0.34H), 6.94 (d, J = 15.6 Hz, 0.32H), 3.89 (s, 0.93H), 3.86 (s, 1.06H), 3.05 (s, 0.81H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ 61.7 (s, 0.28F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  163.1 (s), 144.8 (s), 131.3 (s), 129.5 (s), 126.0 (s), 121.4 (d, J = 28.2 Hz), 119.9 (s), 114.5 (s), 60.9 (s), 35.8 (s). Theoretically, there should be twelve peaks, due to the compact overlaying, it is difficult to specify the overlaying peaks. Mp 129-131 °C. HRMS ESI (m/z):  $[M+Na]^+$  calcd for  $C_{12}H_{14}FNO_5SNa$ : 326.0469, found: 326.0464.



(*E*)-2-(4-methoxy-2-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (**3g**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. Yellow solid, 51.6 mg, 34% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 7.78 (d, *J* = 15.4 Hz, 1H), 7.59 (d, *J* = 8.7 Hz, 1H), 7.01 (d, *J* = 8.8 Hz, 1H), 6.96 (s, 1H), 6.72 (d, *J* = 15.3 Hz, 1H), 3.88 (s, 3H), 3.41 (br, 6H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  62.6 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.4 (s), 162.4 (s), 145.6 (d, *J* = 4.6 Hz), 138.9 (s), 129.4 (s), 120.7 (s), 116.9 (d, *J* = 28.1 Hz), 116.0 (s), 113.0 (s), 61.4 (s), 55.8 (s), 32.5 (s). Mp 102-104 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>12</sub>H<sub>14</sub>FNO<sub>5</sub>SNa: 326.0469, found: 326.0467.



(*E*)-2-(2-methoxy-6-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (**3h**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. Yellow oil, 54.6 mg, 36% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, *J* = 15.3 Hz, 1H), 7.49 (t, *J* = 7.9 Hz, 1H), 7.26 (d, *J* = 15.3 Hz, 1H), 7.03 (t, *J* = 7.6 Hz, 2H), 3.97 (s, 3H), 3.39 (s, 6H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.6 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  169.2 (s), 159.3 (s), 141.9 (d, *J* = 2.0 Hz), 139.2 (s), 132.9 (s), 121.7 (d, *J* = 24.6 Hz), 119.4 (s), 112.0 (s), 100.0 (s), 61.4 (s), 56.0 (s), 32.5 (s). HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>12</sub>H<sub>14</sub>FNO<sub>5</sub>SNa: 326.0469, found: 326.0466.



(*E*)-2-(5-(tert-butyl)-2-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (**3i**). Petroleum ether / ethyl acetate = 5 : 1 (v /v) as eluent for column chromatography. White solid, 107.1 mg, 65% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 7.91 (d, *J* = 15.5 Hz, 1H), 7.58 (s, 1H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 6.87 (d, *J* = 15.2 Hz, 1H), 3.47 (s, 3H), 3.35 (s, 3H), 1.35 (s, 9H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  62.0 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.5 (s), 153.6 (s), 146.7 (s), 133.8 (s), 129.1 (s), 128.3 (s), 127.9 (s), 124.4 (s), 119.8 (d, *J* = 28.6 Hz), 61.3 (s), 35.0 (s), 31.2 (s), 31.1 (s). Mp 82-83 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>20</sub>FNO<sub>4</sub>SNa: 352.0989, found: 352.0985.



(*E*)-2-(5-ethyl-2-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (**3j**). Petroleum ether / ethyl acetate = 5 : 1 (v /v) as eluent for column chromatography. White solid, 78.3 mg, 52% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, *J* = 15.5 Hz, 1H), 7.43 (s, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 6.86 (d, *J* = 15.4 Hz, 1H), 3.46 (s, 3H), 3.34 (s, 3H), 2.71 (q, *J* = 7.6 Hz, 2H), 1.27 (t, *J* = 7.6 Hz, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.9 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.6 (s), 146.6 (s), 134.0 (s), 131.5 (s), 128.6 (s), 128.2 (s), 126.8 (s), 119.8 (d, *J* = 7.6 Hz, 2H).

27.4 Hz), 61.3 (s), 33.1 (s), 28.6 (s), 15.1 (s). Mp 85-87 °C. HRMS ESI (m/z):  $[M+Na]^+$  calcd for  $C_{13}H_{16}FNO_4SNa$ : 324.0676, found: 324.0674.



(*E*)-2-(4-(methoxy(methyl)carbamoyl)-[1,1'-biphenyl]-3-yl)ethenesulfonyl fluoride (**3k**). Petroleum ether / ethyl acetate = 5 : 1 (v /v) as eluent for column chromatography. White solid, 118.8 mg, 68% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 7.97 (d, *J* = 15.5 Hz, 1H), 7.80 (d, *J* = 1.1 Hz, 1H), 7.75 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.61-7.57 (m, 3H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.43 (t, *J* = 7.3 Hz, 1H), 6.94 (d, *J* = 15.5 Hz, 1H), 3.50 (s, 3H), 3.39 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.9 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.4 (s), 146.1 (s), 143.3 (s), 139.0 (s), 135.1 (s), 130.3 (s), 129.2 (s), 129.2 (s), 128.7 (s), 128.5 (s), 127.2 (s), 126.1 (s), 120.5 (d, *J* = 28.1 Hz), 61.4 (s), 33.0 (s). Mp 116-117 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>16</sub>FNO<sub>4</sub>SNa: 372.0676, found: 372.0671.



(*E*)-2-(2-(methoxy(methyl)carbamoyl)-5-phenoxyphenyl)ethenesulfonyl fluoride (**31**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. White solid, 124.2 mg, 68% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, *J* = 15.5 Hz, 1H), 7.47 (d, *J* = 8.5 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 2H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.18 (d, *J* = 1.9 Hz, 1H), 7.12 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.05 (d, *J* = 7.7 Hz, 2H), 6.76 (dd, *J* = 15.4, 1.7 Hz, 1H), 3.48 (s, 3H), 3.35 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.9 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.0 (s), 159.1 (s), 155.4 (s), 145.6 (s), 130.7 (s), 130.7 (d, *J* = 3.1 Hz), 130.3 (s), 130.1 (s), 124.9 (s), 120.9 (s), 120.7 (d, *J* = 28.5 Hz), 119.9 (s), 116.1 (s), 61.3 (s), 32.9 (s). Mp 118-120 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>16</sub>FNO<sub>5</sub>SNa: 388.0625, found: 388.0621.



(*E*)-2-(3-(methoxy(methyl)carbamoyl)naphthalen-2-yl)ethenesulfonyl fluoride (**3m**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. White solid, 111.5 mg, 69% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (s, 1H), 8.02 (d, *J* = 15.5 Hz, 1H), 7.98 (s, 1H), 7.90 (d, *J* = 9.6 Hz, 2H), 7.65-7.60 (m, 2H), 6.95 (dd, *J* = 15.4, 1.3 Hz, 1H), 3.45 (s, 3H), 3.40 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  62.0 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.7 (s), 146.7 (s), 133.8 (s), 132.9 (s), 132.4 (s), 129.2 (s), 129.0 (s), 128.7 (s), 128.3 (s), 128.3 (s), 128.1 (s), 126.2 (s), 119.9 (d, *J* = 28.1 Hz), 61.3 (s), 33.2 (s). Mp 121-122 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>14</sub>FNO<sub>4</sub>SNa: 346.0520, found: 346.0517.



(*E*)-2-(5-(dimethylamino)-2-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (**3n**). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. Orange solid, 117.0 mg, 74% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (d, *J* = 15.4 Hz, 1H), 7.39 (d, *J* = 8.7 Hz, 1H), 6.83-6.74 (m, 3H), 3.47 (s, 3H), 3.29 (s, 3H), 3.02 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  62.0 (s). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.9 (s), 151.1 (s), 148.1 (d, *J* = 2.0 Hz), 130.4 (s), 129.9 (s), 122.9 (s), 119.0 (d, *J* = 27.7 Hz), 114.5 (s), 109.4 (s), 61.1 (s), 40.1 (s), 33.7 (s). Mp 90-91 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>13</sub>H<sub>17</sub>FN<sub>2</sub>O<sub>4</sub>SNa: 339.0785, found: 339.0781.



(*E*)-2-(2-(methoxy(methyl)carbamoyl)-5-(trifluoromethyl)phenyl)ethenesulfonyl fluoride (**3o**). Petroleum ether / ethyl acetate = 5 : 1 (v /v) as eluent for column chromatography. White solid, 99.0 mg, 58% yield.<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, *J* = 14.2 Hz, 1H), 7.86 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 6.97 (d, *J* = 15.4 Hz, 1H), 3.40 (s, 6H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.6 (s, 1F), -63.1 (s, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.4 (s), 144.3 (s), 139.7 (s), 132.4 (q, *J* = 33.4 Hz), 129.6 (s), 128.7 (s), 128.1 (s), 124.3 (s), 123.1 (q, *J* = 273.2 Hz), 122.3 (d, *J* = 30.0 Hz), 61.5 (s), 32.5 (s). Mp 95-97 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>12</sub>H<sub>11</sub>F<sub>4</sub>NO<sub>4</sub>SNa: 364.0237, found: 364.0234.



(*E*)-2-(5-chloro-2-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (**3p**). Petroleum ether / ethyl acetate = 5 : 1 (v /v) as eluent for column chromatography. White solid, 110.8 mg, 72% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, *J* = 15.5 Hz, 1H), 7.60 (s, 1H), 7.50 (d, *J* = 8.3 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 1H), 6.89 (d, *J* = 15.4 Hz, 1H), 3.44 (s, 3H), 3.35 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.7 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.5 (s), 144.6 (s), 136.3 (s), 134.7 (s), 131.6 (s), 130.5 (s), 129.5 (s), 127.3 (s), 121.6 (d, *J* = 28.8 Hz), 61.4 (s), 32.7 (s). Mp 92-94 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>11</sub>ClFNO<sub>4</sub>SNa: 329.9974, found: 329.9973, 331.9945.



(*E*)-2-(5-bromo-2-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (**3q**). Petroleum ether / ethyl acetate = 5 : 1 (v /v) as eluent for column chromatography. Yellow solid, 142.6 mg, 81% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, *J* = 15.5 Hz, 1H), 7.76 (s, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 6.88 (d, *J* = 15.6 Hz, 1H), 3.44 (s, 3H), 3.36 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.8 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.6 (s), 144.5 (s), 135.2 (s), 134.5 (s), 130.7 (s), 130.2 (s), 129.6 (s), 124.3 (s), 121.6 (d, *J* = 29.0 Hz), 61.5 (s), 32.7 (s). Mp 93-95 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>11</sub>BrFNO<sub>4</sub>SNa: 373.9468, found: 373.9466, 375.9448.



(*E*)-methyl 3-(2-(fluorosulfonyl)vinyl)-4-(methoxy(methyl)carbamoyl)benzoate (**3r**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. White solid, 129.2 mg, 78% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.29 (s, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 15.5 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 6.98 (d, *J* = 15.3 Hz, 1H), 3.97 (s, 3H), 3.39 (s, 6H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.7 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.8 (s), 165.3 (s), 144.9 (s), 140.4 (s), 132.3 (s),

131.8 (s), 129.0 (s), 128.5 (s), 128.2 (s), 121.5 (d, J = 26.7 Hz), 61.5 (s), 52.7 (s), 32.5 (s). Mp 110-112 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>13</sub>H<sub>14</sub>FNO<sub>6</sub>SNa: 354.0418, found: 354.0415.



(*E*)-2-(5-hydroxy-4-methoxy-2-(methoxy(methyl)carbamoyl)phenyl)ethenesulfonyl fluoride (**3s**). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. Brown solid, 87.8 mg, 55% yield. <sup>1</sup>H NMR (500 MHz, DMSO-d6)  $\delta$  9.76 (s, 1H), 7.66 (s, 2H), 7.39 (s, 1H), 7.09 (s, 1H), 3.88 (s, 3H), 3.52 (s, 3H), 3.25 (s, 3H). <sup>19</sup>F NMR (471 MHz, DMSO-d6)  $\delta$  63.0 (s, 1F). <sup>13</sup>C NMR (126 MHz, DMSO-d6)  $\delta$  172.5 (s), 156.3 (s), 153.0 (s), 150.8 (s), 135.3 (s), 126.2 (s), 122.2 (d, *J* = 25.5 Hz), 118.9 (d, *J* = 6.1 Hz), 115.9 (s), 66.1 (s), 61.3 (s), 38.4 (s). Mp 88-89 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>12</sub>H<sub>14</sub>FNO<sub>6</sub>SNa: 324.0418, found: 324.0414.



(*E*)-2-(2-(methoxy(methyl)carbamoyl)thiophen-3-yl)ethenesulfonyl fluoride (**3t**). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. White solid, 93.6 mg, 67% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.71 (d, *J* = 15.6 Hz, 1H), 7.54 (d, *J* = 5.3 Hz, 1H), 7.30 (d, *J* = 5.3 Hz, 1H), 6.75 (d, *J* = 15.6 Hz, 1H), 3.71 (s, 3H), 3.37 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  62.5 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  161.7 (s), 142.5 (d, *J* = 2.6 Hz), 138.2 (s), 133.5 (s), 130.9 (s), 125.7 (s), 119.8 (d, *J* = 28.1 Hz), 61.8 (s), 33.1 (s). Mp 100-101 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>9</sub>H<sub>10</sub>FNO<sub>4</sub>S<sub>2</sub>Na: 301.9928, found: 301.9924.



(*E*)-2-(2-(methoxy(methyl)carbamoyl)furan-3-yl)ethenesulfonyl fluoride (**3u**). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. White solid, 110.5 mg, 84% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.35 (d, *J* = 15.6 Hz, 1H), 7.53 (d, *J* = 1.7 Hz, 1H), 6.75 (d, *J* = 15.6 Hz, 1H), 6.70 (d, *J* = 1.7 Hz, 1H), 3.82 (s, 3H), 3.34 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  62.2 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  159.3 (s), 146.9 (s), 144.6 (s), 139.5 (s), 124.3 (s), 120.4 (d, *J* = 28.7 Hz), 109.2 (s), 62.2 (s), 33.7 (s). Mp 95-97 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>9</sub>H<sub>10</sub>FNO<sub>5</sub>SNa: 286.0156, found: 286.0152.



(*E*)-2-(6-(methoxy(methyl)carbamoyl)benzo[d][1,3]dioxol-5-yl)ethenesulfonyl fluoride (**3v**). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. Yellow oil, 71.4 mg, 45% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 15.4 Hz, 1H), 7.27 (d, *J* = 15.3 Hz, 1H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.94 (d, *J* = 8.0 Hz, 1H), 6.18 (s, 2H), 3.49 (s, 3H), 3.34 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.9 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.7 (s), 149.0 (s), 147.6 (s), 140.6 (s), 129.9 (s), 122.3 (d, *J* = 28.0 Hz), 122.1 (s), 111.9 (s), 110.9 (s), 102.6 (s), 61.3 (s), 33.2 (s). HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>12</sub>H<sub>12</sub>FNO<sub>6</sub>SNa: 340.0262, found: 340.0258.

## 4. Procedures for the synthesis of 5

An oven-dried screw cap test tube was charged with *N*-methoxy-*N*-methylbenzamide (1, 0.5 mmol), ethenesulfonyl fluoride (ESF, 2, 0.75 mmol, 1.5 equiv.),  $[Cp*RhCl_2]_2$  (2.5 mol%),  $AgSbF_6$  (0.5 mmol, 1 equiv.),  $Cu(OAc)_2$  (20 mol%) and 1,4-dioxane (5 mL) under an air atomosphere. The resulting mixture was stirred at 100 °C for 15 h before concentrating under vacuum. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as eluents to give the desired products (5).



(6-Methoxy-3-oxo-1,3-dihydroisobenzofuran-1-yl)methanesulfonyl fluoride (**5a**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. White solid, 98.9 mg, 76% yield. <sup>1</sup>H NMR (500 MHz, DMSO-d6)  $\delta$  7.79 (d, *J* = 8.5 Hz, 1H), 7.44 (s, 1H), 7.18 (d, *J* = 8.5 Hz, 1H), 6.03 (d, *J* = 8.5 Hz, 1H), 5.02 (dd, *J* = 15.1, 9.6 Hz, 1H), 4.61 (dd, *J* = 15.2, 9.4 Hz, 1H), 3.89 (s, 3H). <sup>19</sup>F NMR (471 MHz, DMSO)  $\delta$  61.0 (d, *J* = 9.8 Hz, 1F). <sup>13</sup>C NMR (126 MHz, DMSO-d6)  $\delta$  169.0 (s), 165.0 (s), 149.8 (s), 127.2 (s), 118.0 (s), 117.7 (s), 107.9 (s), 74.3 (s), 56.5 (s), 53.9 (d, *J* = 13.8 Hz). Mp 175-177 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>10</sub>H<sub>9</sub>FO<sub>5</sub>SNa: 283.0047, found: 283.0047.



(6-Hydroxy-3-oxo-1,3-dihydroisobenzofuran-1-yl)methanesulfonyl fluoride (**5b**). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. White solid, 83.7 mg, 68% yield. <sup>1</sup>H NMR (500 MHz, DMSO-d6)  $\delta$  10.86 (s, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.13 (s, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 5.95 (d, *J* = 9.0 Hz, 1H), 4.97 (dd, *J* = 15.0, 10.2 Hz, 1H), 4.57 (dd, *J* = 15.2, 9.3 Hz, 1H). <sup>19</sup>F NMR (471 MHz, DMSO-d6)  $\delta$  61.4 (d, *J* = 10.1 Hz, 1F). <sup>13</sup>C NMR (126 MHz, DMSO-d6)  $\delta$  169.1 (s), 163.9 (s), 149.8 (s), 127.5 (s), 118.6 (s), 116.1 (s), 109.6 (s), 74.0 (s), 54.0 (d, *J* = 13.5 Hz). Mp 213-214 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>9</sub>H<sub>7</sub>FO<sub>5</sub>SNa: 268.9890, found: 268.9891.



(3-Oxo-6-phenoxy-1,3-dihydroisobenzofuran-1-yl)methanesulfonyl fluoride (**5c**). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. White solid, 106.4 mg, 66% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.87 (d, *J* = 8.5 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.27 (t, *J* = 7.5 Hz, 1H), 7.19 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 2H), 7.04 (s, 1H), 5.85 (dd, *J* = 8.0, 3.2 Hz, 1H), 3.94 (ddd, *J* = 15.2, 8.3, 3.5 Hz, 1H), 3.78 (dd, *J* = 15.3, 8.1 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.2 (d, *J* = 8.2 Hz, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.0 (s), 164.2 (s), 154.6 (s), 148.0 (s), 130.5 (s), 128.2 (s), 125.7 (s), 120.6 (s), 120.2 (s), 119.1 (s), 109.9 (s), 73.3 (s), 54.6 (d, *J* = 17.5 Hz). Mp 118-120 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>11</sub>FO<sub>5</sub>SNa: 345.0203, found: 345.0200.

## 5. Procedures for the synthesis of 7

An oven-dried screw cap test tube was charged with *N*-methoxybenzamide (**6**, 0.5 mmol), ethenesulfonyl fluoride (ESF, **2**, 0.75 mmol, 1.5 equiv.),  $[Cp*RhCl_2]_2$  (2.5 mol%), AgSbF<sub>6</sub> (0.5 mmol, 1 equiv.), Cu(OAc)<sub>2</sub> (20 mol%) and 1,4-dioxane (5 mL) under an air atomosphere. The resulting mixture was stirred at 80 °C for 15 h before concentrating under vacuum. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as eluents to give the desired products (7).



(2-Methoxy-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**7a**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. Yellow solid, 118.0 mg, 91% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, *J* = 7.6 Hz, 1H), 7.69-7.63 (m, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 5.25 (dd, *J* = 6.4, 4.3 Hz, 1H), 4.14 (dt, *J* = 15.2, 3.6 Hz, 1H), 4.03 (s, 3H), 3.74 (dt. *J* = 15.3, 4.8 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.6 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.8 (s), 138.7 (s), 133.2 (s), 130.1 (s), 129.3 (s), 124.4 (s), 123.4 (s), 64.2 (s), 54.6 (s), 52.2 (d, *J* = 16.8 Hz). Mp 89-90 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>10</sub>H<sub>10</sub>FNO<sub>4</sub>SNa: 282.0207, found: 282.0205.



(2-Methoxy-6-methyl-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**7b**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. Yellow solid, 106.6 mg, 78% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 7.8 Hz, 1H), 7.42 (s, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 5.19 (t, *J* = 4.8 Hz, 1H), 4.11 (dt, *J* = 15.0, 3.2 Hz, 1H), 4.01 (s, 3H), 3.73 (dt, *J* = 15.1, 4.9 Hz, 1H), 2.48 (s, 3H). <sup>19</sup>F NMR (471 Hz, CDCl<sub>3</sub>)  $\delta$  61.5 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.2 (s), 144.4 (s), 139.2 (s), 131.0 (s), 126.5 (s), 124.3 (s), 123.7 (s), 64.2 (s), 54.6 (s), 52.4 (d, *J* = 16.8 Hz), 22.1 (s). Mp 123-124 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>12</sub>FNO<sub>4</sub>SNa: 296.0363, found: 296.0360.



(2-Methoxy-5-methyl-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**7c**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. Yellow solid, 103.9 mg, 76% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (s, 1H), 7.49 (d, *J* = 7.9 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 5.18 (t, *J* = 5.0 Hz, 1H), 4.10 (dt, *J* = 15.2, 3.5 Hz, 1H), 3.99 (s, 3H), 3.75 (dt, *J* = 15.0, 4.9 Hz, 1H), 2.42 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.8 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.1 (s), 140.4 (s), 135.9 (s), 134.1 (s), 129.2 (s), 124.5 (s), 123.1 (s), 64.1 (s), 54.5 (s), 52.3 (d, *J* = 16.5 Hz), 21.4 (s). Mp 114-116 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>12</sub>FNO<sub>4</sub>SNa: 296.0363, found: 296.0358.



(2-Methoxy-4-methyl-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**7d**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. Brown solid, 60.1 mg, 44% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (t, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 5.17 (t, *J* = 5.2 Hz, 1H), 4.08 (dt, *J* = 15.1, 3.7 Hz, 1H), 4.00 (s, 3H), 3.76 (dt, *J* = 15.2, 5.3 Hz, 1H), 2.67 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.7 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.4 (s), 139.4 (s), 138.9 (s), 132.7 (s), 131.9 (s), 126.2 (s), 120.6 (s), 64.1 (s), 54.3 (s), 52.6 (d, *J* = 16.5 Hz), 17.2 (s). Mp 89-91 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>12</sub>FNO<sub>4</sub>SNa: 296.0363, found: 296.0358.



(2,6-Dimethoxy-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**7e**). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. Yellow solid, 94.0 mg, 65% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, *J* = 8.5 Hz, 1H), 7.11 (s, 1H), 7.05 (d, *J* = 8.5 Hz, 1H), 5.17 (dd, *J* = 6.4, 4.3 Hz, 1H), 4.13 (dt, *J* = 15.2, 3.3 Hz, 1H), 3.99 (s, 3H), 3.88 (s, 3H), 3.73 (dt, *J* = 15.1, 5.0 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.5 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.6 (s), 164.0 (s), 141.3 (s), 126.1 (s), 121.2 (s), 116.5 (s), 108.4 (s), 64.3 (s), 55.9 (s), 54.7 (s), 52.4 (d, *J* = 16.9 Hz). Mp 128-129 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>12</sub>FNO<sub>5</sub>SNa: 312.0312, found: 312.0308.



(2,4-Dimethoxy-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**7f**). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. Yellow solid, 92.6 mg, 64% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (t, *J* = 8.0 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 1H), 5.15 (t, *J* = 5.0 Hz, 1H), 4.09 (dt, *J* = 15.2, 3.8 Hz, 1H), 4.00 (s, 3H), 3.98 (s, 3H), 3.74 (dt, *J* = 15.2, 5.3 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.7 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.9 (s), 157.8 (s), 141.3 (s), 135.1 (s), 116.2 (s), 115.1 (s), 112.2 (s), 64.1 (s), 56.1 (s), 54.5 (s), 52.5 (d, *J* = 16.7 Hz). Mp 120-122 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>12</sub>FNO<sub>5</sub>SNa: 312.0312, found: 312.0308.



(6-(Tert-butyl)-2-methoxy-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**7g**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. Brown solid, 99.4 mg, 63% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, *J* = 8.1 Hz, 1H), 7.63 (s, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 5.22 (t, *J* = 5.2 Hz, 1H), 4.14 (dt, *J* = 15.0, 3.5 Hz, 1H), 4.00 (s, 3H), 3.74 (dt, *J* = 15.4, 5.6 Hz, 1H), 1.35 (s, 9H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.7 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.1 (s), 157.7 (s), 138.9 (s), 127.4 (s), 126.4 (s), 124.1 (s), 120.3 (s), 64.2 (s), 54.7 (s), 52.5 (d, *J* = 16.7 Hz), 35.7 (s), 31.2 (s). Mp 121-123 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>14</sub>H<sub>18</sub>FNO<sub>4</sub>SNa: 338.0833, found: 338.0828.



(2-Methoxy-3-oxo-6-phenylisoindolin-1-yl)methanesulfonyl fluoride (**7h**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. White solid, 87.2 mg, 52% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 (d, *J* = 7.9 Hz, 1H), 7.83 (s, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.60 (d, *J* = 7.4 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.43 (t, *J* = 7.3 Hz, 1H), 5.30 (dd, *J* = 6.4, 4.3 Hz, 1H), 4.18 (dt, *J* = 15.1, 3.5 Hz, 1H), 4.04 (s, 3H), 3.78 (dt, *J* = 15.1, 5.5 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.7 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.9 (s), 146.7 (s), 139.6 (s), 139.5 (s), 129.2 (s), 129.1 (s), 128.7 (s), 127.8 (s), 127.4 (s), 124.8 (s), 122.0 (s), 64.3 (s), 54.7 (s), 52.3 (d, *J* = 17.0 Hz). Mp 116-117 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>16</sub>H<sub>14</sub>FNO<sub>4</sub>SNa: 358.0520, found: 358.0516.



(6-Bromo-2-methoxy-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**7i**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. Yellow solid, 52.4 mg, 31% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (s, 1H), 7.76-7.71 (m, 2H), 5.22 (dd, *J* = 6.1, 4.0 Hz, 1H), 4.15-4.09 (m, 1H), 4.02 (s, 3H), 3.77-3.71 (m, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.6 (s). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  163.9 (s), 140.4 (s), 133.7 (s), 128.2 (s), 128.0 (s), 126.9 (s), 125.9 (s), 64.4 (s), 54.2 (s), 51.9 (d, *J* = 17.4 Hz). Mp 150-152 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>10</sub>H<sub>9</sub>BrFNO<sub>4</sub>SNa: 359.9312, found: 359.9312, 361.9290.



(6-Chloro-2-methoxy-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**7j**). Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. Yellow solid, 54.3 mg, 37% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, *J* = 8.1 Hz, 1H), 7.65 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 5.22 (dd, *J* = 6.7, 3.9 Hz, 1H), 4.15 (dt, *J* = 5.9, 3.3 Hz, 1H), 4.03 (s, 3H), 3.74 (dt, *J* = 15.0, 5.5 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.6 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  163.8 (s), 140.3 (s), 139.8 (s), 130.8 (s), 127.7 (s), 125.8 (s), 124.0 (s), 64.4 (s), 54.3 (s), 51.9 (d, *J* = 17.4 Hz). Mp 153-155 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>10</sub>H<sub>9</sub>CIFNO<sub>4</sub>SNa: 315.9817, found: 315.9816, 317.9784.



(2-Methoxy-3-oxo-2,3-dihydro-1H-benzo[f]isoindol-1-yl)methanesulfonyl fluoride (7k). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. Yellow solid, 92.8 mg, 60% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 8.42 (s, 1H), 8.09 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.67 – 7.61 (m, 2H), 5.41 (t, *J* = 5.7 Hz, 1H), 4.22 (dt, *J* = 15.0, 3.0 Hz, 1H), 4.08 (s, 3H), 3.79 (dt, *J* = 15.3, 5.4 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.6 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.3 (s), 135.4 (s), 133.5 (s), 133.4 (s), 129.6 (s), 128.7 (s), 128.6 (s), 127.7 (s), 126.1 (s), 125.3 (s), 123.1 (s), 64.2 (s), 54.4 (s), 52.8 (d, *J* = 16.6 Hz). Mp 181-182 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>14</sub>H<sub>12</sub>FNO<sub>4</sub>SNa: 332.0363, found: 332.0360.



(5-Methoxy-6-oxo-5,6-dihydro-4H-thieno[2,3-c]pyrrol-4-yl)methanesulfonyl fluoride (7I). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. Yellow oil, 54.4 mg, 41% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (d, *J* = 4.9 Hz, 1H), 7.25 (d, *J* = 4.8 Hz, 1H), 5.14 (dd, *J* = 8.7, 3.5 Hz, 1H), 4.19 (dt, *J* = 14.9, 3.7 Hz, 1H), 4.01 (s, 3H), 3.64 (ddd, *J* = 14.8, 8.7, 4.2 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  61.1 (s, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  162.8 (s), 148.6 (s), 136.8 (s), 132.7 (s), 122.2 (d, J = 1.8 Hz), 64.9 (s), 55.1 (s), 51.8 (d, J = 17.1 Hz). HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>8</sub>H<sub>8</sub>FNO<sub>4</sub>S<sub>2</sub>: 287.9771, found: 287.9770.

(*E*)-2-(2-(methoxycarbamoyl)furan-3-yl)ethenesulfonyl fluoride (**7m**). Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. White solid, 47.3 mg, 38% yield (reaction temperature was 80 °C); 79.7 mg, 64% yield (reaction temperature was 100 °C). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.17 (s, 1H), 8.51 (d, *J* = 15.6 Hz, 1H), 7.48 (s, 1H), 6.91 (d, *J* = 15.7 Hz, 1H), 6.73 (s, 1H), 3.89 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  62.0 (s). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  159.4 (s), 144.6 (s), 144.5 (s), 138.8 (s), 138.2 (s), 122.0 (d, *J* = 29.2 Hz), 110.3 (s), 65.2 (s). Mp 138-139 °C. HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>8</sub>H<sub>8</sub>FNO<sub>5</sub>SNa: 271.9999, found: 271.9996.

# 6. Competition reaction between methyl acrylate and ESF as coupling paterners in the Rh(III)-catalyzed C-H coupling reaction.



An oven-dried screw cap test tube was charged with *N*-methoxy-*N*-methylbenzamide (**1a**, 0.5 mmol), ethenesulfonyl fluoride (ESF, **2**, 0.75 mmol, 1.5 equiv.), methyl acrylate (**8**, 0.75 mmol),  $[Cp*RhCl_2]_2$  (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), Cu(OAc)<sub>2</sub> (20 mol%) and 1,4-dioxane (5 mL) under an air atomosphere. The resulting mixture was stirred at 100 °C for 15 h before concentrating under vacuum. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as eluents to give a mixture of **3a** and **9a**.

The chemical shifts of two olefin protons of **3a** are 7.88 ppm and 6.87 ppm. The chemical shifts of two olefin protons of **9a** are 7.73 ppm and 6.41 ppm.<sup>[3]</sup> The ratio of **3a** and **9a** is 1:1 from the <sup>1</sup>H NMR.

### 7.87 7.87 7.7.87 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 777 7.75 777 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.757



# 7. Diverse derivations of 3



(E)-phenyl 2-(2-(methoxy(methyl)carbamoyl)-5-methylphenyl)ethenesulfonate (10)

A mixture of **3b** (0.1 mmol, 1 equiv.), phenol (0.12 mmol, 1.2 equiv.), DBU (5 mol%) and NaHCO<sub>3</sub> (0.1 mmol, 1 equiv.) in dichloromethane (2 mL) was stirred at r.t. for 24 h. Upon completion, the reaction mixture was concentrated in vacuo and purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 2 : 1 (v / v) as the eluent to afford the desired product **10** as a colorless oil (28.9 mg, 80% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, *J* = 15.5 Hz, 1H), 7.38-7.24 (m, 8H), 6.84 (d, *J* = 15.5 Hz, 1H), 3.35 (s, 3H), 3.25 (s, 3H), 2.40 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  169.0 (s), 149.6 (s), 143.6 (s), 140.2 (s), 133.5 (s), 131.8 (s), 129.9 (s), 129.2 (s), 127.8 (s), 127.8 (s), 127.2 (s), 122.7 (s), 122.4 (s), 61.2 (s), 32.6 (s),

21.3 (s). HRMS ESI (m/z):  $[M+Na]^+$  calcd for  $C_{18}H_{19}NNaO_5S$ : 384.0879, found: 384.0883.



(*E*)-4-(tert-butyl)-N-methoxy-N-methyl-2-(2-(pyrrolidin-1-ylsulfonyl)vinyl)benzamide (**11**).

A mixture of **3i** (0.2 mmol, 1 equiv.) and tetrahydro pyrrole (0.3 mmol, 1.5 equiv.) in THF (2 mL) was stirred at 50 °C for 6 hours. Upon completion, the reaction mixture was concentrated in vacuo and purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 1 : 1 (v / v) as the eluent to afford the desired product **11** as a colorless oil (32.0 mg, 42% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.55-7.52 (m, 2H), 7.46 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 6.69 (d, *J* = 15.5 Hz, 1H), 3.49 (s, 3H), 3.37-3.27 (m, 7H), 1.90-1.88 (m, 4H), 1.33 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  169.3 (s), 153.2 (s), 140.6 (s), 132.9 (s), 130.2 (s), 127.4 (s), 127.4 (s), 124.1 (s), 123.1 (s), 61.3 (s), 47.9 (s), 34.9 (s), 32.9 (s), 31.1 (s), 25.7 (s). HRMS ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>4</sub>S: 403.1668, found: 403.1663.

8. NMR spectra of 3, 5, 7, 10 and 11

# 



90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 f1 (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fi (ppm)



S28





90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)








90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)







210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

## $\begin{array}{c} 8.11\\ 8.01\\ 8.01\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.98\\$



90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 f1 (ppm) -120 -140 -160 -180 -200 -220 -240 -260 -280







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)









90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)






90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)







90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)











## 9. Data of crystal structures

9.1 Data of crystal structure for 5c.



Table 1. Crystal data and structure refinement for 170906f.

| Ide       | ntification code          | 170906f           |               |        |
|-----------|---------------------------|-------------------|---------------|--------|
| Em        | pirical formula           | C15 H11 F O5 S    |               |        |
| For       | mula weight               | 322.30            |               |        |
| Ter       | nperature                 | 298(2) K          |               |        |
| Wa        | velength                  | 0.71073 A         |               |        |
| Cry       | vstal system, space group | Aonoclinic, P2(1) | /n            |        |
| Un        | it cell dimensions        | a = 8.6492(9) A   | alpha = 90 de | g.     |
| 98.112(2) | deg.                      | b = 6.7929(8)     | 8) A          | beta = |
|           | S83                       |                   |               |        |

```
Volume
                                         1491.7(3) A^3
Z, Calculated density
                                   4, 1.435 Mg/m^3
Absorption coefficient
                                   0.248 mm^-1
F(000)
                                       664
                                     0.42 x 0.40 x 0.35 mm
Crystal size
Theta range for data collection
                                3.10 to 25.02 deg.
                                    -10<=h<=10, -8<=k<=8, -5<=l<=30
Limiting indices
Reflections collected / unique
                                2570 / 2570 [R(int) = 0.0000]
Completeness to theta = 25.02
                                  98.1 %
                                    Semi-empirical from equivalents
Absorption correction
Max. and min. transmission
                                    0.9182 and 0.9029
```

deg.

| Refinement method              | Full-matrix least-squares on F <sup>2</sup> |
|--------------------------------|---------------------------------------------|
| Data / restraints / parameters | 2570 / 0 / 200                              |
| Goodness-of-fit on F^2         | 1.053                                       |
| Final R indices [I>2sigma(I)]  | R1 = 0.0813, wR2 = 0.2160                   |
| R indices (all data)           | R1 = 0.1039, wR2 = 0.2291                   |
| Largest diff. peak and hole    | 0.351 and -0.398 e.A^-3                     |

Table 2. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropicdisplacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for 170906f.U(eq) is defined as one third of the trace of the orthogonalizedUij tensor.

| U(eq) |      | х       |          | у        | Z      |
|-------|------|---------|----------|----------|--------|
|       |      |         |          |          |        |
|       | O(4) | 7330(6) | 7871(9)  | 11016(2) | 100(2) |
|       | O(1) | 7415(4) | 9537(5)  | 9913(1)  | 53(1)  |
|       | O(2) | 8862(4) | 12054(5) | 9697(2)  | 61(1)  |
|       | O(3) | 8863(7) | 4339(6)  | 8199(2)  | 91(2)  |
|       | F(1) | 5021(5) | 6488(8)  | 10551(2) | 104(2) |
|       | O(5) | 7021(7) | 4405(9)  | 10990(2) | 113(2) |
|       | S(1) | 6630(2) | 6233(2)  | 10702(1) | 58(1)  |
|       | C(1) | 8385(6) | 10420(7) | 9599(2)  | 46(1)  |
|       | C(2) | 8645(5) | 9065(7)  | 9189(2)  | 44(1)  |
|       | C(3) | 9538(6) | 9262(8)  | 8782(2)  | 55(1)  |
|       | C(4) | 9636(7) | 7730(9)  | 8445(2)  | 61(2)  |

| C(5)  | 8796(7)   | 5988(8)  | 8509(2)  | 59(1) |
|-------|-----------|----------|----------|-------|
| C(6)  | 7901(6)   | 5765(7)  | 8905(2)  | 53(1) |
| C(7)  | 7837(5)   | 7350(7)  | 9243(2)  | 43(1) |
| C(8)  | 7029(6)   | 7553(7)  | 9724(2)  | 45(1) |
| C(9)  | 7619(6)   | 6089(7)  | 10148(2) | 46(1) |
| C(10) | 9485(7)   | 4397(9)  | 7727(2)  | 60(2) |
| C(11) | 8937(8)   | 5588(10) | 7321(3)  | 80(2) |
| C(12) | 9566(11)  | 5472(12) | 6850(3)  | 91(2) |
| C(13) | 10662(11) | 4130(12) | 6797(3)  | 93(2) |
| C(14) | 11203(10) | 2925(12) | 7202(3)  | 97(3) |
| C(15) | 10641(8)  | 3080(10) | 7676(2)  | 77(2) |
|       |           |          |          |       |

| O(4)-S(1)  | 1.455(4) |
|------------|----------|
| O(1)-C(1)  | 1.378(6) |
| O(1)-C(8)  | 1.455(6) |
| O(2)-C(1)  | 1.198(6) |
| O(3)-C(5)  | 1.379(6) |
| O(3)-C(10) | 1.392(6) |
| F(1)-S(1)  | 1.402(4) |
| O(5)-S(1)  | 1.461(5) |
| S(1)-C(9)  | 1.760(5) |
| C(1)-C(2)  | 1.440(7) |
| C(2)-C(7)  | 1.376(6) |
| C(2)-C(3)  | 1.391(7) |
| C(3)-C(4)  | 1.361(8) |
| C(3)-H(3)  | 0.9300   |
| C(4)-C(5)  | 1.410(8) |
| C(4)-H(4)  | 0.9300   |
| C(5)-C(6)  | 1.370(7) |
| C(6)-C(7)  | 1.389(7) |
| C(6)-H(6)  | 0.9300   |

| C(7)-C(8)   | 1.507(6)  |
|-------------|-----------|
| C(8)-C(9)   | 1.508(7)  |
| C(8)-H(8)   | 0.9800    |
| C(9)-H(9A)  | 0.9700    |
| C(9)-H(9B)  | 0.9700    |
| C(10)-C(11) | 1.351(9)  |
| C(10)-C(15) | 1.362(9)  |
| C(11)-C(12) | 1.395(10) |
| С(11)-Н(11) | 0.9300    |
| C(12)-C(13) | 1.336(11) |
| С(12)-Н(12) | 0.9300    |
| C(13)-C(14) | 1.353(11) |
| С(13)-Н(13) | 0.9300    |
| C(14)-C(15) | 1.375(9)  |
| C(14)-H(14) | 0.9300    |
| C(15)-H(15) | 0.9300    |
|             |           |

| C(1)-O(1)-C(8)  | 109.8(4) |
|-----------------|----------|
| C(5)-O(3)-C(10) | 122.0(4) |
| F(1)-S(1)-O(4)  | 112.2(3) |
| F(1)-S(1)-O(5)  | 113.2(3) |
| O(4)-S(1)-O(5)  | 108.7(4) |
| F(1)-S(1)-C(9)  | 111.2(2) |
| O(4)-S(1)-C(9)  | 106.2(3) |

| O(5)-S(1)-C(9) | 104.9(3) |
|----------------|----------|
| O(2)-C(1)-O(1) | 120.0(5) |
| O(2)-C(1)-C(2) | 131.3(5) |
| O(1)-C(1)-C(2) | 108.6(4) |
| C(7)-C(2)-C(3) | 120.1(4) |
| C(7)-C(2)-C(1) | 109.5(4) |
| C(3)-C(2)-C(1) | 130.4(4) |
| C(4)-C(3)-C(2) | 119.5(5) |
| C(4)-C(3)-H(3) | 120.2    |
| C(2)-C(3)-H(3) | 120.2    |
| C(3)-C(4)-C(5) | 119.3(5) |
| C(3)-C(4)-H(4) | 120.3    |
| C(5)-C(4)-H(4) | 120.3    |
| C(6)-C(5)-O(3) | 114.3(4) |
| C(6)-C(5)-C(4) | 122.2(5) |
| O(3)-C(5)-C(4) | 123.4(4) |
| C(5)-C(6)-C(7) | 117.0(4) |
| C(5)-C(6)-H(6) | 121.5    |
| C(7)-C(6)-H(6) | 121.5    |
| C(2)-C(7)-C(6) | 121.9(4) |
| C(2)-C(7)-C(8) | 107.8(4) |
| C(6)-C(7)-C(8) | 130.2(4) |
| O(1)-C(8)-C(7) | 104.2(4) |
| O(1)-C(8)-C(9) | 109.4(4) |

| C(7)-C(8)-C(9)    | 112.4(4) |
|-------------------|----------|
| O(1)-C(8)-H(8)    | 110.2    |
| C(7)-C(8)-H(8)    | 110.2    |
| C(9)-C(8)-H(8)    | 110.2    |
| C(8)-C(9)-S(1)    | 113.0(3) |
| C(8)-C(9)-H(9A)   | 109.0    |
| S(1)-C(9)-H(9A)   | 109.0    |
| C(8)-C(9)-H(9B)   | 109.0    |
| S(1)-C(9)-H(9B)   | 109.0    |
| H(9A)-C(9)-H(9B)  | 107.8    |
| C(11)-C(10)-C(15) | 120.1(5) |
| C(11)-C(10)-O(3)  | 123.4(6) |
| C(15)-C(10)-O(3)  | 116.4(6) |
| C(10)-C(11)-C(12) | 119.7(7) |
| С(10)-С(11)-Н(11) | 120.1    |
| С(12)-С(11)-Н(11) | 120.1    |
| C(13)-C(12)-C(11) | 119.7(7) |
| С(13)-С(12)-Н(12) | 120.1    |
| С(11)-С(12)-Н(12) | 120.1    |
| C(12)-C(13)-C(14) | 120.5(6) |
| C(12)-C(13)-H(13) | 119.7    |
| С(14)-С(13)-Н(13) | 119.7    |
| C(13)-C(14)-C(15) | 120.3(7) |
| C(13)-C(14)-H(14) | 119.8    |
|                   | S91      |

| C(15)-C(14)-H(14) | 119.8    |
|-------------------|----------|
| C(10)-C(15)-C(14) | 119.4(7) |
| C(10)-C(15)-H(15) | 120.3    |
| C(14)-C(15)-H(15) | 120.3    |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ( $A^2 \times 10^3$ ) for 170906f.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a\*^2 U11 + ... + 2 h k a\* b\* U12 ]

| U12          | U11      | U2     | 22    | U33    | U23   | U13    |
|--------------|----------|--------|-------|--------|-------|--------|
|              |          |        |       |        |       |        |
| O(4          | ) 86(3)  | 142(5) | 78(3) | -68(3) | 34(2) | -61(3) |
| O(1          | ) 62(2)  | 41(2)  | 59(2) | -7(2)  | 18(2) | -1(2)  |
| O(2          | ) 68(2)  | 35(2)  | 76(2) | -3(2)  | 1(2)  | -9(2)  |
| O(3          | ) 144(4) | 57(3)  | 91(3) | -22(2) | 81(3) | -30(3) |
| F(1)         | 75(2)    | 152(4) | 91(3) | -20(3) | 34(2) | -21(3) |
| O(5          | ) 130(5) | 126(5) | 91(3) | 63(3)  | 43(3) | 17(4)  |
| <b>S</b> (1) | 57(1)    | 76(1)  | 46(1) | -7(1)  | 18(1) | -16(1) |
| <b>C</b> (1) | ) 45(3)  | 36(3)  | 54(3) | 1(2)   | -1(2) | -2(2)  |
| C(2)         | ) 44(3)  | 37(3)  | 51(3) | 2(2)   | 3(2)  | -10(2) |
| C(3)         | ) 59(3)  | 49(3)  | 59(3) | 3(2)   | 13(3) | -18(2) |
| C(4)         | ) 66(3)  | 65(4)  | 56(3) | -3(3)  | 25(3) | -19(3) |

| C(5)  | 75(4)  | 48(3) | 60(3)  | -6(2)  | 33(3) | -17(3) |
|-------|--------|-------|--------|--------|-------|--------|
| C(6)  | 67(3)  | 45(3) | 50(3)  | -7(2)  | 20(2) | -21(2) |
| C(7)  | 46(3)  | 40(3) | 42(2)  | -1(2)  | 7(2)  | -9(2)  |
| C(8)  | 47(3)  | 42(3) | 47(3)  | -10(2) | 13(2) | -9(2)  |
| C(9)  | 50(3)  | 42(3) | 49(3)  | -2(2)  | 16(2) | -4(2)  |
| C(10) | 79(4)  | 55(3) | 54(3)  | -13(3) | 30(3) | -19(3) |
| C(11) | 71(4)  | 68(4) | 100(5) | 2(4)   | 17(4) | 5(3)   |
| C(12) | 133(7) | 86(5) | 52(3)  | 13(3)  | -1(4) | -8(5)  |
| C(13) | 144(7) | 77(5) | 67(4)  | -8(4)  | 52(5) | -9(5)  |
| C(14) | 115(6) | 84(5) | 107(6) | 11(5)  | 65(5) | 24(5)  |
| C(15) | 95(5)  | 77(4) | 64(4)  | 6(3)   | 30(3) | 7(4)   |
|       |        |       |        |        |       |        |

\_\_\_\_

## Table 5. Hydrogen coordinates ( $x \ 10^{4}$ ) and isotropic

displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for 170906f.

| U(eq) |       | Х     |        | у     | Z   |
|-------|-------|-------|--------|-------|-----|
|       | 11/2) | 100/5 | 10.422 | 0720  |     |
|       | H(3)  | 10065 | 10432  | 8/39  | 66  |
|       | H(4)  | 10250 | 7832   | 8177  | 73  |
|       | H(6)  | 7360  | 4604   | 8945  | 63  |
|       | H(8)  | 5897  | 7417   | 9627  | 54  |
|       | H(9A) | 8724  | 6317   | 10259 | 55  |
|       | H(9B) | 7502  | 4770   | 10003 | 55  |
|       | H(11) | 8142  | 6482   | 7355  | 95  |
|       | H(12) | 9224  | 6326   | 6574  | 110 |
|       | H(13) | 11057 | 4024   | 6479  | 111 |
|       | H(14) | 11959 | 1987   | 7160  | 117 |
|       | H(15) | 11047 | 2292   | 7959  | 92  |
|       |       |       |        |       |     |

| C(8)-O(1)-C(1)-O(2)  | -178.5(4) |
|----------------------|-----------|
| C(8)-O(1)-C(1)-C(2)  | 1.1(5)    |
| O(2)-C(1)-C(2)-C(7)  | 179.9(5)  |
| O(1)-C(1)-C(2)-C(7)  | 0.3(5)    |
| O(2)-C(1)-C(2)-C(3)  | 0.0(9)    |
| O(1)-C(1)-C(2)-C(3)  | -179.5(5) |
| C(7)-C(2)-C(3)-C(4)  | -1.6(8)   |
| C(1)-C(2)-C(3)-C(4)  | 178.3(5)  |
| C(2)-C(3)-C(4)-C(5)  | 1.6(9)    |
| C(10)-O(3)-C(5)-C(6) | 168.6(6)  |
| C(10)-O(3)-C(5)-C(4) | -14.5(10) |
| C(3)-C(4)-C(5)-C(6)  | -1.2(10)  |
| C(3)-C(4)-C(5)-O(3)  | -177.8(6) |
| O(3)-C(5)-C(6)-C(7)  | 177.6(5)  |
| C(4)-C(5)-C(6)-C(7)  | 0.7(9)    |
| C(3)-C(2)-C(7)-C(6)  | 1.1(8)    |
| C(1)-C(2)-C(7)-C(6)  | -178.8(5) |
| C(3)-C(2)-C(7)-C(8)  | 178.3(5)  |
| C(1)-C(2)-C(7)-C(8)  | -1.6(5)   |

| C(5)-C(6)-C(7)-C(2)     | -0.6(8)   |
|-------------------------|-----------|
| C(5)-C(6)-C(7)-C(8)     | -177.1(5) |
| C(1)-O(1)-C(8)-C(7)     | -2.0(5)   |
| C(1)-O(1)-C(8)-C(9)     | 118.5(4)  |
| C(2)-C(7)-C(8)-O(1)     | 2.1(5)    |
| C(6)-C(7)-C(8)-O(1)     | 179.0(5)  |
| C(2)-C(7)-C(8)-C(9)     | -116.2(5) |
| C(6)-C(7)-C(8)-C(9)     | 60.7(7)   |
| O(1)-C(8)-C(9)-S(1)     | 67.3(4)   |
| C(7)-C(8)-C(9)-S(1)     | -177.4(3) |
| F(1)-S(1)-C(9)-C(8)     | 41.4(5)   |
| O(4)-S(1)-C(9)-C(8)     | -80.8(5)  |
| O(5)-S(1)-C(9)-C(8)     | 164.2(4)  |
| C(5)-O(3)-C(10)-C(11)   | -58.2(9)  |
| C(5)-O(3)-C(10)-C(15)   | 125.8(7)  |
| C(15)-C(10)-C(11)-C(12) | -0.4(10)  |
| O(3)-C(10)-C(11)-C(12)  | -176.2(6) |
| C(10)-C(11)-C(12)-C(13) | 2.7(12)   |
| C(11)-C(12)-C(13)-C(14) | -2.1(13)  |
| C(12)-C(13)-C(14)-C(15) | -0.7(13)  |
| C(11)-C(10)-C(15)-C(14) | -2.3(11)  |
| O(3)-C(10)-C(15)-C(14)  | 173.7(7)  |
| C(13)-C(14)-C(15)-C(10) | 2.9(12)   |

Symmetry transformations used to generate equivalent atoms:

## Table 7. Hydrogen bonds for 170906f [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

9.2 Data of crystal structure for 7i.



Table 1. Crystal data and structure refinement for 170526e.

Identification code170526eEmpirical formulaC10 H9 Br F N O4 SFormula weight338.15

|       | Temperature                     | 298(2) K                                                  |
|-------|---------------------------------|-----------------------------------------------------------|
|       | Wavelength                      | 0.71073 A                                                 |
|       | Crystal system, space group     | Monoclinic, P2(1)/n                                       |
|       | Unit cell dimensions            | a = 8.7382(6) A alpha = 90 deg.<br>b = 5.8569(4) A beta = |
| 91.14 | 10(10) deg.                     | 0 5.0509(4) A 00ta                                        |
| deg.  |                                 | c = 23.8346(18) A gamma = 90                              |
|       | Volume                          | 1219.58(15) A^3                                           |
|       | Z, Calculated density           | 4, 1.842 Mg/m^3                                           |
|       | Absorption coefficient          | 3.560 mm^-1                                               |
|       | F(000)                          | 672                                                       |
|       | Crystal size                    | 0.40 x 0.30 x 0.23 mm                                     |
|       | Theta range for data collection | 2.50 to 25.02 deg.                                        |

| Limiting indices                | -10<=h<=9, -6<=k<=6, -28<=l<=20             |
|---------------------------------|---------------------------------------------|
| Reflections collected / unique  | 5749 / 2143 [R(int) = 0.0441]               |
| Completeness to theta $= 25.02$ | 99.6 %                                      |
| Absorption correction           | Semi-empirical from equivalents             |
| Max. and min. transmission      | 0.4948 and 0.3301                           |
| Refinement method               | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters  | 2143 / 0 / 164                              |
| Goodness-of-fit on F^2          | 1.043                                       |
| Final R indices [I>2sigma(I)]   | R1 = 0.0397, wR2 = 0.0926                   |
| R indices (all data)            | R1 = 0.0627, wR2 = 0.0996                   |
| Largest diff. peak and hole     | 0.540 and -0.433 e.A^-3                     |

Table 2. Atomic coordinates (  $x \ 10^{4}$ ) and equivalent isotropic displacement parameters (A<sup>2</sup>  $x \ 10^{3}$ ) for 170526e. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

| U(eq) |       | х       |          | у       | Z      |
|-------|-------|---------|----------|---------|--------|
|       |       |         |          |         |        |
|       | Br(1) | 9087(1) | 13223(1) | 478(1)  | 65(1)  |
|       | F(1)  | 5730(5) | 8440(5)  | 2955(1) | 112(1) |
|       | N(1)  | 3051(3) | 8412(5)  | 1345(1) | 47(1)  |
|       | O(1)  | 3187(3) | 5201(5)  | 794(1)  | 55(1)  |
|       | O(2)  | 1812(3) | 7716(5)  | 1658(1) | 48(1)  |
|       | O(3)  | 7010(4) | 8309(7)  | 2116(2) | 102(1) |
|       | O(4)  | 4784(5) | 6005(5)  | 2246(2) | 114(2) |
|       | S(1)  | 5528(1) | 8047(2)  | 2342(1) | 52(1)  |
|       | C(1)  | 3683(4) | 7039(7)  | 955(2)  | 40(1)  |
|       | C(2)  | 5057(4) | 8308(6)  | 780(2)  | 36(1)  |
|       | C(3)  | 6088(4) | 7808(7)  | 366(2)  | 45(1)  |

| C(4)  | 7281(4) | 9281(7)  | 280(2)  | 46(1) |
|-------|---------|----------|---------|-------|
| C(5)  | 7406(4) | 11222(7) | 601(2)  | 43(1) |
| C(6)  | 6396(4) | 11778(6) | 1016(2) | 41(1) |
| C(7)  | 5212(4) | 10285(6) | 1100(1) | 36(1) |
| C(8)  | 3923(4) | 10412(6) | 1515(2) | 39(1) |
| C(9)  | 4404(4) | 10394(6) | 2133(2) | 46(1) |
| C(10) | 420(5)  | 8374(8)  | 1382(2) | 65(1) |
|       |         |          |         |       |

| Br(1)-C(5) | 1.906(4) |
|------------|----------|
| F(1)-S(1)  | 1.486(3) |
| N(1)-C(1)  | 1.355(5) |
| N(1)-O(2)  | 1.387(4) |
| N(1)-C(8)  | 1.451(5) |
| O(1)-C(1)  | 1.220(4) |
| O(2)-C(10) | 1.424(5) |
| O(3)-S(1)  | 1.421(3) |
| O(4)-S(1)  | 1.378(3) |
| S(1)-C(9)  | 1.756(4) |
| C(1)-C(2)  | 1.479(5) |
| C(2)-C(3)  | 1.380(5) |
| C(2)-C(7)  | 1.392(5) |
| C(3)-C(4)  | 1.372(5) |
| C(3)-H(3)  | 0.9300   |
| C(4)-C(5)  | 1.374(5) |
| C(4)-H(4)  | 0.9300   |
| C(5)-C(6)  | 1.377(5) |
| C(6)-C(7)  | 1.372(5) |

| C(6)-H(6)    | 0.9300   |
|--------------|----------|
| C(7)-C(8)    | 1.515(4) |
| C(8)-C(9)    | 1.522(5) |
| C(8)-H(8)    | 0.9800   |
| C(9)-H(9A)   | 0.9700   |
| C(9)-H(9B)   | 0.9700   |
| С(10)-Н(10А) | 0.9600   |
| С(10)-Н(10В) | 0.9600   |
| С(10)-Н(10С) | 0.9600   |

| C(1)-N(1)-O(2)  | 121.8(3)   |
|-----------------|------------|
| C(1)-N(1)-C(8)  | 116.8(3)   |
| O(2)-N(1)-C(8)  | 119.9(3)   |
| N(1)-O(2)-C(10) | 110.0(3)   |
| O(4)-S(1)-O(3)  | 117.5(3)   |
| O(4)-S(1)-F(1)  | 110.2(3)   |
| O(3)-S(1)-F(1)  | 105.3(3)   |
| O(4)-S(1)-C(9)  | 111.9(2)   |
| O(3)-S(1)-C(9)  | 108.4(2)   |
| F(1)-S(1)-C(9)  | 102.35(18) |
| O(1)-C(1)-N(1)  | 126.3(3)   |
| O(1)-C(1)-C(2)  | 129.8(3)   |
| N(1)-C(1)-C(2)  | 103.9(3)   |
| C(3)-C(2)-C(7)  | 120.7(3)   |

| C(3)-C(2)-C(1)  | 129.8(3) |
|-----------------|----------|
| C(7)-C(2)-C(1)  | 109.5(3) |
| C(4)-C(3)-C(2)  | 118.8(4) |
| C(4)-C(3)-H(3)  | 120.6    |
| C(2)-C(3)-H(3)  | 120.6    |
| C(3)-C(4)-C(5)  | 119.3(3) |
| C(3)-C(4)-H(4)  | 120.4    |
| C(5)-C(4)-H(4)  | 120.4    |
| C(4)-C(5)-C(6)  | 123.4(4) |
| C(4)-C(5)-Br(1) | 118.4(3) |
| C(6)-C(5)-Br(1) | 118.2(3) |
| C(7)-C(6)-C(5)  | 116.8(4) |
| C(7)-C(6)-H(6)  | 121.6    |
| C(5)-C(6)-H(6)  | 121.6    |
| C(6)-C(7)-C(2)  | 121.0(3) |
| C(6)-C(7)-C(8)  | 129.5(3) |
| C(2)-C(7)-C(8)  | 109.5(3) |
| N(1)-C(8)-C(7)  | 99.9(3)  |
| N(1)-C(8)-C(9)  | 113.4(3) |
| C(7)-C(8)-C(9)  | 115.9(3) |
| N(1)-C(8)-H(8)  | 109.1    |
| C(7)-C(8)-H(8)  | 109.1    |
| C(9)-C(8)-H(8)  | 109.1    |
| C(8)-C(9)-S(1)  | 115.0(3) |

| C(8)-C(9)-H(9A)     | 108.5 |
|---------------------|-------|
| S(1)-C(9)-H(9A)     | 108.5 |
| C(8)-C(9)-H(9B)     | 108.5 |
| S(1)-C(9)-H(9B)     | 108.5 |
| H(9A)-C(9)-H(9B)    | 107.5 |
| O(2)-C(10)-H(10A)   | 109.5 |
| O(2)-C(10)-H(10B)   | 109.5 |
| H(10A)-C(10)-H(10B) | 109.5 |
| O(2)-C(10)-H(10C)   | 109.5 |
| Н(10А)-С(10)-Н(10С) | 109.5 |
| H(10B)-C(10)-H(10C) | 109.5 |
|                     |       |

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters  $(A^2 \times 10^3)$  for 170526e.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a\*^2 U11 + ... + 2 h k a\* b\* U12 ]

| U12 |              | U11 U22 |        |        | U33   |        | U13    |
|-----|--------------|---------|--------|--------|-------|--------|--------|
|     |              |         |        |        |       |        |        |
|     | Br(1)        | 60(1)   | 55(1)  | 82(1)  | 21(1) | 26(1)  | -6(1)  |
|     | F(1)         | 183(4)  | 98(3)  | 54(2)  | 9(2)  | -13(2) | 24(2)  |
|     | N(1)         | 49(2)   | 45(2)  | 47(2)  | -5(2) | 19(2)  | -10(2) |
|     | O(1)         | 63(2)   | 40(2)  | 63(2)  | -9(2) | 6(1)   | -5(1)  |
|     | O(2)         | 44(1)   | 54(2)  | 48(2)  | 14(1) | 14(1)  | -1(1)  |
|     | O(3)         | 68(2)   | 128(4) | 109(3) | 45(3) | 24(2)  | 30(2)  |
|     | O(4)         | 118(3)  | 31(2)  | 191(4) | 17(2) | -72(3) | -6(2)  |
|     | <b>S</b> (1) | 67(1)   | 41(1)  | 47(1)  | 6(1)  | 1(1)   | 0(1)   |
|     | C(1)         | 46(2)   | 38(2)  | 36(2)  | 5(2)  | 4(2)   | 6(2)   |
|     | C(2)         | 44(2)   | 31(2)  | 33(2)  | 2(2)  | 3(2)   | 4(2)   |
|     | C(3)         | 55(2)   | 41(2)  | 40(2)  | -6(2) | 5(2)   | 10(2)  |

S109

| C(4)  | 48(2) | 50(2) | 39(2) | -1(2) | 14(2) | 9(2)  |
|-------|-------|-------|-------|-------|-------|-------|
| C(5)  | 45(2) | 43(2) | 43(2) | 15(2) | 11(2) | 6(2)  |
| C(6)  | 55(2) | 30(2) | 38(2) | 6(2)  | 10(2) | 2(2)  |
| C(7)  | 45(2) | 31(2) | 33(2) | 5(2)  | 10(2) | 6(2)  |
| C(8)  | 48(2) | 26(2) | 42(2) | 4(2)  | 14(2) | 5(2)  |
| C(9)  | 61(2) | 37(2) | 39(2) | 0(2)  | 18(2) | -1(2) |
| C(10) | 51(2) | 75(3) | 69(3) | 5(3)  | 2(2)  | 9(2)  |
|       |       |       |       |       |       |       |

\_\_\_\_

## Table 5. Hydrogen coordinates ( $x \ 10^{4}$ ) and isotropic

displacement parameters (A $^2$  x 10 $^3$ ) for 170526e.

| U(eq) |        | Х    |       | у    | Z  |
|-------|--------|------|-------|------|----|
|       |        |      |       |      |    |
|       | H(3)   | 5976 | 6494  | 150  | 54 |
|       | H(4)   | 7998 | 8969  | 7    | 55 |
|       | H(6)   | 6510 | 13101 | 1228 | 49 |
|       | H(8)   | 3312 | 11783 | 1438 | 46 |
|       | H(9A)  | 3489 | 10419 | 2356 | 55 |
|       | H(9B)  | 4972 | 11781 | 2214 | 55 |
|       | H(10A) | 428  | 9992  | 1317 | 98 |
|       | H(10B) | -428 | 7988  | 1614 | 98 |
|       | H(10C) | 322  | 7587  | 1030 | 98 |
|       |        |      |       |      |    |

| C(1)-N(1)-O(2)-C(10) | -91.5(4)  |
|----------------------|-----------|
| C(8)-N(1)-O(2)-C(10) | 102.7(4)  |
| O(2)-N(1)-C(1)-O(1)  | 7.5(6)    |
| C(8)-N(1)-C(1)-O(1)  | 173.8(4)  |
| O(2)-N(1)-C(1)-C(2)  | -173.1(3) |
| C(8)-N(1)-C(1)-C(2)  | -6.9(4)   |
| O(1)-C(1)-C(2)-C(3)  | 4.1(7)    |
| N(1)-C(1)-C(2)-C(3)  | -175.2(4) |
| O(1)-C(1)-C(2)-C(7)  | -177.0(4) |
| N(1)-C(1)-C(2)-C(7)  | 3.7(4)    |
| C(7)-C(2)-C(3)-C(4)  | 0.7(5)    |
| C(1)-C(2)-C(3)-C(4)  | 179.6(4)  |
| C(2)-C(3)-C(4)-C(5)  | -0.8(6)   |
| C(3)-C(4)-C(5)-C(6)  | 0.6(6)    |
| C(3)-C(4)-C(5)-Br(1) | 179.3(3)  |
| C(4)-C(5)-C(6)-C(7)  | -0.3(6)   |
| Br(1)-C(5)-C(6)-C(7) | -179.0(3) |
| C(5)-C(6)-C(7)-C(2)  | 0.1(5)    |
| C(5)-C(6)-C(7)-C(8)  | -179.6(4) |

| C(3)-C(2)-C(7)-C(6) | -0.4(5)   |
|---------------------|-----------|
| C(1)-C(2)-C(7)-C(6) | -179.4(3) |
| C(3)-C(2)-C(7)-C(8) | 179.4(3)  |
| C(1)-C(2)-C(7)-C(8) | 0.4(4)    |
| C(1)-N(1)-C(8)-C(7) | 7.0(4)    |
| O(2)-N(1)-C(8)-C(7) | 173.5(3)  |
| C(1)-N(1)-C(8)-C(9) | -117.0(4) |
| O(2)-N(1)-C(8)-C(9) | 49.5(4)   |
| C(6)-C(7)-C(8)-N(1) | 175.8(4)  |
| C(2)-C(7)-C(8)-N(1) | -4.0(4)   |
| C(6)-C(7)-C(8)-C(9) | -62.1(5)  |
| C(2)-C(7)-C(8)-C(9) | 118.2(3)  |
| N(1)-C(8)-C(9)-S(1) | 58.7(4)   |
| C(7)-C(8)-C(9)-S(1) | -56.0(4)  |
| O(4)-S(1)-C(9)-C(8) | -59.1(4)  |
| O(3)-S(1)-C(9)-C(8) | 72.0(3)   |
| F(1)-S(1)-C(9)-C(8) | -177.0(3) |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 170526e [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

## **10. References**

[1] Q. Zheng, J. Dong, K. B. Sharpless, J. Org. Chem. 2016, 81, 11360.

[2] Y. Liu, H. Xu, W.-J. Kong, M. Shang, H.-X. Dai, J.-Q. Yu, *Nature*, **2014**, *515*, 389.

[3] D. C. Fabry, J. Zoller, S. Raja, and M. Rueping, Angew. Chem. Int. Ed. 2014, 53, 10228.