Supporting information

Highly *meta*-Selective Halogenation of 2-Phenylpyridine with Ruthenium (I) Catalysts

Ganapam Manohar Reddy, Naidu Samba Siva Rao, and H. Maheswaran*

Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India.Tel: +91 40 27191532; Fax: +91 40 27193510; E- mail:maheswaran_dr@yahoo .com

Table of contents:

1.	General Information	2
2.	Experimental procedures	2
3.	Characterization data of products (2a-2x)	3–10
4.	Copies of ¹ H- and ¹³ C-NMR spectra of products	12-34
5.	Mass Spectra of products	35-46
6.	X-ray structural data for 2d	47-48
7.	Control experimental studies	49-50

1. General Experimental Information

General methods: Unless otherwise mentioned, materials obtained from commercial suppliers were used without further purification. Ru Catalyst was purchased from Sigma Aldrich, PhI(OCOCF₃)₂ was purchased from Alfa Aesar. Thin-layer chromatography plates were visualized by exposure to UV light/iodine and/or by immersion in an acidic staining solution of phosphomolybdic acid followed by heating on a hot plate. The ¹H NMR spectra were obtained on 300, 400 and 500 MHz, and ¹³C {¹H}-NMR spectra 75, 100 and 125 MHz, spectrometers with tetramethylsilane and chloroform-d₁ respectively, as the internal standard. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C {¹H}-NMR). Data for ¹H NMR are reported as follows: chemical shift (multiplicity, coupling constant, number of hydrogens). Multiplicity is abbreviated as follows: s (singlet), d (doublet), dd (double doublet), t (triplet), q (quartet), and m (multiplet).

2. Experimental procedures

General Procedure for the Halogenation :

In an pressure tube, N-Halosuccinamide (0.75 mmol) was added to a stirred mixture of aryl compounds (2-phenylpyridine or 2-phenylpyrazole (0.5 mmol)], $[Ru(\pi-C_5H_5)(CO)_2]_2$ (10 mg, 2.5 mol%), PhI(OCOCF₃)₂ (86 mg, 20 mol%) in Toluene (2.0 mL). The reaction mixture was then stirred at 110 °C for 5 h. The progress of the reaction was monitored by TLC. After the completion of reaction, it was quenched by brine solution and extracted with ethyl acetate. The combined organic extracts were dried over anhydrous sodium sulphate and solvent was evaporated under reduced pressure to give the product which was subjected to purification by silica gel (100-200 mesh) column chromatography using hexane/ethyl acetate as elutent to yield desired mono *meta*-halogenated products either as colorless solid or colorless oil.

3. Characterization data of products

2-(3-bromophenyl)pyridine, 2a (Table 2)

Colourless Oil, Yield, 98 mg, 85%; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, J = 4.5 Hz, 1H), 8.17 (s, 1H), 7.89 (d, J = 7.7 Hz, 1H), 7.76-7.66 (m, 2H), 7.53 (d, J = 7.9 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 7.25 (t, J = 5.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 149.6, 141.3, 136.8, 131.7, 130.1, 129.9, 125.3, 122.9, 122.5, 120.4; IR (CHCl₃) ν_{max} 677, 739, 765, 1065, 1152, 1561, 1583, 3008, 3060 cm⁻¹; EI-HRMS (TOF) calcd for C₁₁H₈NBr : 233.99120, Found 233.99129;

2-(3-iodophenyl)pyridine, 2b (Table 2)

N

Colourless Oil, Yield, 106 mg, 76%; ¹H NMR (400 MHz, CDCl₃): δ 8.63 (d, J = 1.3 Hz, 1H), 8.30 (s, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.72-7.61 (m, 3H), 7.20(d, J = 8.0 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 149.6, 137.8, 136.9, 135.9, 130.3, 126.0, 122.6, 120.6, 94.7; IR (CHCl₃) v_{max} 666, 765, 1074, 1077, 1457, 1557, 1715, 2853, 2921, 3446 cm⁻¹; ESI-MS: m/z 282 (M+2)⁺;

2-(3-chlorophenyl)pyridine, 2c (Table 2)

Colourless Oil, 68 mg, 72%; ¹H NMR (400 MHz, CDCl₃): δ 8.70 (d, J = 4.4 Hz, 1H), 7.98 (d, J = 7.2 Hz, 2H), 7.78-7.71 (m, 2H), 7.50-7.39 (m, 2H), 7.25-7.22(m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 154.3, 149.8, 142.6, 137.0, 134.1, 128.7, 123.3, 123.1, 120.6; IR (CHCl₃) v_{max} 693, 744, 1024, 1460, 1585, 1736, 2853, 2923 cm⁻¹; EI-HRMS (TOF) calcd for C₁₁H₉NCl:190.0409, Found 190.0418.

2-(3-bromo-4-methoxyphenyl)pyridine, 2d (Table 2)

Colourless Solid, mp 68-70 °C, Yield, 120 mg, 92 %; ¹H NMR (400 MHz,CDCl₃): δ 8.66 (d, J = 4.6 Hz, 1H), 8.23 (d, J = 2.2 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.74 (t, J = 7.8 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.21 (t, J = 7.3 Hz, 1H), 6.99 (d, J = 8.6 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 149.5, 136.8, 131.7, 126.9, 121.8, 119.8, 112.0, 111.7, 56.2; IR (KBr) v_{max} 630, 754, 892, 1051, 1305, 1443, 1601, 2937 cm⁻¹; EI-HRMS (TOF) calcd for C₁₂H₁₀NOBr : 264.0085, Found 264.0017.

2-(3-chloro-4-methoxyphenyl)pyridine, 2e (Table 2)

Colourless Oil, Yield, 91 mg, 84 %; ¹HNMR (500 MHz,CDCl₃): δ 8.70 (d, J = 4.4 Hz, 1H), 7.73(dd, J = 7.7, 15.4 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.56 (s, 1H), 7.24 (dd, J = 2.5, 8.5 Hz, 1H), 7.02 (d, J = 2.5 Hz, 1H), 6.92 (dd, J = 2.5 Hz, 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 156.5, 149.4, 149.3, 135.7, 132.2, 124.8, 121.9, 115.1, 114.0, 113.2, 55.5; IR (CHCl₃) v_{max} 531, 756, 889, 1023, 1356, 1423, 1669, 2864, 2981, 3443; ESI-MS: m/z 220 (M+H)⁺.

2-(7-bromobenzo[d][1,3]dioxol-5-yl)pyridine, 2f (Table 2)

Colourless Oil, Yield, 113 mg, 82 %; ¹H NMR (500 MHz,CDCl₃): δ 8.68 (d, J = 4.8 Hz, 1H), 7.74 (dd, J = 1.8 Hz, 7.7 Hz, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.28-7.25 (m, 1H), 7.11(s, 1H), 7.03 (s, 1H), 6.02 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 158.0, 149.3, 145.8, 124.9, 122.2, 113.0, 111.0, 101.9; IR (CHCl₃) v_{max} 550, 600, 747, 786, 866, 1035, 1229, 1465, 1588, 1724, 2923, 3417 cm⁻¹; EI-HRMS (TOF) calcd for C₁₂H₈O₂NBr : 277.9811, Found 277.9801.

2-(4-bromonapthalen-2-yl)pyridine, 2g (Table 2)

Colourless Solid, mp 75-77 °C, Yield, 126 mg, 90 %; ¹H NMR (300 MHz,CDCl₃): δ 8.75 (d, *J* = 4.7 Hz, 1H), 8.50 (d, *J* = 1.5 Hz, 1H), 8.43 (s, 1H), 8.25 (d, *J* = 8.3 Hz, 1H) 7.94 (d, *J* = 7.7 Hz, 1H), 7.88-7.77 (m, 2H), 7.65-7.53 (m, 2H), 7.30-7.27 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 149.8, 136.9, 132.1, 129.1, 128.5, 127.9, 127.1, 127.0, 126.0, 123.5, 122.6, 120.7; IR (KBr) ν_{max} 601, 758, 1031, 1636, 3450. EI-HRMS (TOF) calcd for C₁₅H₁₀NBr : 284.0069, Found 284.0068.

2-(3-bromo-4-fluorophenyl)pyridine, 2h (Table 2)

Colourless Solid, mp 85-87 °C, Yield, 85 mg, 68 %; ¹H NMR (500 MHz,CDCl₃): δ 8.68 (d, J = 4.7 Hz, 1H), 8.24 (dd, J = 2.1 Hz, 6.7 Hz, 1H), 7.92-7.89 (m, 1H), 7.76 (dd, J = 1.8 Hz, 7.9 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.27-7.24 (m, 1H), 7.21 (t, J = 8.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 160.0, 158.6, 154.9, 149.7, 136.9 (J_{C-F} = 206.0 Hz), 132.1, 127.3 (J_{C-F} = 7.2 Hz), 127.2, 122.5, 120.2, 116.6, 116.4, 109.6, 109.4; IR (KBr) v_{max} 672, 778, 885, 990, 1262, 1434, 1464, 1590, 1722, 2853, 2924, 3062 cm⁻¹; EI-HRMS (TOF) calcd for C₁₁H₇NBrF: 251.9818, Found 251.9817.

2-(3-bromo-4-ethylphenyl)pyridine, 2i (Table 2)

Colourless Oil, Yield, 110 mg, 85 %; ¹H NMR (400 MHz,CDCl₃): δ 8.68 (d, J = 5.3 Hz, 1H), 8.19 (d, J = 1.8 Hz, 1H), 7.86 (dd, J = 1.8 Hz, 7.9 Hz, 1H), 7.77-7.72 (m, 1H), 7.68 (d, J = 7.9 Hz. 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.25-7.21 (m, 1H), 2.82 (q, J = 7.6Hz, 2H), 1.26 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 155.8, 149.6, 144.0, 138.6, 136.8, 131.0, 129.6, 125.8, 124.8, 122.3, 120.3, 29.1, 14.1; IR (CHCl₃) v_{max} 740, 779, 827, 1032, 1382, 1431, 1461, 1588, 1727, 2854, 2925, 3055 cm⁻¹; EI-HRMS (TOF) calcd for C₁₃H₁₃NBr : 262.0224, Found 262.0225.

2-(4-bromonaphthalen-2-yl)-4-methylpyridine, 2j (Table 2)

Colourless Oil, Yield, 133 mg, 90 %; ¹H NMR (300 MHz,CDCl₃): δ 8.59 (d, J = 4.5 Hz, 1H), 8.47 (d, J = 1.5 Hz, 1H), 8.42 (s,1H), 8.25 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 7.5 Hz, 1H), 7.68-7.52 (m, 3H), 7.10 (d, J = 4.5 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 155.6, 149.5, 148.0, 137.2, 134.4, 131.9, 129.0, 128.5, 127.7, 127.0, 126.9, 125.9, 123.5, 121.6, 21.2; IR (CHCl₃) v_{max} 521, 668, 841, 1026, 1215, 1636, 2925, 3021, 3449 cm⁻¹; EI-HRMS (TOF) calcd for C₁₆H₁₂NBr : 298.0223, Found 298.0225;

2-(4-bromonapthalen-2-yl)-6-methylpyridine, 2k (Table 2)

Colourless Oil, Yield, 130 mg, 88 %; ¹H NMR (500 MHz,CDCl₃): δ 8.50 (d, J = 1.6 Hz, 1H), 8.41 (s, 1H), 8.25 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.70-7.52 (m, 4H), 7.14 (d, J = 7.3 Hz, 1H), 2.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 158.6, 155.2, 137.5, 137.0, 134.4, 129.0, 128.7, 127.7, 126.9, 125.9, 122.1, 117.7, 29.6; IR (CHCl₃) vmax 628, 776, 843, 1022, 1267, 1651, 2863, 3347 cm⁻¹; EI-HRMS (TOF) calcd for C₁₆H₁₂NBr : 298.0225, Found 298.0222.

3-bromo-2-methoxy-6-(naphthalen-2-yl)pyridine, 2l (Table 2)

Colourless Solid, mp 92-94 °C , Yield, 143 mg, 92 % ; ¹H NMR (500 MHz,CDCl₃): δ 8.47 (s, 1H), 8.14 (d, J = 8.5 Hz, 1H), 7.94-7.89 (m, 2H), 7.86 (d, J = 7.9 Hz, 2H), 7.52-7.49 (m, 2H), 7.37 (d, J = 7.9 Hz, 1H), 4.17 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 159.3, 153.3, 142.1, 135.3, 133.6, 133.3, 128.6, 128.3, 127.6, 126.5, 126.3, 125.9, 124.1, 114.2, 105.3, 54.3; IR (KBr) v_{max} 514, 570, 691, 756, 814, 1004, 1067, 1126, 1252, 1383, 1568, 2856, 2953, 3057, 3449 cm⁻¹; EI-HRMS (TOF) calcd for C₁₆H₁₂ONBr : 314.0172, Found 314.0175.

2-(3-chloro-4-methylphenyl)-6-methoxypyridine, 2m (Table 2)

Colourless Solid, mp 61-63 °C, Yield, 99 mg, 85 %; ¹H NMR (500 MHz,CDCl₃): δ 7.91 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 7.9 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.25 (s, 1H), 4.12 (s, 3H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 158.5, 152.7, 139.1, 138.6, 135.2, 129.3, 126.4, 116.0, 113.1, 54.0, 21.2; IR (KBr) v_{max} 526, 579, 645, 750, 889, 1009, 1180, 1315, 1377, 1464, 1731, 2855, 2924, 3420 cm⁻¹; EI-HRMS (TOF) calcd for C₁₃H₁₂ONBr : 234.0679, Found 234.0680

2-(3-bromo-4-methylphenyl)-6-methoxypyridine, 2n (Table 2)

Colourless Solid, mp 73-75 °C, Yield, 121 mg, 88 %; ¹H NMR (500 MHz,CDCl₃): δ 7.91 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 7.9 Hz, 1H), 7.26-7.24 (m, 2H), 7.20 (d, J = 7.9 Hz, 1H), 4.10 (s, 3H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 159.2, 153.5, 142.0, 139.2, 135.2, 129.3, 128.1, 126.4, 1114.1, 113.5, 104.7, 54.2, 21.2; IR (KBr) v_{max} 563, 697, 760, 804, 1102, 1149, 1245, 1463, 1559, 1672, 2856, 2923, 3422 cm⁻¹; EI-HRMS (TOF) calcd for C₁₃H₁₂ONBr : 278.0169, Found 278.0175.

2-(3-iodo-4-methylphenyl)-6-methoxypyridine, 20 (Table 2)

Colourless Oil, Yield, 116 mg, 72 %; ¹H NMR (500 MHz,CDCl₃): δ 8.02 (d, J = 7.7 Hz, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 7.7 Hz, 1H), 4.08 (s, 3H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 161.2, 154.5, 148.3, 139.2, 135.2, 129.3, 126.3, 114.0, 54.4, 21.2; IR (CHCl₃) v_{max} 695, 801, 866, 1023, 1259, 1458, 1730, 2857, 2923, 3449; ESI-MS: *m/z* 325 (M+2-OMe)^{+.}

2-iodo-4-(pyridin-2-yl)phenol, 2p (Table 2)

Colourless Oil, Yield, 122 mg, 83 %; ¹H NMR (300 MHz, CDCl₃): δ 8.66 (d, J = 4.4 Hz, 1H), 8.36 (d, J = 1.9 Hz, 1H), 7.86 (dd, J = 1.9 Hz, 8.2 Hz, 1H), 7.74 (dd, J = 1.6 Hz, 7.9 Hz, 1H), 7.25 (s, 1H), 7.24-7.20 (m, 1H), 7.06 (d, J = 8.5 Hz,1H); ¹³C NMR (100 MHz, CDCl₃): δ 155.7,155.4, 149.4, 136.97, 136.90, 128.7, 121.9, 119.9, 115; IR (CHCl₃) ν_{max} 801, 1020, 1086, 1260, 1374, 1460, 1732, 2854, 2923, 3448 cm⁻¹; EI-HRMS (TOF) calcd for C₁₁H₈ONI : 297.9724, Found 297.9723.

1-(3-bromophenyl)-1H-pyrazole, 2q (Table 2)

Colourless Solid, mp 82-84 °C, Yield, 110 mg, 96 %; ¹H NMR (500 MHz,CDCl₃): δ 7.93 (s, 1H), 7.67 (s, 1H), 7.64 (dd, J = 1.2 Hz, 8.8 Hz, 2H), 7.46 (t, J = 7.4 Hz, 2H), 7.33-7.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 141.4,139.6, 129.5, 127.0, 126.9, 119.0, 95.6; IR (KBr) v_{max} 647, 685, 751, 844, 948, 1340, 1498, 1597, 3049, 3117, 3448 cm⁻¹; EI-HRMS (TOF) calcd for C₉H₇N₂Br : 222.9863, Found 222.9865.

1-(3-chlorophenyl)-1H-pyrazole, 2r (Table 2)

Colourless Solid, mp 73-75 °C, Yield 83 mg, 94 %; ¹H NMR (400 MHz,CDCl₃): δ 7.90 (d, J = 0.4 Hz, 1H), 7.63 (dd, J = 0.9Hz, 8.6 Hz, 3H), 7.47-7.44 (m, 2H), 7.33-7.29 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 139.6, 139.3, 129.4, 126.9, 124.7, 118.8, 112.2; IR (KBr) v_{max} 645, 683, 752, 948, 1033, 1330, 1378, 1495, 1595, 3114, 3449 cm⁻¹; EI-HRMS (TOF) calcd for C₉H₇N₂Cl : 179.0369, Found 179.0370.

1-(3-iodophenyl)-1H-pyrazole, 2s (Table 2)

Colourless Solid, mp 79-81 °C, Yield, 121 mg, 90 %; ¹H NMR (400 MHz,CDCl₃): δ 7.94 (s, 1H), 7.71 (s, 1H), 7.63 (d, *J* = 7.5 Hz, 2H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.32–7.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 139.3, 131.1, 129.4, 126.9, 118.9; IR (KBr) ν_{max} 600, 643, 683, 751, 942, 1322, 1492, 1594, 1691, 2854, 3115, 3451 cm⁻¹; EI-HRMS (TOF) calcd for C₉H₇N₂I : 270.9723, Found 270.9726.

1-(3-bromo-4-methylphenyl)-1H-pyrazole, 2t (Table 2)

Colourless Solid, mp 90-92 °C, Yield, 110 mg, 94 %; ¹H NMR (400 MHz,CDCl₃): δ 7.87 (s, 1H), 7.64 (s, 1H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.5 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 141.1, 137.3, 136.8, 129.9, 126.8, 118.9, 95.2, 20.8; IR (KBr) v_{max} 605, 814, 851, 948, 1031, 1331, 1507, 1609, 2921, 3042, 3109, 3449 cm⁻¹; EI-HRMS (TOF) calcd for C₁₀H₉N₂Br : 237.0020, Found 237.0021.

1-(3-chloro-4-methylphenyl)-1H-pyrazole, 2u (Table 2)

Colourless Solid, mp 93-95 °C, Yield, 90 mg, 94 %; ¹H NMR (400 MHz,CDCl₃): δ 7.85 (s, 1H), 7.61 (s, 1H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 139.0, 136.8, 129.9, 124.7, 118.8, 111.9, 20.8; IR (KBr) ν_{max} 607, 648, 848, 813, 958, 1338, 1455, 1509, 2919, 3043, 3112, 3449 cm⁻¹; EI-HRMS (TOF) calcd for C₉H₇N₂Br : 193.0527, Found 193.0527.

1-(3-iodo-4-methylphenyl)-1H-pyrazole, 2v (Table 2)

Colourless Solid, mp 70-72 °C , Yield, 124 mg, 88 % ; ¹H NMR (400 MHz,CDCl₃): δ 7.90 (s, 1H), 7.69 (s, 1H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 2.38 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 145.5, 137.2, 136.9, 131.2, 129.9, 119.0, 20.9; IR (KBr) v_{max} 601, 808, 849, 933, 1452, 1521, 1604, 2854, 2917, 3113, 3448 cm⁻¹; EI-HRMS (TOF) calcd for C₁₀H₉N₂I : 284.9880, Found 284.9883.

1-(5-chloro-2-methoxyphenyl)-1H-pyrazole, 2w (Table 2)

Colourless Oil, Yield, 79 mg, 76 %; ¹H NMR (400 MHz,CDCl₃): δ 8.04 (d, J = 0.4 Hz, 1H), 7.69 (dd, J = 1.5 Hz, 7.8 Hz, 1H), 7.61, (s, 1H), 7.31(dd, J = 1.7 Hz, 7.5 Hz, 1H), 7.08-7.02 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 150.9, 138.4, 129.4, 129.1, 128.3, 124.6, 121.1, 110.6, 55.8; IR (CHCl₃) v_{max} 609, 674, 750, 799, 846, 1023, 1181, 1246, 1284, 1463, 1517, 1599, 2853, 2924 cm⁻¹; EI-HRMS (TOF) calcd for C₁₀H₉ON₂Cl : 209.0475, Found 209.0476.

1-(3-iodo-4-methoxyphenyl)-1H-pyrazole, 2w (Table 2)

Colourless Solid, mp 75-77 °C, Yield, 134 mg, 90 %; ¹H NMR (400 MHz,CDCl₃): δ 7.85 (s, 1H), 7.68 (s, 1H), 7.54(d, *J* = 9.0 Hz, 2H), 6.97 (d, *J* = 9.0 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.6, 145.4, 133.2, 131.3, 120.8, 114.5, 55.5; IR (KBr) v_{max} 562, 601, 643, 765, 827, 934, 1152, 1321, 1604, 1725, 2854, 2917, 3003 cm⁻¹. ESI-MS: *m/z* 300 (M)⁺.

¹H NMR spectra of product 2b (Table 2)

¹³C NMR spectra of product 2b (Table 2)

¹H NMR spectra of product 2c (Table 2)

¹³C NMR spectra of product 2c (Table 2)

¹³C NMR spectra of product 2d (Table 2)

¹H NMR spectra of product 2e (Table 2)

¹³C NMR spectra of product 2e (Table 2)

¹³C NMR spectra of product 2f (Table 2)

¹H NMR spectra of product 2f (Table 2)

¹H NMR spectra of product 2g (Table 2)

¹H NMR spectra of product 2h (Table 2)

¹H NMR spectra of product 2i (Table 2)

¹H NMR spectra of product 2j (Table 2)

¹³C NMR spectra of product 2j (Table 2)

¹H NMR spectra of product 2k (Table 2)

¹³C NMR spectra of product 2k (Table 2)

¹H NMR spectra of product 2l (Table 2)

¹³C NMR spectra of product 2l (Table 2)

-4.123 -7.916 -7.900 -7.657 -7.641 -7.269 -7.271 -7.269 -7.253 -2.404 0、 CI 4 6.0 7.5 2.5 3.8 2.9 6.5 5.5 3.5 1.5 0.0 7.0 6.0 5.0 4.5 3.0 1.0 0.5 4.0 2.0

¹³C NMR spectra of product 2m (Table 2)

¹H NMR spectra of product 2m (Table 2)

¹³C NMR spectra of product 2n (Table 2)

¹H NMR spectra of product 2n (Table 2)

¹H NMR spectra of product 20 (Table 2)

¹³C NMR spectra of product 20 (Table 2)

¹H NMR spectra of product 2p, (Table 2)

¹H NMR spectra of product 2q (Table 2)

¹H NMR spectra of product 2r (Table 2)

¹³C NMR spectra of product 2r (Table 2)

¹H NMR spectra of product 2s (Table 2)

¹³C NMR spectra of product 2s (Table 2)

¹H NMR spectra of product 2t (Table 2)

¹³C NMR spectra of product 2t (Table 2)

¹H NMR spectra of product 2u (Table 2)

¹³C NMR spectra of product 2u (Table 2)

¹H NMR spectra of product 2v (Table 2)

¹H NMR spectra of product 2w (Table 2)

¹³C NMR spectra of product 2w (Table 2)

¹³C NMR spectra of product 2x (Table 2)

HRMS spectra of product 2a

ESI mass spectra of product 2b

HRMS spectra of product 2c

HRMS spectra of product 2d

HRMS spectra of product 2f

HRMS spectra of product 2g

HRMS spectra of product 2h

HRMS spectra of product 2i

HRMS spectra of product 2k

HRMS spectra of product 2p

HRMS spectra of product 2q

HRMS spectra of product 2s

HRMS spectra of product 2u

HRMS spectra of product 2w

ESI mass spectra of product 2w

X-ray structural data for product 2d.

X-ray data were collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoK α radiation (λ =0.71073Å) with ω -scan method.¹ Preliminary lattice parameters and orientation matrices were obtained from four sets of frames.

Integration and scaling of intensity data were accomplished using SAINT program.¹ The structures were solved by Direct Methods using SHELXS² and refinement was carried out by full-matrix least-squares technique using SHELXL.² Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H or $1.2U_{eq}(c)$ for other H atoms]. The methyl groups were allowed to rotate but not to tip.

Crystal Data for AY21: C₁₂H₁₀NBrO (M=264.12 g/mol): monoclinic, space group P2₁/c (no. 14), a = 12.062(3) Å, b = 4.0452(9) Å, c = 21.707(5) Å, $\beta = 90.12(2)^{\circ}$, V = 1059.2(4) Å³, Z = 4, T = 294.15 K, μ (MoK α) = 3.851 mm⁻¹, *Dcalc* = 1.656 g/cm³, 8894 reflections measured ($3.376^{\circ} \le 2\Theta \le 56.856^{\circ}$), 2177 unique ($R_{int} = 0.0728$, $R_{sigma} = 0.1088$) which were used in all calculations. The final R_1 was 0.0416 (I > 2σ (I)) and wR_2 was 0.0822 (all data). CCDC 1585913 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk].

- 1. SMART & SAINT. Software Reference manuals. Versions 6.28a & 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
- 2. Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Figure caption: The molecular structure of AY61, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Scheme 2: NMR and Mass spectral characterization of data for direct C-H bromination of substrate **2d** in the presence of D₂O giving rise to *ortho*-dibrominated product **2d**'.

