Supporting Information

Isolation, structural elucidation, and synthetic studies of salviyunnanone A, an abietane derived diterpenoid with 7/5/6/3

ring system from Salvia yunnanensis

Fan Xia, Da-Wei Zhang, Chun-Yan Wu, Hui-Chun Geng, Wen-Dan Xu, Yu Zhang, Xing-Wei Yang, Hong-Bo Qin, and Gang Xu

- **S-1.** Physical data of salviyunnanone A (1) (P₂)
- S-2. Computational details of salviyunnanone A (1) (P₂)
- **S-3.** Detailed experimental procedures (P₄)
- S-4. Experimental details and characterization data for synthesized compounds (compounds 4–12) (P₅)

Table 1. NMR Data of compounds 1 and 12 in $CDCl_3(P_{11})$

S-5. Spectra of compounds 4 to 12 (P_{12}) Figure 1–8. Spectra of salviyunnanone A (1) (P_{12})

Figure 9–22. Spectra of compounds 4–11 (P₁₅)

Figure 23–31. Spectra of (±)-6-epi-salviyunnanone A (12) (P₂₃)

S-1. Physical data of salviyunnanone A (1)

Salviyunnanone A (1): yellow powder; $[\alpha]^{17}_{D}$ + 37.9 (*c* 0.13, MeOH); UV (MeOH) λ max (log ε): 294.0 (3.62) nm, 203.0 (3.86) nm; IR (KBr) vmax 2960, 2922, 2867, 2851, 1691, 1662, 1639, 1465, 1385, 1122, 1093, 1058, 1041, 922, 840, 804, 677 cm–1; ¹H and ¹³C NMR data, see Table 1; ESIMS *m*/*z* 337 [M+Na]⁺; HRESIMS *m*/*z* 337.1786 [M+Na]⁺ (calcd for C₂₀H₂₆O₃Na, 337.1780).

S-2. Computational Methods for configuration determination of

salviyunnanone A(1)

The CONFLEX searches based on molecular mechanics with MMFF94S force fields were performed for **1** which gave 9 stable conformers.^{1,2} Selected conformers (3) with distributions higher than 1% were further optimized by the density functional theory method at the B3LYP/6-31G** level in Gaussian 03 program package,³ leading to one minimum geometry, which was further checked by frequency calculation and resulted in no imaginary frequencies. ECD calculation were performed on the Gaussian 03 program using TD-DFT-B3LYP/6-31G (d, p) level of theory on B3LYP/6-31G (d) optimized geometry through the IEFPCM model (in MeOH). The calculated ECD curve was generated using SpecDis with σ =0.28 ev, and UV shift -20 nm. The magnetic shieldings were computed at the B3LYP/6-311+G(2d,p) level of theory by using the B3LYP/6-31G(d) optimized geometries.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	3.262033	1.895249	0.257913	
2	6	0	4.041562	0.759334	-0.432430	
3	6	0	3.900587	-0.650661	0.184645	
4	6	0	2.438613	-1.153127	0.188661	
5	6	0	1.455973	-0.566162	-0.847523	
6	6	0	0.963848	0.904543	-0.488540	
7	6	0	1.798325	1.578561	0.618366	
8	6	0	0.189705	-1.379958	-0.933145	

Standard orientation of **1** at B3LYP/6-31G(d,p) level:

9	6	0	-0.885720	-0.711446	-0.482663
10	6	0	-0.479333	0.636254	-0.006727
11	6	0	-2.275817	-1.108523	-0.411025
12	6	0	-3.280165	-0.234693	-0.142282
13	6	0	-2.975058	1.219459	0.016499
14	6	0	-1.542453	1.628483	0.258366
15	6	0	4.460825	-0.698767	1.618154
16	6	0	4.681764	-1.659987	-0.695810
17	8	0	2.082624	-2.030913	0.951773
18	1	0	1.977847	-0.548934	-1.814290
19	6	0	0.908960	1.756975	-1.771683
20	1	0	-1.361812	2.700888	0.199041
21	8	0	-0.874003	0.947653	1.338771
22	8	0	-3.841351	2.081466	-0.072976
23	6	0	-4.748193	-0.610798	-0.065571
24	6	0	-5.243307	-0.534554	1.395717
25	6	0	-5.079954	-1.974160	-0.683530
26	1	0	3.302958	2.776878	-0.394187
27	1	0	3.776090	2.188086	1.181640
28	1	0	5.108614	1.018904	-0.436533
29	1	0	3.753661	0.711960	-1.490480
30	1	0	1.299946	2.509502	0.915376
31	1	0	1.762539	0.940805	1.509229
32	1	0	0.183502	-2.400824	-1.302739
33	1	0	-2.504515	-2.153074	-0.607447
34	1	0	4.341344	-1.698233	2.042654
35	1	0	5.526570	-0.441943	1.613429
36	1	0	3.945554	0.004792	2.280442
37	1	0	4.607175	-2.671475	-0.284144
38	1	0	4.305831	-1.679840	-1.726254
39	1	0	5.741013	-1.379690	-0.734454
40	1	0	0.519078	2.758633	-1.558936
41	1	0	0.255453	1.293618	-2.519588
42	1	0	1.900482	1.873852	-2.221047
43	1	0	-5.287511	0.164785	-0.624253
44	1	0	-6.319385	-0.738395	1.443097
45	1	0	-4.727933	-1.273281	2.020976
46	1	0	-5.069181	0.458226	1.820518
47	1	0	-6.163547	-2.134424	-0.673195
48	1	0	-4.739896	-2.043764	-1.723212
49	1	0	-4.625199	-2.798838	-0.120539

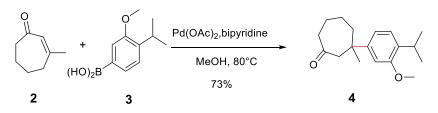
1. Goto, H.; Osawa, E.; J. Am. Chem. Soc. 1989, 111, 8950-8951.

2. Goto, H.; Osawa, E.; J. Chem. Soc., Perkin Trans. 2, 1993, 187-198.

 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, revision D.01; Gaussian, Inc.: Wallingford, CT, 2005.

S-3. Detailed experimental procedures

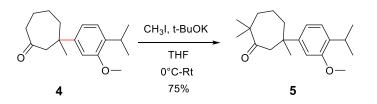
The roots of *S. yunnanensis* were collected in Kunming, Yunnan Province, P. R. China, in October 2010. The plant was identified by Dr. En-De Liu, Kunming Institute of Botany, Kunming, P. R. China. A voucher specimen was deposited at the Kunming Institute of Botany with identification number 201010S01.


The air-dried powdered material (20 kg) was extracted with acetone ($3 \times 50 \text{ L} \times 24$ h) at room temperature and the solution was evaporated in vacuum to give a crude extract (1.2 kg). The extract was subjected to column chromatography over silica gel, eluting with Chloroform-EtOAC to afford six fractions (I-VI). Fraction II (311 g) was further chromatographed on silica gel (eluting with a gradient of EtOAc in petroleum ether) to yield seven subfractions (A-G). Fraction C (36.0 g) was separated over a silica column and obtained four fractions (Fr. C1–C8). Fr. C5 (4.3 g) was subjected to a RP-18 silica column (MeOH–H₂O from 60:40 to 100:0), and five fractions (Fr.

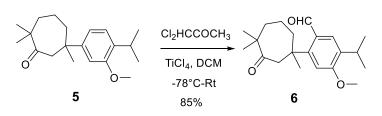
C5a–C5e) was obtained. Fr. C5d (300 mg) was purified by preparative TLC and semipreparative HPLC to afford salviyunnanenone A (1) (1.7 mg).

All reactions were performed with dry solvents under anhydrous conditions, unless otherwise noted. Dry tetrahydrofuran (THF) were distilled over sodium. Dichloromethane were distilled over calcium hydride. Reagents were used as received without further purification, unless otherwise stated. Silica gel (200–300 mesh, Qingdao Marine Chemical Ltd., China), light petroleum ether (bp 60–90 °C) and ethyl acetate were used for product purification by flash column chromatography. Melting Point (MP) was determined with a X-4 Taike micro melting point apparatus and was uncorrected. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on Bruker Avance 400 and 800 spectrometer at 400 MHz and 800 MHz. Carbon-13 nuclear magnetic resonance (¹³C NMR) was recorded on Bruker Avance 400 and 800 spectrometer. This spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer. Mass spectra were recorded on a VG-Auto-Spec-3000 spectrometer. High-resolution mass spectral analysis (HRMS) data were recorded via electron impact mass spectrometry using a time of flight analyzer.

S-4. Experimental details and characterization data for synthesized compounds

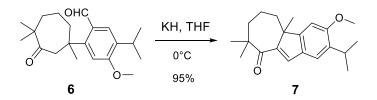

(1)

(R)-3-(4-isopropyl-3-methoxyphenyl)-3-methylcycloheptan-1-one (**4**): to a solution of Pd(OAc)₂ (2.25mg, 0.01mmol), Bipyridine (2.45mg, 0.015mmol) and **3** (39mg, 0.2mmol) in MeOH (0.5ml) in sealed tubes was added **2** (12.4mg, 0.1mmol). The reaction mixture was stirred at 80 °C for 12h and filtered with Kieselguhr and concentration afforded the crude product. The crude product was purified by flash chromatography (PE/EtOAc = 25 : 1) to afford **4** (20mg, 73%) as yellow oil. IR (neat) v 2959, 2932, 2866, 1695, 1610, 1571, 1504, 883, 820; ¹H NMR (400 MHz, CDCl₃):

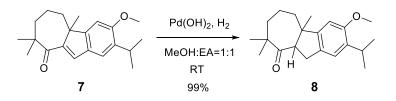

δ 7.12 (d, J = 8.0 Hz, 1H), 6.85 (br d, J = 8.0 Hz, 1H), 6.78 (br s, 1H), 3.81 (s, 3H), 3.26 (m, 1H), 3.17 (d, J = 14.4 Hz, 1H), 2.72 (d, 14.4 Hz, 1H), 2.44 – 2.18 (m, 3H), 1.81 – 1.75 (m, 5H), 1.27 (s, 3H), 1.20 (d, J = 6.9 Hz, 3H), 1.18 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 241.2, 156.8, 146.3, 134.5, 125.9, 117.6, 108.2, 55.9, 55.4, 44.2, 43.5, 39.9, 32.1, 26.4, 25.8, 23.9, 22.6, 22.6; HRMS (EI) calcd for C₁₈H₂₆O₂ [M]⁺: 274.1935, found 274,1933.

(2)

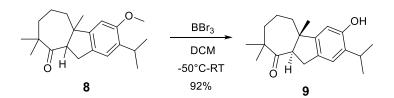
(R)-6-(4-isopropyl-3-methoxyphenyl)-2,2,6-trimethylcycloheptan-1-one (**5**): to a solution of t-BuOK (34mg, 0.3mmol) in dry THF(0.5ml) was added **4** (27mg, 0.1mmol) and CH₃I (38 µl, 0.6mmol) at 0°C,after being stirred 30 min the mixture was stirred at room temperature for 1h and filtered and concentration afforded the crude product. The crude product was purified by flash chromatography (PE/EtOAc = 30 : 1) to afford **5** (22.7mg, 75%) as yellow oil. IR (neat) v 2960, 2932, 2866, 1698, 1610, 1571, 1504, 873, 817; ¹H NMR (400 MHz, CDCl₃): δ 7.13 (d, *J* = 8.0 Hz, 1H), 6.92 (br d, *J* = 8.0 Hz, 1H), 6.78 (br s, 1H), 3.85 (s, 3H), 3.26 (m, 1H), 3.26 (d, *J* =11.2 Hz, 1H), 2.52 (d, *J* =11.2 Hz, 1H), 2.12–1.52 (m, 6H), 1.25 (s, 3H), 1.19 (d, *J* = 7.2 Hz, 6H), 1.13 (s, 3H), 1.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 216.9, 156.6, 148.2, 134.6, 125.6, 117.2, 108.1, 55.4, 51.7, 47.5, 43.4, 39.7, 39.5, 27.8, 27.4, 26.4, 24.4, 22.7, 22.7, 21.0; HRMS (EI) calcd for C₂₀H₃₀O₂ [M]⁺: 302.2246, found 302.2249.


(3)

(R)-5-isopropyl-4-methoxy-2-(1,4,4-trimethyl-3-oxocycloheptyl)benzaldehyde (6): to

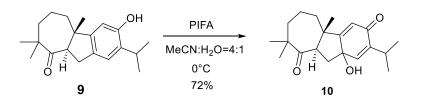

a solution of **5** (182mg, 0.602mmol) in dry DCM (5ml) was added Cl₂CHOCH₃ (96.3 µl, 0.963mmol) and TiCl₄ (80 µl, 0.722mmol) at -78 °C. After rising to room temperature the reaction was quenched with saturated aqueous NaHCO₃ and extracted with DCM (3×10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by flash chromatography (PE/EtOAc = 50:1) to afford **6** (169mg, 85%) as white solid. Mp 110–112 °C; IR (neat) v 2958, 2923, 2866, 1762, 1684, 1603, 1547, 1504, 864; ¹H NMR (400 MHz, CDCl₃): δ 10.48 (s, 1H), 7.80 (s, 1H), 6.96 (s, 1H), 3.92 (s, 3H), 3.82 (d, *J* = 11.2 Hz, 1H), 3.25 (m, 1H), 2.47 (d, *J* = 11.2 Hz, 1H), 2.00 (m, 1H), 1.99 (m, 1H), 1.77–1.62 (m, 4H), 1.43 (s, 3H), 1.21 (d, *J* = 6.5 Hz, 6H), 1.14 (s, 3H), 1.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 216.5, 191.8, 160.6, 151.0, 134.8, 133.1, 127.8, 108.8, 55.4, 51.0, 47.7, 42.1, 41.1, 38.4, 28.2, 27.8, 26.4, 24.2, 22.3, 22.2, 21.4; HRMS (EI) calcd for C₂₁H₃₀O₃ [M]⁺: 330.2195, found 330.2194.

(4)

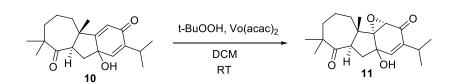

(R)-2-isopropyl-3-methoxy-4b,8,8-trimethyl-5,6,7,8-tetrahydrobenzo[a]azulen-9(4bH) -one (**7**) : to a solution of **6** (151mg, 0.457mmol) under argon atmosphere in dry THF (5ml) was added KH (18mg, 0.457mmol) at 0°C, then the mixture was stirred at the same temperature for 1 h. The reaction was quenched with ice water, extracted with EA (3×5 mL), The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by flash chromatography (PE/EtOAc = 100: 1) to afford **7** (135mg, 95%) as yellow solid. Mp 127–129 °C; IR (neat) v 3065, 2963, 2940, 2869, 1643, 1613, 1543, 1504, 882; ¹H NMR (400 MHz, CDCl₃): δ 7.26 (s, 1H), 7.19 (s, 1H), 6.76 (s, 1H), 3.87 (s, 3H), 3.31 (m, 1H), 2.27 (m, 1H), 2.00 (m, 1H), 1.86 (m, 1H), 1.74 (m, 1H), 1.55 (m, 1H), 1.33 (s, 3H), 1.26 (s, 3H), 1.21 (d, J = 7.8 Hz, 3H), 1.19 (s, 3H), 0.98 (d, J = 7.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 209.2, 157.1, 155.2, 154.7, 136.1, 136.0, 131.7, 120.6, 103.9, 55.6, 52.9, 45.9, 40.7, 40.1, 29.9, 26.8, 24.2, 22.8, 22.8, 22.1, 20.0; HRMS (EI) calcd for C₂₁H₂₈O₂ [M]⁺: 312.2089, found 312.2093.

(5)

(4bS)-2-isopropyl-3-methoxy-4b,8,8-trimethyl-5,6,7,8,9a,10-hexahydrobenzo[a]azule n-9(4bH)-one (8): to a solution of 7 (127mg, 0.407mmol) under hydrogen atmosphere in EA:MeOH(1:1 4ml) was added catalytic amount of $Pd(OH)_2$ at room temperature, then the mixture was stirred at the same temperature for 5 h and filtered with Kieselguhr and concentration afforded the crude product. The crude product was purified by flash chromatography (PE/EtOAc = 100: 1) to afford 8 (126mg, 99%) as white solid: mp 99–101 °C.

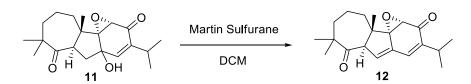

(6)

(4bS)-3-hydroxy-2-isopropyl-4b,8,8-trimethyl-5,6,7,8,9a,10-hexahydrobenzo[a]azule n-9(4bH)-one(**9**): to a solution of **8** (119mg, 0.378mmol) in dry DCM (3ml) was added BBr₃ (75.7 μ l/1M in DCM, 0.076mmol) at -50°C,after naturally rising to room temperature the reaction was quenched with saturated aqueous NaHCO₃ and extracted with DCM (3×3 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by flash chromatography (PE/EtOAc=20: 1)


to afford **9** (53 mg, 46%) as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.03 (s, 1H), 6.47 (s, 1H), 4.69 (s, 1H), 3.67 (m, 1H), 3.44 (m, 1H), 3.15 (step, *J* = 6.9 Hz, 1H), 2.58 (m, 1H), 2.18 (m, 1H), 1.84 (m, 2H), 1.80 (m, 2H), 1.24 (d, *J* = 6.9 Hz, 3H), 1.22 (d, *J* = 6.9 Hz, 3H), 1.19 (s, 3H), 1.05 (s, 3H), 0.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 216.0, 151.8, 149.9, 132.7, 132.5, 122.2, 108.6, 58.9, 48.5, 47.1, 40.7, 39.3, 30.8, 29.9, 27.0, 23.0, 22.8, 22.6, 22.1, 20.7.

(7)

(4bS,9aR)-10a-hydroxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,9a,10,10a-octahydrob enzo[a]azulene-3,9-dione(**10**): to a solution of **9** (10mg, 0.033mmol) in MeOH-H₂O (1ml) was added PIFA (17mg, 0.04mmol) at 0°C. After being stirred 30 min the mixture was stirred at room temperature for 2h and concentration afforded the crude product. The crude product was purified by flash chromatography (PE/EtOAc = 8: 1) to afford **10** (7.5mg, 72%) as yellow solid. IR (neat) v 3394, 2963, 2933, 2869, 1701, 1672, 1639, 1457, 1384; ¹H NMR (400 MHz, CDCl₃): δ 6.72 (s, 1H), 5.92 (s, 1H), 4.02 (m, 1H), 2.92 (m, 1H), 2.09–1.60 (m, 6H), 1.50–1.25 (m, 2H), 1.18 (s, 3H), 1.08 (d, *J* = 6.9 Hz, 3H), 1.07 (s, 3H), 1.04 (d, *J* = 6.9 Hz, 3H), 0.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 215.8, 186.7, 174.4, 145.1, 138.8, 122.1, 73.5, 54.1, 46.8, 45.9, 40.9, 38.8, 35.5, 30.2, 26.2, 23.8, 22.8, 21.7, 21.6, 20.7; HRMS (EI) calcd for C₂₀H₂₈O₃ [M]⁺: 316.2038, found 316.2035.


(8)

(1aS,5aR,10aS,10bR)-4a-hydroxy-3-isopropyl-7,7,10a-trimethyl-4a,5,5a,7,8,9,10,10a-octahydro-6H-cyclohepta[2,3]indeno[3a,4-b]oxirene-2,6(1aH)-dione(**11**): to a solution

of **10** (12mg, 0.038mmol) in DCM (0.5ml) was added Vo(acac)₂ (2mg, 0.0076mmol) at room temperature, then the mixture was stirred at the same temperature for 2 h. The reaction was quenched with saturated aqueous Na₂S₂O₃ and extracted with DCM (3×3 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the crude product without further purification.

(9)

(1aS,5aR,10aS,10bS)-3-isopropyl-7,7,10a-trimethyl-5a,7,8,9,10,10a-hexahydro-6H-c yclohepta[2,3]indeno[3a,4-b]oxirene-2,6(1aH)-dione(**12**): to a solution of **11** (10mg, 0.03mmol) in DCM (0.5ml) was added Martin Sulfurane (40mg, 0.06mmol) at 0°C, then the mixture was stirred at the room temperature for 2 h and concentration afforded the crude product. The crude product was purified by flash chromatography (PE/EtOAc = 6:1) to afford **12** (7.5mg, 60%) as yellow solid.

Compound **12**:

¹H NMR (800 MHz, acetone-d₆): δ 7.05 (s, 1H), 6.51 (d, J = 2.1 Hz, 1H), 3.71 (s, 1H), 2.90 (step, J = 6.8 Hz, 1H), 1.98 (m, 1H), 1.82 (m, 1H), 1.76–1.67 (m, 3H), 1.50 (m, 1H), 1.16 (s, 3H), 1.10 (s, 3H), 1.09 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), 1.00 (s, 3H), 0.86 (s, 3H); ¹³C NMR (200 MHz, acetone-d₆): δ 214.5, 194.3, 144.3, 138.8, 136.3, 130.5, 77.1, 62.9, 57.8, 47.3, 46.8, 39.5, 34.3, 30.4, 27.6, 23.1, 22.2, 21.4, 21.0, 20.3; HRESIMS m/z 313.1808 [M-H]⁻ (calcd for C₂₀H₂₆O₃, 313.1809).

¹H NMR (800 MHz, CDCl₃): δ 6.78 (s, 1H), 6.44 (d, J = 2.0 Hz, 1H), 4.38 (d, J = 2.0Hz, 1H), 3.62 (s, 1H), 2.94 (step, J = 6.9 Hz, 1H), 1.84 (m, 2H), 1.80 (m, 1H), 1.78 (m, 1H), 1.71 (q, J = 7.5 Hz, 1H), 1.64 (m, 1H), 1.42 (m, 1H), 1.18 (s, 3H), 1.14 (d, J = 6.9 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.09 (s, 3H), 1.02 (s, 3H); ¹³C NMR (200 MHz, CDCl₃): δ 214.6, 193.9, 144.3, 137.0, 135.7, 129.6, 76.4, 62.2, 57.6, 46.8, 46.2, 39.3, 33.9, 30.3, 26.9, 22.8, 21.9, 21.2, 20.9, 19.6.

Table 1. NMR Data of compounds 1 and 12 in CDCl₃.

no δ_0		, type	$^{\Delta}\delta C$	$\delta_{ m H}(J$	in Hz)
	Compound 1 ^a	Compound 12 ^b		Compound 1 ^a	Compound 12 ^b
1	27.3, CH ₂	33.9, CH ₂	6.6	1.15, m	1.42. m
				1.36, m	1.64, m
2	18.8, CH ₂	19.6, CH ₂	0.8	1.76, m	1.80, m
					1.78, m
3	34.6, CH ₂	39.3, CH ₂	4.7	1.58, m	1.71, q (7.5)
				2.04, m	1.84, m
4	46.2, C	46.2, C	0		
5	215.2, C	214.6, C	-0.6		
6	63.1, CH	62.6, CH	-0.5	3.93, d (2.9)	4.38, d (2.0)
7	136.0, CH	137.0, CH	1.0	6.24, d (2.9)	6.44, d (2.0)
8	135.9, C	135.7, C	-0.2		
9	75.8, C	76.4, C	1.4		
10	43.7, C	46.8, C	3.1		
11	57.5, CH	57.6, CH	0.1	3.60, s	3.62, s
12	194.8, C	193.9, C	-0.9		
13	144.1, C	144.3, C	0.2		
14	129.3, CH	129.6, CH	0.3	6.90, s	6.78, s
15	27.0, CH	26.9, CH	-0.1	2.92, sept (6.8)	2.94, sept (6.9)
16	21.8, CH ₃	21.9, CH ₃	0.1	1.01, d (6.8)	1.14, d (6.9)
17	21.1, CH ₃	21.2, CH ₃	0.1	1.09, d (6.8)	1.12, d (6.9)
18	28.8, CH ₃	30.3, CH ₃	1.5	1.12, s	1.09, s
19	21.3, CH ₃	22.8, CH ₃	1.5	1.12, s	1.02, s
20	24.6, CH ₃	20.9, CH ₃	-3.7	1.28, s	1.18, s

^aRecorded on 400MHz, ^bRecorded on 800MHz.

S-5. Spectra of compounds 1 to 12

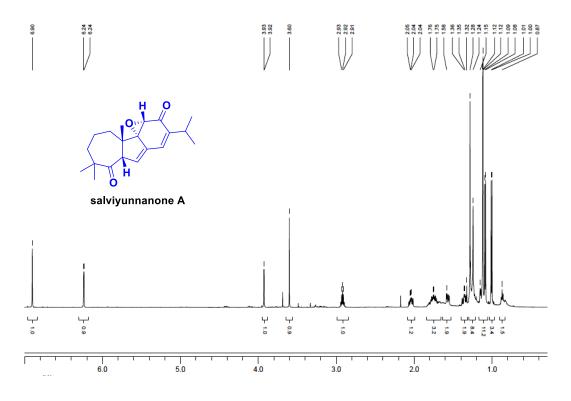
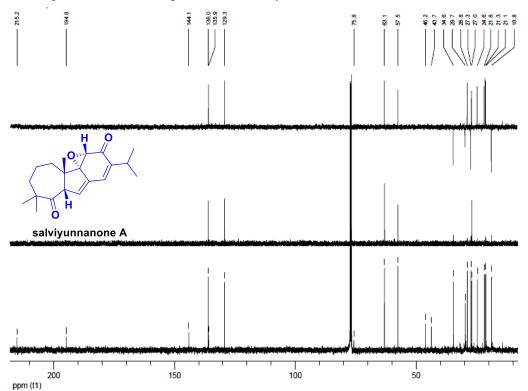



Figure 2. ¹³C NMR spectrum of salviyunnanone A (1) (100MHz, CDCl₃)

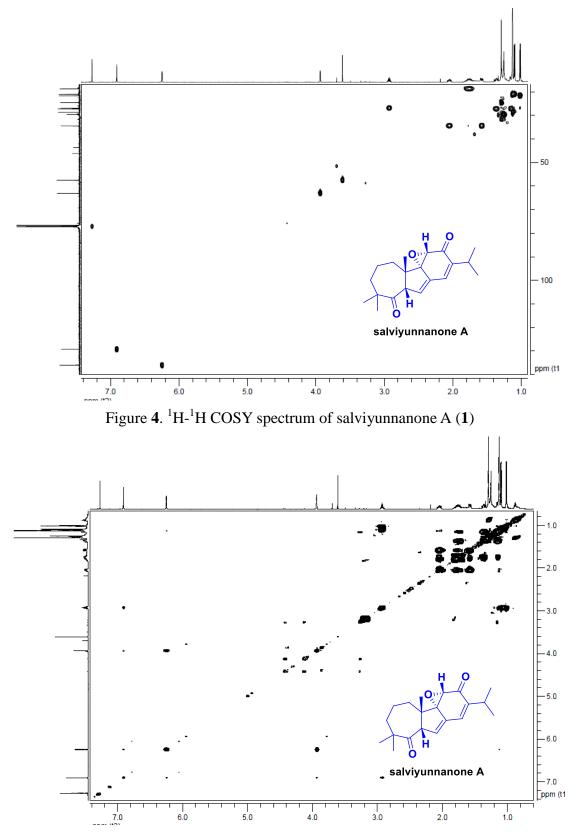


Figure 3. HSQC spectrum of salviyunnanone A (1)

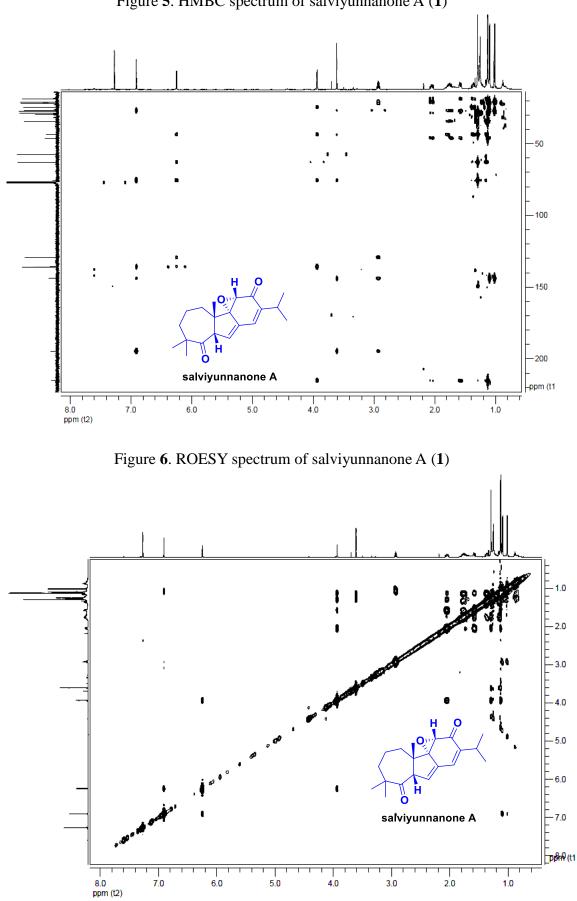
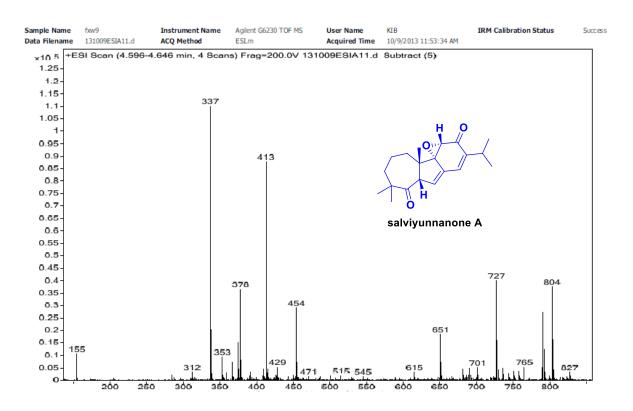
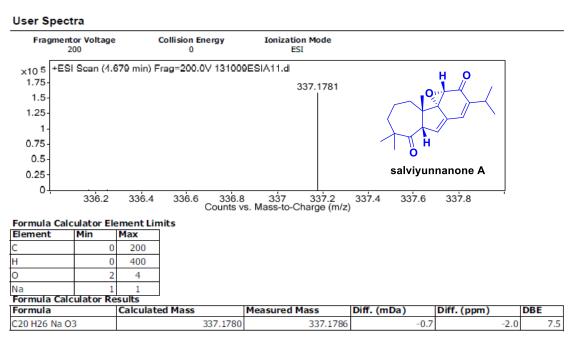




Figure **5**. HMBC spectrum of salviyunnanone A (**1**)

Figure 7. ESIMS spectrum of salviyunnanone A (1)

Figure 8. HRESIMS spectrum of salviyunnanone A (1)

--- End Of Report ---

Figure 9.¹H NMR (400 MHz, CDCl₃) of compound 4

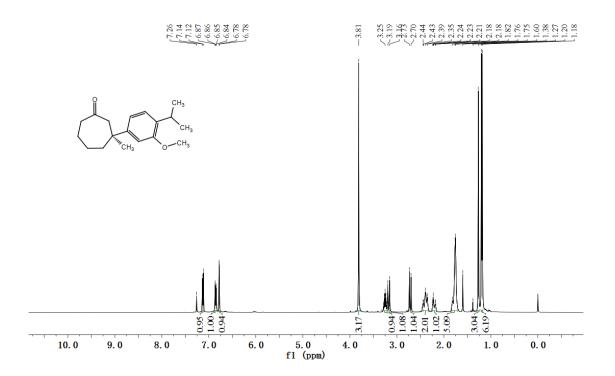


Figure 10.¹³C NMR (100 MHz, $CDCl_3$) of compound 4

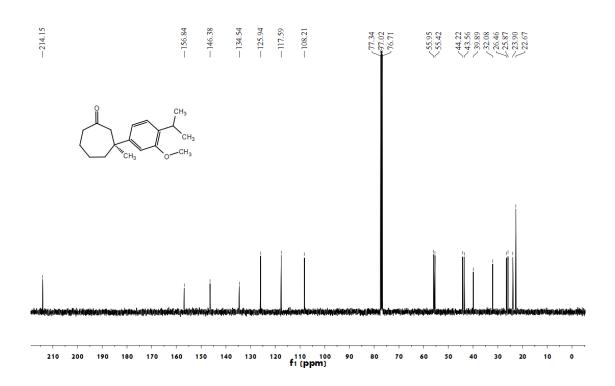


Figure **11**.¹H NMR (400 MHz, CDCl₃) of compound **5**

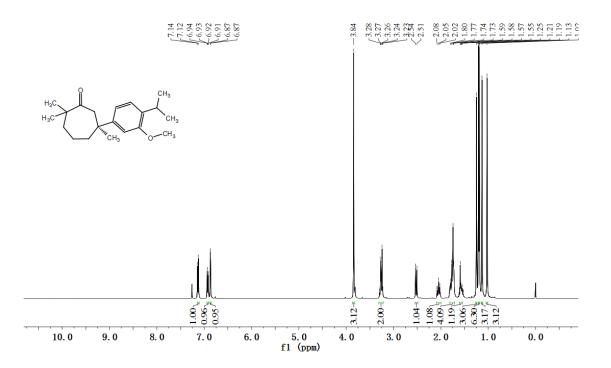
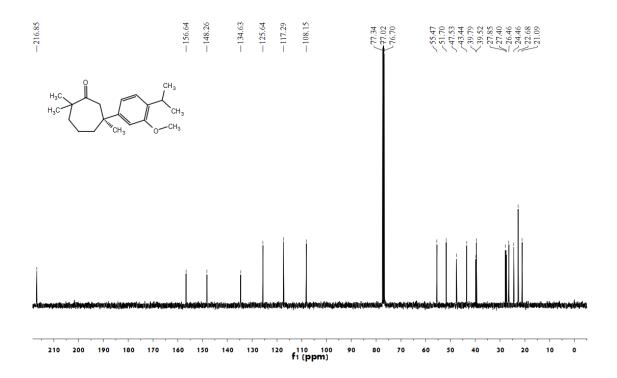



Figure **12**.¹³C NMR (100 MHz, CDCl₃) of compound **5**

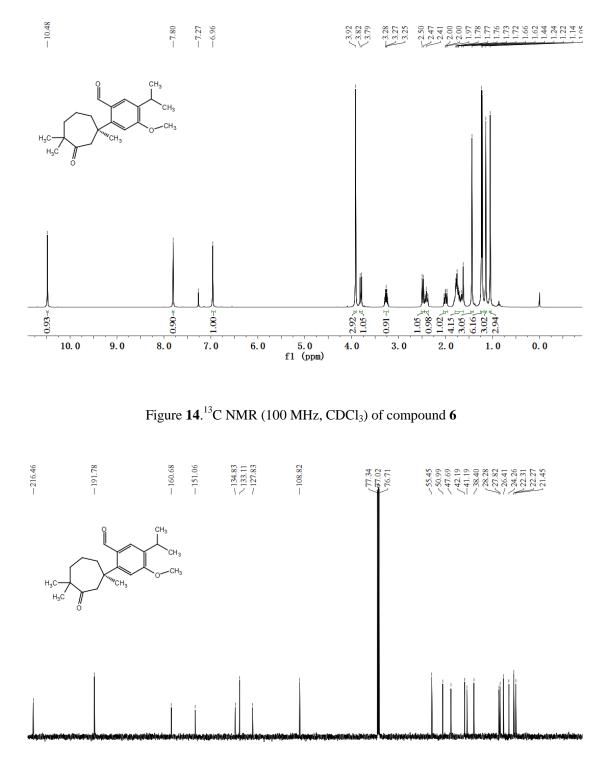
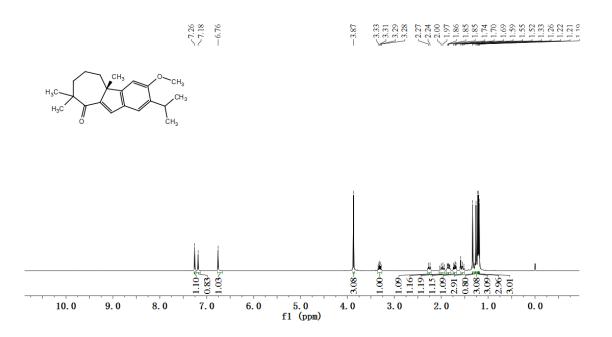
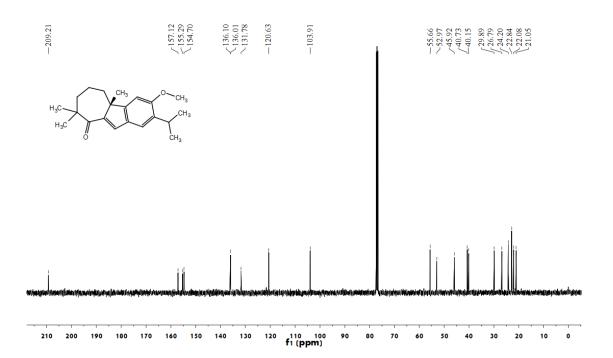




Figure 13.¹H NMR (400 MHz, CDCl₃) of compound 6

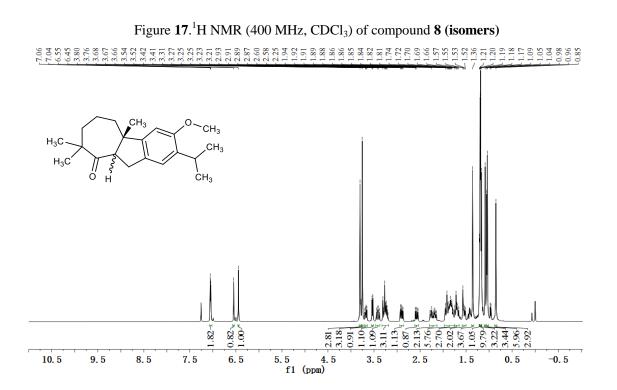


Figure **18**.¹³C NMR (100 MHz, CDCl₃) of compound **8 (isomers)**

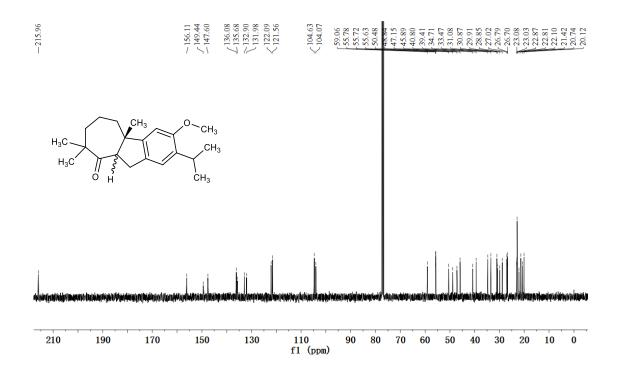


Figure **19**.¹H NMR (400 MHz, CDCl₃) of compound **9**

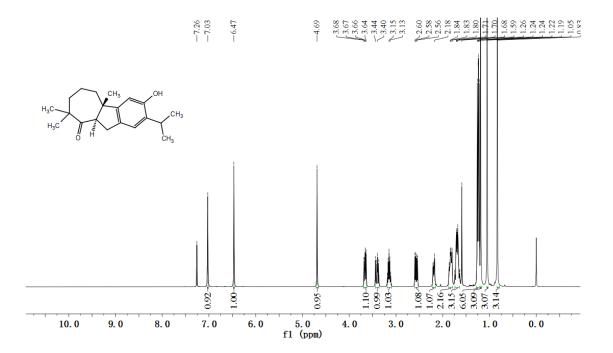
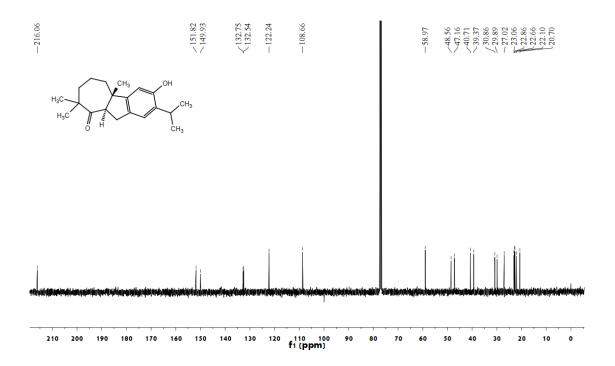



Figure **20**.¹³C NMR (100 MHz, CDCl₃) of compound **9**

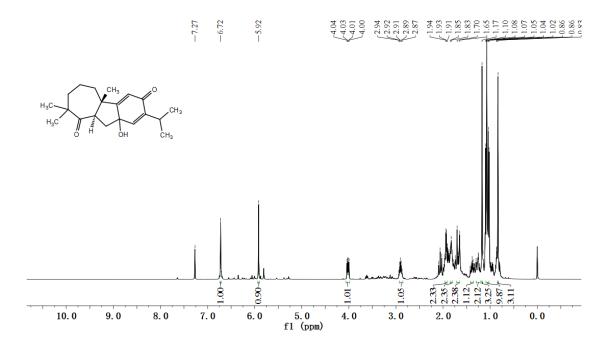
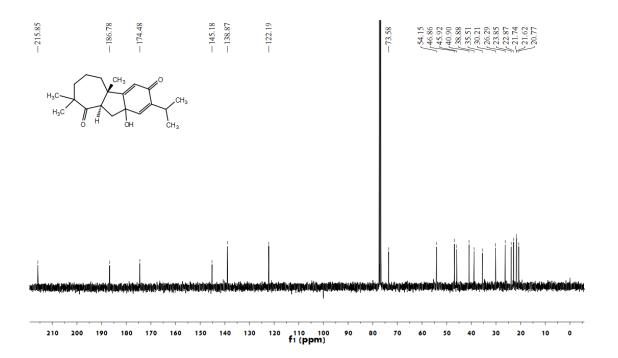



Figure 22.¹³C NMR (100 MHz, CDCl₃) of compound 10

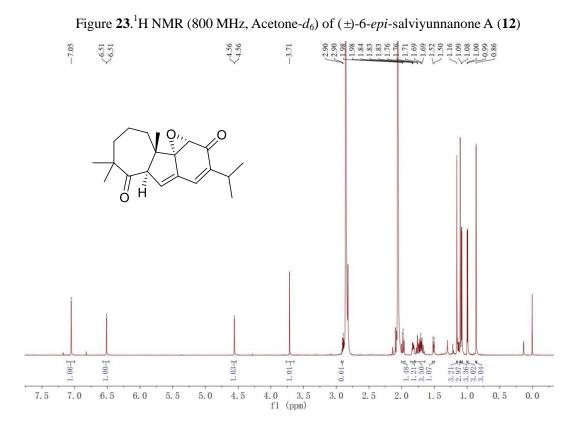
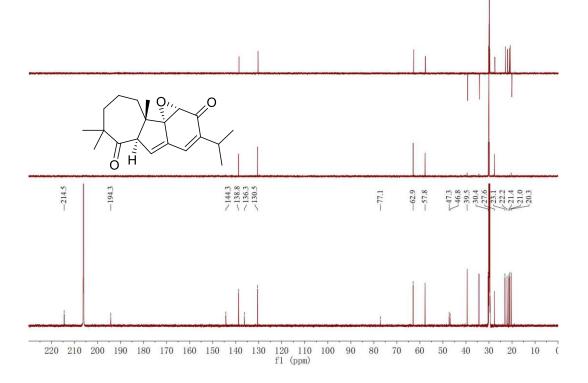



Figure 24.¹³C NMR (200 MHz, Acetone- d_6) of (±)-6-*epi*-salviyunnanone A (12)

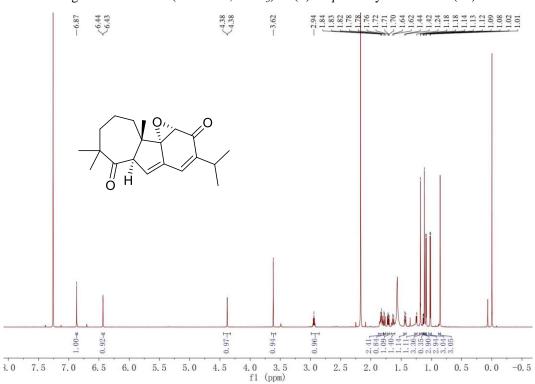
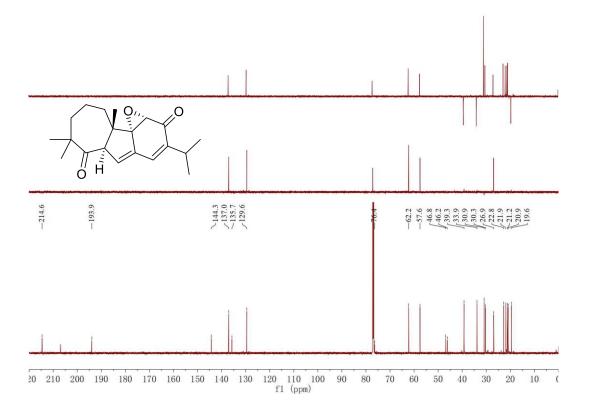



Figure 26.¹³C NMR (200 MHz, CDCl₃) of (±)-6-*epi*-salviyunnanone A (12)

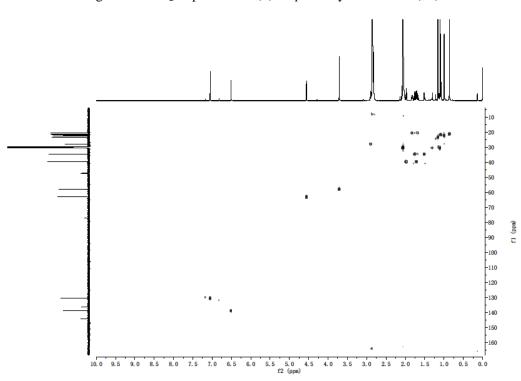
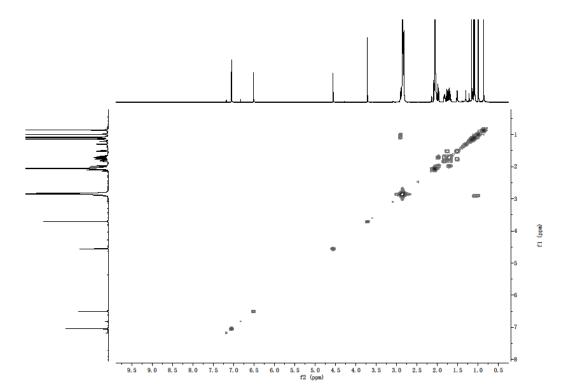



Figure 27. HSQC spectrum of (±)-6-*epi*-salviyunnanone A (12)

Figure 28. 1 H- 1 H COSY spectrum of (±)-6-*epi*-salviyunnanone A (12)

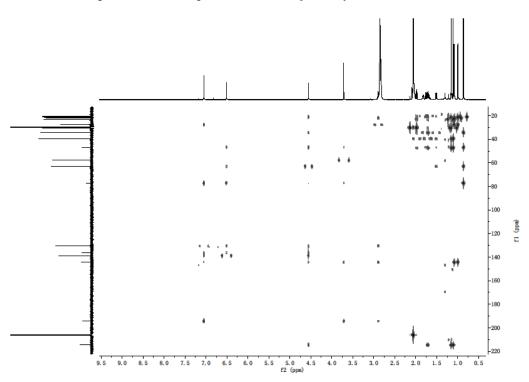
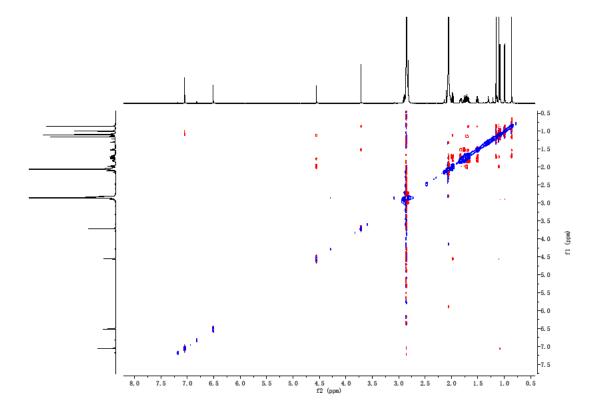
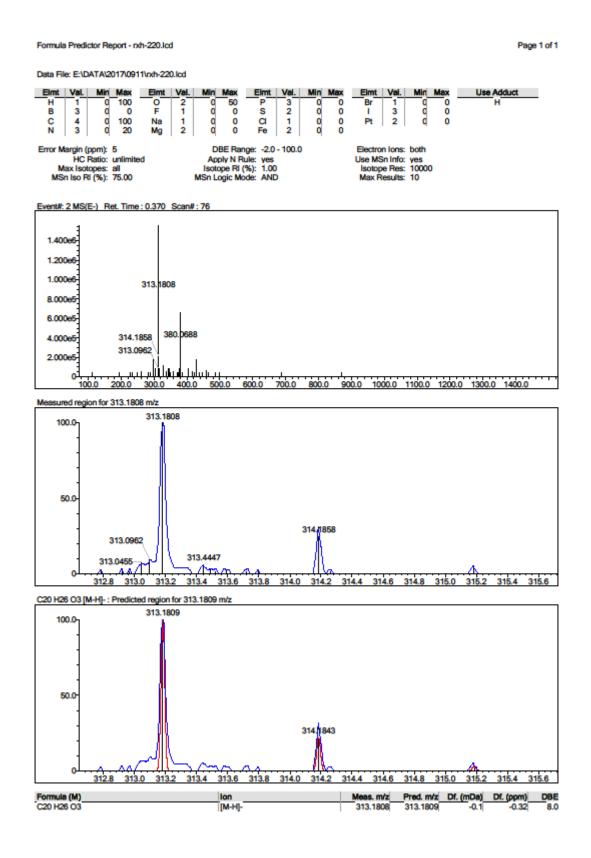




Figure 29. HMBC spectrum of (±)-6-*epi*-salviyunnanone A (12)

Figure **30**. ROESY spectrum of (±)-6-*epi*-salviyunnanone A (**12**)

Figure 31. HRESIMS spectrum of (±)-6-epi-salviyunnanone A (12)

