Biomimetic Total Synthesis of Homodimericin A

Xianwen Long, Yunhong Huang, Yang Long, Jun Deng*
State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Email: dengjun@mail.kib.ac.cn

I Experimental Procedures and Spectroscopic Data of Compounds
II References
III Comparison of the Spectra and Data of Natural and Synthetic Homodimericin A
IV $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds

I Experimental Procedures and Spectroscopic Data of Compounds

General Procedures. All reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Tetrahydrofuran (THF), diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), and toluene were distilled immediately before use from sodium-benzophenoneketyl. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and 1, 2-Dichlorobenzene (1, 2-DCB) were distilled from calcium hydride and stored under an argon atmosphere. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Solvents for chromatography were used as supplied by Titan chemical. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.2 mm Huanghai gel plates ($60 \mathrm{~F}-254$) using UV light as visualizing agent and aqueous ammonium cerium nitrate/ammonium molybdate or basic aqueous potassium permanganate as developing agent. Huanghai silica gel (60 , particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography.

NMR spectra were recorded on Bruker AV III 400 or 600, and calibrated by using residual undeuterated chloroform $\left(\delta_{\mathrm{H}}=7.26 \mathrm{ppm}\right)$ and $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right)$, or undeuterated Dimethyl sulfoxide $\left(\delta_{\mathrm{H}}=\right.$ $2.50 \mathrm{ppm})$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\left(\delta_{\mathrm{C}}=39.52 \mathrm{ppm}\right)$ as internal references. The following abbreviations are used to designate multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $q u i n t=$ quintet, br = broad. IR spectra were recorded on a Bruker Tensor-27 FT-IR spectrometer. High-resolution mass spectra (HRMS) were recorded on Waters AutoSpec Premier P776 mass spectrometer. Semi-prepHPLC was carried out on an Agilent 1260 Series system using a Agilent ZORBAX SB-C18 5μ column ($9.4 \times 250 \mathrm{~mm}$).

8

To a stirred suspension of $\mathbf{6}^{1}(6.0 \mathrm{~g}, 28.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$ were sequentially added PBr_{3} $(13.77 \mathrm{mg}, 4.78 \mathrm{~mL}, 50.88 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 15 min before it was quenched with saturated aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The resultant mixture was extracted with DCM $(3 \times 150 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated under vacuum, and the residue was purified by flash column chromatography with petroleum ether/EtOAc (40: 1) to give $\mathbf{8}(6.61 \mathrm{~g}, 85 \%)$ as a white solid. 8: $R_{\mathrm{f}}=0.36$ (silica, petroleum ether: EtOAc $20: 1$); IR (film): $v_{\max }=2937,1588,1485$, $1464,1405,1335,1246,1132,1088,1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.58(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}$, $2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.14$, 151.98, 145.43, 128.44, 122.27, 106.86, 60.88, 60.23, 55.80, 28.84, $9.04 \mathrm{ppm} ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{3}{ }^{+}$274.0205, found 274.0206.

To a stirred solution of $\mathbf{A}^{2}(6.39 \mathrm{~g}, 32.71 \mathrm{mmol})$ in THF (180 mL) were sequentially added KHMDS (27.26 mL, 1.0 M in THF, 27.26 mmol) and $\mathbf{8}(5.0 \mathrm{~g}, 18.17 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 1 h , then were sequentially added TBAF ($18.17 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 18.17 mmol), The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 10 min before it was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The resultant mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine $(100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated under vacuum, and the residue was purified by flash column chromatography with petroleum ether/EtOAc (20:1) to give $5(4.75 \mathrm{~g}, 90 \%)$ as a pale yellow oil. 5: $R_{\mathrm{f}}=$
0.25 (silica, Petroleum ether: EtOAc $10: 1$); IR (film): $v_{\max }=2935,1637,1594,1464,1405,1241,1129$, 1087, 1033, $1001 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.22-6.17$ (m, 1H), $6.15(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, $1.87(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.19,154.04,151.90,145.15,143.57$, $140.58,130.38,126.72,125.60,119.91,107.36,60.63,60.19,55.77,42.36,18.80,8.86 \mathrm{ppm} ;$ HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}{ }^{+}$290.1518, found 290.1526.

To a stirred suspension of $5(1.4 \mathrm{~g}, 4.82 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(48 \mathrm{~mL})$ were sequentially added $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{2}(5.81 \mathrm{~g}, 10.61 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(26.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 10 min before it was quenched with saturated aq. $\mathrm{NaCl}(100 \mathrm{~mL})$. The resultant mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 80 \mathrm{~mL})$. The combined organic phases were washed with brine $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated under vacuum to give 4 as a yellow oil and used in next step without further purification. 4: $R_{\mathrm{f}}=0.47$ (silica, petroleum ether: EtOAc 3: 1); IR (film): $v_{\max }=3441,2933,2854,2426,1651,1634,1455,1383,1113,992 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.29-6.17(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $195.14,187.82,182.62,155.98,144.60,141.77,141.26,135.01,130.09,129.03,126.59,60.79,40.40$, 18.90, 8.60 ppm ; HRMS (m/z): [M] ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}{ }^{+} 260.1049$, found 260.1044.

To a stirred solution of $4(1.17 \mathrm{~g}, 4.5 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(45 \mathrm{~mL})$ was added saturated aq. $\mathrm{NaHCO}_{3}(12$ mL) at $25^{\circ} \mathrm{C}$. The reaction mixture stirred at that temperature for 10 min before it was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The resultant mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 50 \mathrm{~mL})$ and brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was passed through a short plug of silica gel using EtOAc/petroleum ether (5: 1) as eluent to give $\mathbf{3}$ as a pale yellow solid (585 $\mathrm{mg}, 50 \%$). 3: $R_{\mathrm{f}}=0.35$ (silica, petroleum ether: EtOAc $3: 1$); IR (film): $v_{\max }=3427,2937,1653,1633$, 1593, 1465, 1336, 1193, 1123, $1001 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.65(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=$ $15.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=15.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.12(\mathrm{~m}, 4 \mathrm{H}), 5.96$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.84(\mathrm{~m}$, $6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=199.62,198.79,197.20,196.78,159.92,146.71,145.87$, $145.53,145.18,142.21,141.65,138.77,133.68,130.57,130.19,126.55,126.25,123.70,120.55,119.90$, $60.81,60.27,59.41,58.12,54.72,50.61,18.92,108.88,10.10,9.61 \mathrm{ppm} ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{8}{ }^{+} 520.2097$, found 520.2096.

To a stirred suspension of $3(250 \mathrm{mg}, 0.480 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3.5 \mathrm{~mL})$ were sequentially added $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{2}(526 \mathrm{mg}, 0.960 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 5 min before it was quenched with saturated aq. $\mathrm{NaCl}(20 \mathrm{~mL})$. The resultant mixture was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated under vacuum to give 9 (232 mg , 93%) as a yellow solid and used in next step without further purification. 9: $R_{\mathrm{f}}=0.43$ (silica, petroleum
ether: EtOAc $3: 1$); IR (film): $v_{\max }=3429,2930,1658,1636,1595,1448,1331,1193,1115,1002 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.59(\mathrm{dd}, J=15.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=15.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37-$ $6.28(\mathrm{~m}, 1 \mathrm{H}), 6.26-6.09(\mathrm{~m}, 4 \mathrm{H}), 5.97(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.94$ $(\mathrm{s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.85(\mathrm{~m}$, 9H), 1.83 (d, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=197.56,196.84,196.08,188.42$, $184.93,180.15,160.59,156.07,147.74,147.51,146.81,144.08,143.02,141.34,130.40,130.12,129.16$, $126.88,125.55,61.08,60.94,59.82,57.69,57.58,43.72,18.95,18.85,9.52,8.77 \mathrm{ppm} ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z}):$ $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{8}{ }^{+}$518.1941, found 518.1943.

2

10

A solution of quinine 9 ($200 \mathrm{mg}, 0.385 \mathrm{mmol}$) in dry 1, 2-dichlorobenzene (40 mL). The resulting mixture was rigorously degassed three times by the freeze-pump-thaw process $\left(-78^{\circ} \mathrm{C}\right.$ to $25^{\circ} \mathrm{C}$, argon). The reaction mixture was heated at $170^{\circ} \mathrm{C}$ for 3 h in the dark. After cooling to RT and purification of the crude residue via silica gel flash column chromatography with petroleum ether \rightarrow acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1$: $50 \rightarrow 1: 25$) to give $\mathbf{2}(50 \mathrm{mg}, 25 \%)$ as a pale yellow solid $\mathbf{2}: R_{\mathrm{f}}=0.5$ (silica, Acetone: DCM $1: 25$); IR (film): $v_{\max }=3436,2947,1667,1592,1452,1303,1194,1118,1009,867 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.37(\mathrm{dd}, J=15.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=7.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.39-6.18(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=17.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.59$, 196.07, 195.49, 195.34, 193.40, 193.24, 160.00, 159.93, 144.84, 142.79, 140.08, 137.67, 134.86, 130.37, $130.30,127.49,65.86,63.73,63.56,59.61,59.56,57.97,45.25,35.25,30.83,29.67,19.00,18.98,9.70$, $9.22 \mathrm{ppm} ;$ HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{8}{ }^{+}$518.1941, found 518.1949.

10 (30 mg, 15\%) red solid. 10: $R_{\mathrm{f}}=0.25$ (silica, Acetone: DCM 1: 25)
IR (film): $v_{\max }=3443,2939,1737,1667,1606,1449,1374,1296,1139,994 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=6.69(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=15.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.90-5.84$ (m, 2H), $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=17.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=5.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $1.89(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 198.08, 197.30, 195.19, 194.61, 192.06, 159.66, 158.81, 139.59, 137.63, 135.64, 135.33, 134.92, 132.56, $132.05,130.37,85.20,66.10,64.65,64.31,60.12,59.99,58.21,55.92,52.72,46.73,39.49,18.24,13.16$, 9.90, $9.68 \mathrm{ppm} ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+} \mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{8}{ }^{+}$518.1941, found 518.1940.

Homodimericin A(1)

To a stirred solution of $\mathbf{1 0}(18 \mathrm{mg}, 0.035 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ was added LiI ($69 \mathrm{mg}, 0.520 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The resultant mixture was allowed to stir at $70^{\circ} \mathrm{C}$ for 15 h before it was quenched with 1 M $\mathrm{HCl}(20 \mathrm{~mL})$. The mixture so obtained was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by semi-preparative HPLC to give $\mathbf{1}(13 \mathrm{mg}, 76 \%)$ as a colorless solid. 1: $R_{\mathrm{f}}=0.46$ (silica, $\mathrm{DCM}: \mathrm{MeOH} 10: 1$); IR (film): $v_{\max }=3426,2930,1727,1654,1386,1354$, 1171, 1118, 994, $896 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, d_{6}$-DMSO): $\delta=6.47(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.35(\mathrm{dd}, J=$ $15.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.70(\mathrm{~m}, 1 \mathrm{H})$, $3.56(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=5.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=18.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$, $0.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, d_{6}$-DMSO): $\delta=199.44,195.57$, 194.81 (2C), 193.87, 158.02 (2C), $139.16,137.43,135.77,131.10,130.09,128.98,125.72,124.40,84.32,64.74,64.24,62.85$,
59.57, 55.07, 51.58, 47.56, 18.03, 12.43, 9.53, $9.23 \mathrm{ppm} ; H R M S(\mathrm{~m} / \mathrm{z}):[\mathrm{M}]^{+} \mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{8}{ }^{+} 490.1628$, found 490.1622.

To a stirred suspension of $9(40 \mathrm{mg}, 0.077 \mathrm{mmol})$ in $\mathrm{DCM}(0.8 \mathrm{~mL})$ were sequentially added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (19 $\mu \mathrm{L}, 0.154 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 50 min before it was quenched with saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The resultant mixture was extracted with EtOAc (3 $\times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. the solvent was evaporated under vacuum, and the residue was purified by flash column chromatography with petroleum ether/EtOAc (3: 1) to give $11(20 \mathrm{mg}, 50 \%)$ as a yellow oil. 11: $R_{\mathrm{f}}=0.32$ (silica, petroleum ether: EtOAc $3: 1$); IR (film): $v_{\max }=3420,2937,1633,1586,1424,1341$, $1235,1109,997,952 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.94(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=15.5,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{dd}, J=15.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-6.16(\mathrm{~m}, 3 \mathrm{H}), 6.16-6.01(\mathrm{~m}$, $2 \mathrm{H}), 5.91(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}$, $3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.57,194.39$, 193.60, 182.31, 161.15, 147.71, 147.43, 146.33, 145.31, 145.24, 143.36, 142.47, 140.59, 137.35, 135.77, $130.81,130.15,127.90,126.89,123.88,123.75,123.32,65.97,60.95,60.24,48.42,19.13,19.08,10.20$, $9.77 \mathrm{ppm} ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+} \mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{8}{ }^{+}$518.1941, found 518.1933.
(1) (a) Magnus, P.; Matthews, K. S.; Lynch, V. Org. Lett. 2003, 5, 2181. (b) Saito, T.; Morimoto, M.; Akiyama, C.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1995, 117, 10757.
(2) Kurono, N.; Yamaguchi, M.; Suzuki, K.; Ohkuma, T. J. Org. Chem. 2005, 70, 6530.

Table 1. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectroscopic data (d_{6}-DMSO) of natural and synthetic homodimericin A

Homodimericin A

$\begin{gathered} \text { Natural } \\ \delta_{\mathrm{H}}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 600 \mathrm{MHz} \end{gathered}$		$\begin{gathered} \text { Synthetic } \\ \delta_{\mathrm{H}}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 600 \mathrm{MHz} \end{gathered}$		ErrNatural-Synthetic) $\Delta \delta_{\mathrm{H}}(\mathrm{ppm})$-0.03
6.50	$1 \mathrm{H}, \mathrm{d}, 5.8$	6.47	$1 \mathrm{H}, \mathrm{d}, 5.7$	
6.35	$1 \mathrm{H}, \mathrm{dd}, 15.4,10.7$	6.35	$1 \mathrm{H}, \mathrm{dd}, 15.4,10.4$	-
6.10	$1 \mathrm{H}, \mathrm{dd}, 14.9,10.7$	6.10	$1 \mathrm{H}, \mathrm{dd}, 14.4,10.9$	-
5.85	$1 \mathrm{H}, \mathrm{d}, 15.4$	5.84	$1 \mathrm{H}, \mathrm{d}, 15.5$	-0.01
5.74	$1 \mathrm{H}, \mathrm{dq} 14.9,6.7$	5.75	$1 \mathrm{H}, \mathrm{m}$	-0.01
3.62	$1 \mathrm{H}, \mathrm{d}, 5.0$	3.56	$1 \mathrm{H}, \mathrm{d}, 4.7$	-0.06
3.08	$1 \mathrm{H}, \mathrm{d}, 5.0$	3.08	$1 \mathrm{H}, \mathrm{d}, 4.8$	-
2.71	$1 \mathrm{H}, \mathrm{dd}, 3.5,5.8$	2.68	$1 \mathrm{H}, \mathrm{dd}, 3.4,5.3$	-0.03
2.70	$1 \mathrm{H}, \mathrm{d}, 18.0$	2.63	1H, d, 18.1	-0.07
2.60	1H, d, 18.0	2.58	1H, d, 18.1	-0.02
2.11	$1 \mathrm{H}, \mathrm{qd}, 3.5,6.9$	2.09	$1 \mathrm{H}, \mathrm{m}$	-0.02
1.84	$3 \mathrm{H}, \mathrm{s}$	1.83	3H, s	-0.01
1.76	$3 \mathrm{H}, \mathrm{d}, 6.7$	1.75	$3 \mathrm{H}, \mathrm{d}, 6.5$	-0.01
1.74	$3 \mathrm{H}, \mathrm{s}$	1.71	$3 \mathrm{H}, \mathrm{s}$	-0.03
0.70	$3 \mathrm{H}, \mathrm{d}, 6.9$	0.70	$3 \mathrm{H}, \mathrm{d}, 6.8$	-

Table 2. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectroscopic data (d_{6}-DMSO) of natural and synthetic homodimericin A

Homodimericin A

Natural $\delta_{\mathrm{C}}(\mathrm{ppm})$ 125 MHz	Synthetic $\delta_{\mathrm{C}}(\mathrm{ppm})$ 150 MHz	Err $($ Natural-Synthetic $)$ $\Delta \delta_{\mathrm{C}}(\mathrm{ppm})$
199.2	199.4	+0.2
196.0	195.6	-0.4
195.1	194.8	-0.3
195.1	194.8	-0.3
193.0	193.8	-0.8
156.1	158.0	+1.9
156.1	158.0	+1.9
138.6	139.1	+0.5
137.2	137.4	+0.2
136.1	135.7	-0.4
131.0	131.1	+0.1
130.2	130.0	-0.2
129.0	128.9	-0.1
126.3	125.7	-0.6
125.6	124.4	-1.2
84.3	84.3	-0.1
64.8	64.7	-0.1
64.4	64.2	-0.1
62.9	62.8	-0.1
59.6	59.5	-0.1
55.1	51.5	-0.1
51.6		-1

47.3	47.5	+0.2
18.0	18.0	-
12.3	12.4	-0.1
9.5	9.5	-
9.1	9.2	-0.1

Et'Stl-
86'LSI-
tl'tsL-
$\stackrel{\underset{\sim}{\infty}}{\stackrel{\text { N }}{\sim}}$
\circ
$\stackrel{\circ}{\circ}$
$\stackrel{-}{\circ}$

$\stackrel{\underset{\sim}{\infty}}{\stackrel{\infty}{\infty}}$
$\stackrel{\square}{\circ}$

8

-198.19
-154.04
$\mathcal{L}_{151.90}^{145.15}$
-143.57
-140.58
-130.38
-126.72
-125.60
-119.91
-107.36

220	210	200	190	180	170	160	150	140	130	12	110	100	90	80		60	50	1	1			
		200				160	150	140	130	120	${ }_{\text {fl }}^{10}$ (p	100	90	80	70	60	50	40	30	20	10	0

$\angle 9^{\prime} \varepsilon-$
$86^{\prime} \varepsilon-$ $\stackrel{+\infty}{\infty}$

ぷが

$N \infty$
$\sim \infty$
\sim
∞
∞

$n \omega \sim \sim$
∞
∞
∞
∞

 ricicicivi i iojopio

2

1	1	1	1	1	,	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm)											

Me

$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\circ} \sigma_{i}^{\infty}$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	10
											fl (ppm)							30	20	10	0	

$$
\begin{aligned}
& \underset{\sim}{\sim} \stackrel{\infty}{\sim}
\end{aligned}
$$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm)										0	

 ○○○○○○○○ふかふふふふふふ

 $<\begin{array}{r}0.70 \\ 0.69\end{array}$

Homodimericin A（1）

> 声
> ぶぶふ
$20.8 \mathrm{SI}-$

Homodimericin A（1）

