Electronic Supplementary Information

Asymmetric Ring Opening Reactions of Azabenzonorbornadienes

through Transfer Hydrogenation using Secondary Amines as Hydrogen

Sources: Tuning of Absolute Configuration by Acids

Dongdong Pu,^a Yongyun Zhou,^{a,*} Fan Yang,^a Guoli Shen,^a Yang Gao,^a Weiqing Sun,^a Ruhima Khan,^a and Baomin Fan^{a,b,*}

^aYMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, 650500, China

^bKey Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, 650500, China

Fax: (+86)-871-65946330; Phone: (+86)-871-65946920

E-mail for Yongyun Zhou: zhouyy@ynni.edu.cn E-mail for Baomin Fan: FanBM@ynni.edu.cn

Contents

1. General methods and General procedu	S2- S3	
2. Characterization Data of the products		S3 – S5
3. NMR Spectra of products		S6 – S11
4. HPLC Spectra of Products		S12 – S21
5. References		S21

1. General methods and General procedure

General Methods. The reactions and manipulations were performed under an atmosphere of argon by using standard Schlenk techniques and Drybox (Mikrouna, Supper 1220/750). All solvents were purified and dried by using standard methods prior to use and stored under argon. ¹H NMR and ¹³C NMR spectra were recorded on Bruker-Avance 400 MHz spectrometer. Chemical shifts (δ) were reported in ppm with tetramethylsilane as internal standard, and *J* values were given in Hz. ¹H NMR spectra were recorded in CDCl₃ and the chemical shifts were referenced to CDCl₃ (δ 7.27) and that of ¹³C NMR spectra were referenced to CDCl₃ (δ 77.00). The enantioselective excesses were determined by Agilent 1260 Series HPLC using Daicel AD-H, AS-H, OJ-H and OD-H chiral columns eluted with a mixture of isopropyl alcohol and hexane. Melting points were measured on X-4 melting point apparatus and uncorrected. Column chromatography was performed with silica gel (200-300 mesh) with petroleum ether and ethyl acetate as eluents.

Experimental Procedures

(a) Typical procedure for the asymmetric transfer hydrogenation reaction of azabenzonorbornadienes:

^{1.} Pd(OAc)₂ (2.3 mg, 0.01 mmol), (*R*)-SEGPHOS (7.3 mg, 0.012 mmol) and 1.0 mL 1,4-dioxane were added to a Schlenk tube under argon atmosphere. The resulting solution was stirred at room temperature for 30 min, then AgPF₆ (5.1 mg, 0.02 mmol) was added and stirred for an additional 10 min, then a solution of *N*-Boc-azabenzonorbornadiene **1a** (48.6 mg, 0.2 mmol) in 1,4-dioxane (1.0 mL) was added, and the mixture was stirred for additional 10 min. After the addition of dibenzylamine **2a** (115µL, 0.6 mmol), the mixture was stirred at 90 °C under argon atmosphere with TLC monitoring until the complete consumption of **1a**. The residue was purified by chromatography on a silica gel column to afford the desired product **3a**. The absolute configuration of the products were determined by comparing the characterization data such as ¹H NMR and HPLC of the products with the one reported earlier.¹

(b) Typical procedure for the asymmetric transfer hydrogenation reaction of azabenzonorbornadienes in presence of benzoic acid:

Pd(OAc)₂ (2.3 mg, 0.01 mmol), (*R*)-SEGPHOS (7.8 mg, 0.012 mmol) and 1.0 mL toluene were added to a Schlenk tube under argon atmosphere. The resulting solution was stirred at room temperature for 30 min, then AgOTf (5.1 mg, 0.02 mmol) was added and stirred for an additional 10 min, then a solution of *N*-Boc-azabenzonorbornadiene **1a** (48.6 mg, 0.2 mmol) in toluene (1.0 mL) was added, and the mixture was stirred for additional 10 min, then benzoic acid (48.8 mg, 0.2 mmol) was added and stirred for an addition of dibenzylamine **2a** (115 μ L, 0.6 mmol), the mixture was stirred at 90 °C under argon atmosphere with TLC monitoring until the complete consumption of **1a**. The residue was purified by chromatography on a silica gel column to afford the desired product **3a**'.

2. Characterization Data of the products

Colorless oil, 91% yield, 93% *ee*. $[\alpha]_D^{20} = -46.3$ (c = 0.54, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.24 (m, 1H), 7.19-7.11 (m, 2H), 7.00 (dd, *J* = 7.2, 1.7 Hz, 1H), 6.44 (d, *J* = 9.6 Hz, 1H), 5.91-5.87 (m, 1H), 4.83-4.65 (m, 2H), 2.52-2.37 (m, 2H), 1.36 (s, 9H). The *ee* of **3a** was determined by HPLC analysis using Daicel Chiralcel OJ-H column (25 cm × 0.46 cm ID), conditions: n-hexane/i-PrOH = 98/2, 0.8 mL/min, 254 nm; t_{minor} = 8.1 min, t_{major} = 9.2 min.

(S)-tert-butyl (6,7-dimethyl-1,2-dihydronaphthalen-1-yl) carbamate (3b)

Colorless oil, 96% yield, 90% *ee*. $[\alpha]_D^{24}$ = -22.8 (c = 0.78, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.10 (s,1H), 6.87 (s, 1H), 6.47 (d, *J* = 9.5 Hz, 1H), 5.89 (t, *J* = 4.8 Hz1H), 4.84-4.59 (m, 2H), 2.57-2.44 (m, 2H), 2.24 (d, *J* = 6.2 Hz,6H), 1.44(s, 9H).The *ee* of **3b** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 0.3 mL/min, 254 nm; *t*_{minor} =15.7 min, *t*_{major} = 16.9 min.

(S)-tert-butyl (5,6-dihydronaphtho[2,3-d][1,3]dioxol-5-yl) carbamate (3c)

Colorless oil, 92% yield, 94% *ee*. $[\alpha]_D^{24} = -38.3$ (c = 0.72, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s,1H), 6.57 (s, 1H), 6.39 (d, *J* = 9.6 Hz, 1H), 5.92 (d, *J* = 2.2 Hz, 2H), 5.87-5.83 (m, 1H), 4.87 (d, *J* = 8.4 Hz, 1H), 4.78-4.62 (m, 1H), 2.55-2.40 (m, 2H), 1.43 (s, 9H).The *ee* of **3c** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 0.5 mL/min, 254 nm; t_{major} = 13.8 min, t_{minor} = 14.9 min.

(S)-tert-butyl(2,3,6,7-tetrahydronaphtho[2,3-b][1,4]dioxin-6-yl) carbamate (3d)

Colorless oil, 95% yield, 96% $ee.[\alpha]_{D}^{24} = -20.0$ (c = 0.74, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s,1H), 6.59 (s, 1H), 6.38 (d, J = 9.7 Hz, 1H), 5.87-5.82 (m,1H), 4.84(d, J = 8.7 Hz, 1H), 4.79-4.61 (m,1H), 4.23 (s, 4H), 2.54-2.37 (m, 2H), 1.43(s, 9H).The *ee* of **3d** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 0.8mL/min, 254 nm; t_{major} =22.7min, t_{minor} = 25.3 min.

(S)-tert-butyl (6,7-dimethoxy-1,2-dihydronaphthalen-1-yl) carbamate (3e)

Colorless oil, 78% yield, 94% $ee.[\alpha]_{D}^{25} = -43.1$ (c = 0.64, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s,1H), 6.60 (s, 1H), 6.42 (d, J = 9.6 Hz, 1H), 5.86-5.82 (m,1H), 4.89 (d, J = 8.8 Hz, 1H), 4.79-4.63 (m, 1H), 3.86 (d, J = 6.6Hz,6H), 2.57-2.42 (m, 2H), 1.41 (s, 9H).The *ee* of **3e** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.5 mL/min, 254 nm; $t_{minor} = 10.7$ min, $t_{maior} = 11.8$ min.

S)-tert-butyl (6,7-dibromo-1,2-dihydronaphthalen-1-yl) carbamate (3f)

Colorless oil, 37% yield, 73% *ee*.¹H NMR (400 MHz, CDCl₃) δ 7.55 (s,1H), 7.30 (s, 1H), 6.40 (d, *J* = 9.6 Hz, 1H), 6.05-6.03 (m,1H), 4.87-4.71 (m, 2H), 2.56-2.39 (m, 2H), 1.44 (s,9H).The *ee* of **3f** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 0.2mL/min, 254 nm; *t*_{minor} = 15.3 min, *t*_{major} = 16.3 min.

(S)-benzyl (1,2-dihydronaphthalen-1-yl)carbamate (3g)

Colorless oil, 87% yield, 88% $ee.[\alpha]_D^{25} = -31.7$ (c = 0.64, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.23 (m, 8H), 7.12 (d, *J* = 7.2 Hz, 1H), 6.56 (d, *J* = 9.6 Hz, 1H), 6.02-5.98 (m,1H), 5.21-5.09 (m, 3H), 4.98 (dd, *J* = 14.4 Hz, 6.0 Hz, 1H), 2.66-2.51 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 154.54, 135.34, 133.48, 132.00, 127.49, 127.17, 127.11, 126.83, 126.70, 126.11, 125.51,

124.57, 65.71, 47.08, 29.38. The *ee* of **3g** was determined by HPLC analysis using Daicel Chiralcel OJ-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1.2mL/min, 254 nm; t_{minor} = 14.9 min, t_{major} = 17.8min.

(S)-1,2-dihydronaphthalen-1-ol (3h)

Colorless oil, 40% yield, 66% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, *J* = 7.2, 0.7 Hz, 1H), 7.24-7.15 (m, 2H), 7.05 (dd, *J* = 8.0, 1.3 Hz, 1H),6.48 (d, *J* = 9.6 Hz,1H), 5.94-5.90 (m, 1H), 4.71 (t, *J* = 5.3 Hz, 1H), 2.55-2.51 (m, 2H). The *ee* of **3h** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, 254 nm; t_{minor} = 9.8 min, t_{major} =8.9min.

(R)-N-(1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3i)

White solid, 42% yield, 98% *ee*. $[\alpha]_{D}^{25}=25.7(c = 0.44, CH_{2}Cl_{2})$. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J*=8.4Hz, 2H), 7.28 (t, *J* = 8.4 Hz, 2H), 7.20 (t, *J* = 8.4 Hz, 1H), 7.11-7.04 (m, 2H), 6.91 (d, *J* = 7.6Hz, 1H), 6.51 (d, *J* = 9.6 Hz, 1H), 5.91-5.87(m, 1H), 4.84 (d, *J* = 8.4 Hz, 1H), 4.50-4.45 (m, 1H), 2.52-2.39 (m, 5H). ¹³C NMR (CDCl₃, 100 MHz): δ 143.3, 138.1, 133.4, 133.1, 129.7, 128.5, 127.9, 127.6, 127.1, 126.9, 126.6, 125.3, 50.9, 31.0, 21.6. The *ee* of **3i** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1.0mL/min, 254nm; *t*_{major} =16.7min, *t*_{minor} =18.3min.

3. NMR Spectra of products

S9

4. HPLC Spectra of Products

Note: All of the racemic products were prepared by using (\pm) -binap as ligand.

Racemic:

Peak	RetTime Typ	e Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
	·				
1	. 8.117 BB	0.1909	824.81531	66.39390	50.2946
2	9.196 BB	0.2339	815.15289	53.46169	49.7054

Enantioenriched:

Peak	RetTime T	ype Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
1	-				
1	8.115 B	в 0.1813	369.46960	31.38863	3.9468
2	9.207 B	в 0.2146	8991.88281	637.47467	96.0532

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
	I				1	
1	7.988	BV	0.1785	2461.13013	211.89738	93.8529
2	9.029	VB	0.2365	161.19783	10.42110	6.1471

Peak	RetTime Typ	e Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
1	15.506 BV	0.3330	4669.07178	214.47264	47.6808
2	16.651 VB	0.3814	5123.28223	202.36613	52.3192

Peak	RetTime T	ype Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
	-				
1	15.699 B	3B 0.3136	269.16464	13.16284	5.0837
2	16.877 B	3B 0.3529	5025.48486	218.01230	94.9163

Peak	RetTime 7	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU* s]	[mAU]	8
		-				
1	14.009	BV	0.3388	614.28790	27.90339	49.9564
2	15.206	VB	0.4259	615.36017	22.23675	50.0436

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
		·			
1	13.780 BB	0.3206	1529.50952	73.84499	96.8246
2	14.908 BB	0.3687	50.16080	2.14595	3.1754

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	22.869	BB	0.8012	2806.99170	53.66749	49.9802
2	25.452	BB	0.9579	2809.21460	45.08805	50.0198

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	22.724	вв	0.8169	3375.41870	63.01539	98.2821
2	25.320	PP	0.7845	58.99982	1.25344	1.7179

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU* s]	[mAU]	8
		-			
1	10.505 BB	0.2311	4671.27295	307.69165	50.5051
2	11.675 BB	0.2555	4577.82959	274.61224	49.4949

Peak	RetTime 7	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		I				
1	10.700	вв	0.2839	61.12031	3.24248	3.0436
2	11.803	BB	0.3178	1947.04089	92.43177	96.9564

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU* s]	[mAU]	8
1	15.340 VV	0.2965	1768.43384	90.66959	49.8797
2	16.314 VB	0.3159	1776.96155	86.06216	50.1203

Peak	RefTime	Гуре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
		-					l
1	15.329	BV	0.2985	846.28113	42.46787	13.5459	
2	16.291	VВ	0.3030	5401.23926	272.76181	86.4541	

Peak	RetTime 7	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU* s]	[mAU]	8
	-					
1	14.980 H	вв	0.3905	2744.64990	107.99549	49.9880
2	17.986 H	вв	0.5006	2745.97241	84.16503	50.0120

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.878	вв	0.3926	245.56967	9.59412	6.0673
2	17.752	BB	0.4988	3801.82617	117.40385	93.9327

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	8.989	BV	0.1889	2116.86841	172.88521	49.7181
2	9.826	VB	0.2092	2140.87598	157.89984	50.2819

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-		-		
1	16.794	BB	0.4224	361.49081	13.08208	50.1490
2	18.317	BB	0.4583	359.34232	12.00273	49.8510

Peak	RetTime Type	Width	Area	Height	Area	
#	[min]	[min]	[mAU*s]	[mAU]	8	
1	16.764 BB	0.4311	8521.29297	302.05930	99.0965	
2	18.332 BB	0.4156	77.69044	2.87204	0.9035	

References

1. F. Yang, J. -C. Chen, J. -B. Xu, F. -J. Ma, Y. -Y. Zhou, M. V. Shinde and B.-M. Fan, *Org. Lett.*, 2016, **18**, 4832–4835.