A H₂S and I⁻ dual-responsive supramolecular polymer constructed by pillar[5]arene-based host–guest interaction and metal coordination

Pi Wang,*a Jiao Ma,a and Danyu Xia*b

^a Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; E-mail: wangpi@tyut.edu.cn

^bScientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China; E-mail: danyuxia@sxu.edu.cn

Electronic Supplementary Information (11 pages)

1.	Materials and Methods	<i>S2</i>
2.	Syntheses of H and G	<i>S3</i>
3.	Partial ¹ H NMR spectra of the formation of the pillar[5]arene-based dimer and	<i>S9</i>
	host–guest interaction between the dimer and $m{G}$	
4.	DLS results	<i>S10</i>
5.	Reversible stimuli-responsive supramolecular polymer to monomers	
	transformation investigated by viscosity measurements	<i>S10</i>
6.	AFM image of the fibers drawn from the supramolecular polymer	<i>S11</i>
	References	<i>S12</i>

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Compounds 1,^{S1} 2^{S2} and 4^{S3} were prepared according to published procedures. H₂S gas was prepared by a simple chemistry reactor and was permitted to pass an airtight conical flask containing a test tube in which the supramolecular polymer was placed previously.^{S4} NMR spectra were recorded with a Bruker Avance DMX 500 spectrophotometer or a Bruker Avance DMX 400 spectrophotometer. Low-resolution electrospray ionization mass spectra were recorded with a Bruker Esquire 3000 Plus spectrometer. High-resolution mass spectrometry experiments were performed with a Bruker 7-Tesla FT-ICR mass spectrometer equipped with an electrospray source (Billerica, MA, USA). The melting points were collected on a SHPSIC WRS-2 automatic melting point apparatus. Viscosity measurements were carried out with a Cannon-Ubbelohde semi-micro dilution viscometer at 25 °C in chloroform. Scanning electron microscopy investigations were carried out on a JEOL 6390LV instrument or an Ultra-55 instrument. Dynamic light scattering was carried out on a Malvern Nanosizer S instrument at room temperature.

2. Syntheses of **H** and **G**

2.1. Synthesis of H

Scheme S1 Synthetic route to H

A solution of **1** (2.00 g, 1.91 mmol), 4-aminopyridine (0.360 g, 3.82 mmol) and catalytic amounts 4dimethylaminopyridine (DMAP) in dichloromethane (50 mL) was stirred for 10 minutes at 0 °C. Then EDC (1.10 g, 5.73 mmol) was added. The reaction mixture was stirred for 24 h at room temperature, filtered, and concentrated to give a crude product, which was purified by flash column chromatography (methanol/dichloromethane, 1:20 v/v) to afford **H** as a white solid (0.990 g, 44%). Mp: 74.0–75.4 °C. The ¹H NMR spectrum of **H** is shown in Fig. S1. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.53 (d, *J* = 6.0 Hz, 2H), 7.52 (d, *J* = 6.4 Hz, 2H), 6.82 (m, 10H), 6.72 (s, 1H), 6.63 (s, 1H), 5.18 (s, 2H), 4.50 (s, 2H), 3.87–3.67 (m, 28H), 3.60 (t, *J* = 6.6 Hz, 2H), 1.85–1.67 (m, 15H), 1.54 (m, 4H), 1.09–0.93 (m, 23H), 0.81 (m, 7H). The ¹³C NMR spectrum of **H** is shown in Fig. S2. ¹³C NMR (CDCl₃, 293 K, 100 MHz) δ (ppm): 167.01, 150.55, 149.81, 149.21, 148.94, 148.85, 148.81, 148.70, 146.68, 143.00, 128.35, 127.63, 127.56, 127.35, 127.01, 126.57, 126.49, 115.28, 114.99, 114.01, 113.85, 113.74, 113.33, 112.66, 69.28, 69.20, 68.99, 68.89, 68.02, 29.16, 28.60, 28.35, 22.04, 21.96, 21.82, 21.77, 21.58, 9.78, 9.76, 9.74, 9.71, 9.68, 9.58, 9.52. LRESIMS is shown in Fig. S3: *m/z* 1123.5 [M + H]⁺ (100%). HRESIMS: *m/z* calcd. for [M + H]⁺ C₆₉H₉₁N₂O₁₁, 1123.6623; found 1123.6628; error 0.4 ppm.

Figure S2. ¹³C NMR spectrum (CDCl₃, 293 K, 100 MHz) of **H**.

Figure S3. Electrospray ionization mass spectrum of H. Main peak: m/z 1123.5 [M + H]⁺ (100%).

2.2. Synthesis of G

Scheme S2 Synthetic route to G.

Synthesis of **3**. A solution of **3** (10.0 g, 33.6 mmol), 4,4'-azobis(phenol) (2.38 g, 11.2 mmol) and potassium carbonate (4.64 g, 33.6 mmol) in acetonitrile (100 mL) was refluxed for 24 h. Then the solution was filtered and the filtrate was concentrated to give a crude product, which was purified by flash column chromatography (petroleum ether/dichloromethane, $3:1 \nu/\nu$) to afford **3** as a pale yellow solid (6.72 g, 89%). Mp: 97.9–98.2°C. The ¹H NMR spectrum of **3** is shown in Fig. S4. ¹H NMR (400 MHz, CDCl₃) δ 8.31–8.09 (m, 4H), 7.03–6.87 (m, 8H), 6.90–6.77 (m, 4H), 4.64 (d, J = 2.4 Hz, 4H), 4.06 (t, J = 6.4 Hz, 4H), 2.50 (t, J = 2.4 Hz, 2H), 1.91–1.75 (m, 8H), 1.56–1.52 (m, 8H). The ¹³C NMR spectrum of **3** is shown in Fig. S5. ¹³C NMR (CDCl₃, 293 K, 100 MHz) δ (pm): 125.94, 116.13, 115.30, 114.40, 75.29, 68.71, 68.27, 56.61, 29.26, 28.93, 25.84, 25.75. LRESIMS is shown in Fig. S6: m/z 437.1 [M + 2H + 11H₂O]²⁺ (100%). HRESIMS: m/z calcd. for [M + H]⁺ C₄₂H₄₉N₂O₆, 676.3512; found 676.3518; error 0.9 ppm.

Figure S4. ¹H NMR spectrum (CDCl₃, 293 K, 400 MHz) of 3.

Figure S5. ¹³C NMR spectrum (CDCl₃, 293 K, 100 MHz) of **3**.

Figure S6. Electrospray ionization mass spectrum of **3**. Main peak: m/z 437.1 [M + 2H + 11H₂O]²⁺ (100%).

Synthesis of **G**. A solution of **3** (3.00 g, 4.45 mmol) and **4** (1.10 g, 9.50 mmol) in DMF (80 mL) in the presence of CuSO₄•5H₂O (0.250 g, 1.00 mmol) with sodium ascorbate (0.500 g, 2.50 mmol) was stirred at 50 °C for 24 h. The reaction mixture was concentrated and recrystallized to afford compound **G** as a pale yellow solid (2.67 g, 65%). Mp: 84.0–85.2°C.The ¹H NMR spectrum of **G** is shown in Fig. S7. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.8 Hz, 4H), 7.61 (s, 2H), 6.92 (t, *J* = 9.0 Hz, 8H), 6.82 (d, *J* = 4.6 Hz, 4H), 5.16 (s, 4H), 4.43 (t, *J* = 6.8 Hz, 4H), 4.06 (t, *J* = 6.4 Hz, 4H), 3.92 (t, *J* = 6.4 Hz, 4H), 2.41 (t, *J* = 6.8 Hz, 2H), 2.17–2.02 (m, 4H), 1.91–1.75 (m, 8H), 1.69 (m, 4H), 1.55 (m, 8H). The ¹³C NMR spectrum of **G** is shown in Fig. S8. ¹³C NMR (CDCl₃, 293 K, 100 MHz) δ (ppm): 164.19, 153.68, 152.26, 125.93, 115.84, 115.39, 114.40, 68.69, 68.28, 62.73, 49.25, 29.25, 29.05, 28.91, 25.81, 25.72, 22.33, 16.71. LRESIMS is shown in Fig. S9: *m/z* 516.1 [M + 2H + 6H₂O]²⁺ (100%). HRESIMS: *m/z* calcd. for [M + H]⁺ C₅₂H₆₃N₁₀O₆, 923.4932; found 923.4918; error –2 ppm.

Figure S7. ¹H NMR spectrum (CDCl₃, 293 K, 400 MHz) of G.

Figure S8. ¹³C NMR spectrum (CDCl₃, 293 K, 100 MHz) of G.

Figure S9. Electrospray ionization mass spectrum of **G**. Main peak: m/z 516.1 [M + 2H + 6H₂O]²⁺(100%).

3. Partial ¹H NMR spectra of the formation of the pillar[5] arene-based dimer and host–guest interaction between the dimer and G

Figure S10 Partial ¹H NMR spectra (CDCl₃, 293 K, 500 MHz): (a) **H** (20.0 mM); (b) **H** (20.0 mM) + Ag⁺ (10.0 mM); (c) **H** (20.0 mM) + Ag⁺ (10.0 mM) + **G** (10.0 mM); (d) **G** (10 mM); (e) **H** (20.0 mM) + **G** (10.0 mM) + Ag⁺ (10.0 mM) ; (f) **H** (20.0 mM) + **G** (10.0 mM); (g) **H** (20.0 mM).

4. DLS results

Figure S11 DLS results of (a) **G** (30.0 mM); (b) pillararene-based dimer (30.0 mM); (b) pillararene-based dimer and **G** (30.0 mM for both).

5. Reversible stimuli-responsive supramolecular polymer to monomers transformation investigated by viscosity measurements

Figure S12 Reversible stimuli-responsive supramolecular polymer to monomers transformation: (a) H_2S -reponsive transformation, (b) I⁻-responsive transformation.

6. AFM image of the fibers drawn from the supramolecular polymer

Figure S13 AFM image of fibes drawn from a high concentration solution of equimolar mixtures of pillararene-based dimer and **G**.

References:

- SI. B. Xia, B. Zheng, C. Han, S. Dong, M. Zhang, B. Hu, Y. Yu and F. Huang, Polym. Chem., 2013, 4, 2019–2024.
- S2. K. Wang, C.-Y. Wang, Y. Zhang, S. X.-A. Zhang, B. Yang and Y.-W. Yang, Chem. Commun., 2014, 50, 9458– 9461.
- S3. Wang, H. Deng, J. Li, K. Zheng, X. Jia and C. Li, Macromol. Rapid. Commun. 2013, 34, 1856–1862.
- Q. Liu, Y. Wang, W. Li and L. Wu, Langmuir, 2007, 23, 8217-8223.