Supporting Information

Synthesis of In₂O₃ nanoparticle/TiO₂ nanobelt heterostructures for

near room temperature ethanol sensing

Yujie Li¹, Hongru Yang¹, Jian Tian^{*}, Xiaolin Hu, Hongzhi Cui^{*}

School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

Email: jiantian@sdust.edu.cn, cuihongzhi1965@163.com

¹ Theses authors contributed equally.

Figure S1. SEM image of (a) TiO_2 nanobelts and (b, c) surface-coarsened TiO_2 nanobelts.

Figure S2. Elemental energy-dispersive X-ray spectroscopy (EDS) mapping of the

obtained In₂O₃ nanoparticle/TiO₂ nanobelt heterostructures (mole ratio 1:1).

Figure S3. Nitrogen adsorption-desorption isotherms of TiO_2 nanobelts, In_2O_3 nanoparticles and In_2O_3 nanoparticle/ TiO_2 nanobelt heterostructures (mole ratio 1:1).

Figure S4. (a) In3d and (b) Ti2p core-level XPS spectra of the samples.

Figure S5. Response of ethanol vapor sensors based on In_2O_3 nanoparticle/TiO₂ nanobelt heterostructures (mole ratio 1:1) upon exposure to 100 ppm of ethanol vapor at low operating temperature (45 °C, 55 °C and 80 °C).

Figure S6. The sensing stability of the In_2O_3 nanoparticle/TiO₂ nanobelt heterostructures (mole ratio 1:1) sensor to 100 ppm ethanol with respect to a low

temperature of 100 °C.

Figure S7. (a) UV–vis diffuse reflectance spectra of TiO_2 nanobelts, In_2O_3 nanoparticles and In_2O_3 nanoparticle/ TiO_2 nanobelt heterostructures. Mott-Schottky plots of (b) TiO_2 nanobelts and (c) In_2O_3 nanoparticles collected at a frequency of 1000 Hz in dark.

Figure S8. Zeta potentials of TiO_2 nanobelts and In_2O_3 nanoparticles in aqueous solution at different pH values.