Cupric oxide nanowires on three-dimensional copper foam for application in click reaction

Chunxia Wang,^{ab‡} Fan Yang,^{a‡*} Yan Cao,^a Xing He,^a Yushu Tang^a and Yongfeng Li^{a*}

 ^a State Key Laboratory of Heavy oil Processing, China University of Petroleum, Beijing, 102249, China. E-mail: yangfan@cup.edu.cn; yfli@cup.edu.cn (Y.F. Li)
^b New Energy Research Institute, China University of Petroleum, Beijing, 102249, China.

1. XPS survey of O 1s scan of CuO-n

Fig. S1 XPS survey of O 1s scan of CuO-400 (a), CuO-500 (b), CuO-600 (c), CuO-700 (d).

2. SEM survey of CuO-600 after cyclic reaction

Fig. S2 SEM survey of CuO-600 after cyclic reaction.

3. The XRD patterns of CuO-600 and reused CuO-600 catalyst

Fig. S3 The XRD patterns of CuO-600 and reused CuO-600 catalyst.

4. Click reaction catalyzed by CuO-600 and reported catalyst.

Cu/support or stabilizer	Recyclability (times)	Optimized reaction conditions	TON
Cu powder/unsupported ¹	dissoluble	10 mol % cat., RT, 2 h, H ₂ O/tBuOH, Et ₃ N·HCl	≤ 10
CuNPs/unsupported ²	dissoluble	10 mol % cat., 65 °C, 0.5 h, THF, Et ₃ N additive	≤ 10
CuO NPs/unsupported ³	3	5 mol % cat., RT, 0.5 h, H ₂ O/tBuOH, Et ₃ N additive	≤ 20
CuNPs-on-charcoal ⁴	5	0.5 mol % cat., 70 °C, 3 h, H ₂ O	\leq 200
CuO-NPs/acetylene black/PVP ⁵	10	3 mol % cat., 50 °C, 5 h, $H_2O/tBuOH$	≤33.3
CuNPs/tetraoctylammonium ⁶	-	0.1 mol % cat., RT, 18 h, H ₂ O/tBuOH	≤ 1000
Cu/Cu-oxide/oleylamine7	-	13-20 mol % cat., RT, 2-4 h, toluene	≤ 8
CuNPs/AlO(OH) nanofiber ⁸	5	3 mol % cat., RT, 1-24 h, hexane	≤33.3
CuNPs/SiO ₂ NPs/PEI ⁹	3	0.05 mol % cat., RT, 10 min, DMSO	≤ 2000
T(o-Cl)PPCuNPs/AMWCNT10	10	5 mol % cat., RT, 0.8-2.8 h, H_2O	≤ 20
CuNPs/PVP/ionic liquids ¹¹	5	5 mol % cat., RT, 15 min, H ₂ O	≤ 20
CuNPore ¹²	10	2 mol % cat., 65 °C, 2 h, toluene	\leq 50
CuO-600	10	This work	\geq 495

Table S1. Summary of Cu catalysts on Click reactions.

References

- H. A. Orgueira, D. Fokas, Y. Isome, P. C.-M. Chan and C. M. Baldino, *Tetrahedron Lett.*, 2005, 46, 2911-2914.
- 2. F. Alonso, Y. Moglie, G. Radivoy and M. Yus, Tetrahedron Lett., 2009, 50, 2358-2362.
- 3. J. Y. Kim, J. C. Park, H. Kang, H. Song and K. H. Park, Chem. Commun., 2010, 46, 439-441.
- 4. F. Alonso, Y. Moglie, G. Radivoy and M. Yus, Adv. Synth. Catal., 2010, 352, 3208-3214.
- 5. H. Kang, H. S. Jung, J. Y. Kim, J. C. Park, M. Kim, H. Song and K. H. Park, J. Nanosci. Nanotechnol., 2010, 10, 6504-6509.
- 6. L. D. Pachón, J. H. van Maarseven and G. Rothenberg, Adv. Synth. Catal., 2005, 347, 811-815.
- 7. G. Molteni, C. L. Bianchi, G. Marinoni, N. Santo and A. Ponti, New J. Chem., 2006, 30, 1137-1139.
- 8. I. S. Park, M. S. Kwon, Y. Kim, J. S. Lee and J. Park, Org. Lett., 2008, 10, 497-500.
- P. Veerakumar, M. Velayudham, K.-L. Lu and S. Rajagopal, *Catal. Sci. Technol.*, 2011, 1, 1512-1525.
- 10. H. Sharghi, M. H. Beyzavi, A. Safavi, M. M. Doroodmand and R. Khalifeh, *Adv. Synth. Catal.*, 2009, **351**, 2391-2410.

- D. Raut, K. Wankhede, V. Vaidya, S. Bhilare, N. Darwatkar, A. Deorukhkar, G. Trivedi and M. Salunkhe, *Catal. Commun.*, 2009, 10, 1240-1243.
- T. Jin, M. Yan, Menggenbateer, T. Minato, M. Bao and Y. Yamamoto, *Adv. Synth. Catal.*, 2011, 353, 3095-3100.