Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

> The Reactions of α-Amino Acids and α-Amino Esters with High Valent Transition Metal Halides: Synthesis of Coordination Complexes, Activation Processes and Stabilization of α-Ammonium Acylchloride Cations

Lorenzo Biancalana, Marco Bortoluzzi, Eleonora Ferretti, Mohammad Hayatifar, Fabio Marchetti, Guido Pampaloni, and Stefano Zacchini

Supporting Information

Table of contents

Page

Figure S1 . DFT-optimized geometries of the possible isomers of 1b (C-PCM/ωB97X	
calculations) and relative Gibbs energies (kcal mol-1), referred to the [TiCl4(phenylalanin	e)]
unit.	S3
Figure S2. DFT-optimized anions of 2a and 2b (EDF2 functional) and relative Gibbs	
energies (kcal mol ⁻¹), referred to the [TiCl ₄ (amino acidate)] ⁻ units.	S4
Figure S3. ORTEP drawing of $[NH_2^i Pr_2][NbCl_6]$, 4. Displacement ellipsoids are at the	
50% probability level.	S5
Figure S4. DFT-optimized cations of 9 (EDF2 functional) and relative Gibbs energies	
(kcal mol ⁻¹).	S6
Figure S5. DFT-optimized isomers (EDF2 functional) of	
NbF ₅ (Me ₂ CHCH ₂ CHNH ₂ CO ₂ Me) and relative Gibbs energies (kcal mol ⁻¹).	S7
Figure S6. ORTEP drawing of of the [NbCl ₆] ⁻ anion in12. Displacement ellipsoids are	
at the 50% probability level.	S 8
Figure S7. DFT-optimized isomers of 13 (M06 functional) and relative Gibbs energies	
(kcal mol ⁻¹) referred to the mononuclear stoichiometry	S9
Figure S8. DFT-optimized dinuclear isomers of 13 (EDF2 functional) and relative	
Gibbs energies (kcal mol-1) referred to the mononuclear stoichiometry. The EDF2-	
optimized mononuclear complex was taken as zero. Other dinuclear isomers resulted	
unstable towards dissociation to mononuclear complexes.	S9

Scheme S1. Proposed pathway to the formation of complex 3. M06 calculations, C-PCM implicit salvation model for dichloromethane. Relative Gibbs energies arereferred to Nb₂Cl₉(*L*-prolinate), A (G = 0 kcal mol⁻¹). The Gibbs energy variationsassociated with side-reactions (e.g. NbOCl₃ polymerisation, interaction of HCl withbases) are not considered.S10

Table S1A. Selected bond lengths (Å) and angles (deg) for 4.	S5
Table S1B. Hydrogen bonds (Å and deg) for 4.	S5
Table S2A . Selected bond lengths (Å) and angles (deg) for the $[NbCl_6]^-$ anion in 12 .	S 8
Table S2B. Hydrogen bonds (Å and deg) in 12.	S 8

Figure S1. DFT-optimized geometries of the possible isomers of **1b** (C-PCM/ ω B97X calculations) and relative Gibbs energies (kcal mol⁻¹), referred to the [TiCl₄(phenylalanine)] unit.

Figure S2. DFT-optimized anions of **2a** and **2b** (EDF2 functional) and relative Gibbs energies (kcal mol⁻¹), referred to the $[TiCl_4(amino acidate)]^-$ units.

43.1

0

Figure S3. ORTEP drawing of $[NH_2/Pr_2][NbCl_6]$, **4**. Displacement ellipsoids are at the 50% probability level.

Table S1A. Selected bond lengths (Å) and angles (deg) for 4.

Nb(1)-Cl(1)	2.3927(12)	Nb(1)–Cl(2)	2.3944(13)
Nb(1)-Cl(3)	2.3145(13)	Nb(1)-Cl(4)	2.3082(13)
Nb(1)-Cl(5)	2.3299(12)	Nb(1)–Cl(6)	2.3663(13)
N(1)-C(1)	1.512(5)	N(1)–C(4)	1.518(5)
C(1)–C(2)	1.512(6)	C(1)–C(3)	1.514(6)
C(4)–C(5)	1.526(6)	C(4)–C(6)	1.509(6)
Cl(1)–Nb(1)–Cl(3)	179.70(5)	Cl(2)-Nb(1)-Cl(4)	176.93(4)
Cl(5)–Nb(1)–Cl(6)	173.45(4)	C(1)-N(1)-C(4)	119.0(3)

Table S1B. Hydrogen bonds (Å and deg) for 4.

D-H···A	d(D–A)	d(H···A)	d(D····A)	<(DHA)
N(1)-H(12)····Cl(1)#1	0.920(19)	2.47(2)	3.358(4)	162(4)
N(1)-H(12)····Cl(6)#1	0.920(19)	2.84(4)	3.412(4)	121(3)
$N(1)-H(11)\cdots Cl(2)$	0.919(19)	2.71(2)	3.618(4)	168(4)

Symmetry transformations used to generate equivalent atoms: #1 x, -y+1/2, z-1/2

Figure S4. DFT-optimized cations of **9** (EDF2 functional) and relative Gibbs energies (kcal mol⁻¹).

Figure S6. ORTEP drawing of of the [NbCl₆]⁻ anion in**12**. Displacement ellipsoids are at the 50% probability level.

Table S2A. . Selected bond lengths (Å) and angles (deg) for the [NbCl₆]⁻ anion of 12.

Nb(1)-Cl(1)	2.3526(9)	Nb(1)–Cl(2)	2.3591(9)
Nb(1)–Cl(3)	2.4307(9)	Nb(1)–Cl(4)	2.3670(9)
Nb(1)–Cl(5)	2.3388(9)	Nb(1)–Cl(6)	2.2825(9)
Cl(1)-Nb(1)-Cl(4)	172.60(3)	Cl(2)–Nb(1)–Cl(5)	176.49(3)
Cl(3)–Nb(1)–Cl(6)	179.07(4)		

Table S2B. Hydrogen bonds (Å and deg) for 12.

D-H····A	d(D–A)	d(H···A)	d(D····A)	<(DHA)
N(1)-H(1A)····Cl(4)#1	0.915(18)	2.555(19)	3.461(3)	171(3)
N(1)-H(1B)····Cl(1)#2	0.913(17)	2.46(2)	3.296(3)	153(3)
N(1)-H(1B)····Cl(2)#2	0.913(17)	2.89(3)	3.335(3)	111(2)
N(1)-H(1C)····Cl(3)#3	0.892(18)	2.50(2)	3.366(3)	163(3)

Symmetry transformations used to generate equivalent atoms: #1 x,y,z+1 #2 -x+1,y-1/2,-z+1 #3 -x+1,y+1/2,-z+1

Figure S7. DFT-optimized isomers of **13** (M06 functional) and relative Gibbs energies (kcal mol⁻¹) referred to the mononuclear stoichiometry.

Figure S8. DFT-optimized dinuclear isomers of **13** (EDF2 functional) and relative Gibbs energies (kcal mol⁻¹) referred to the mononuclear stoichiometry. The EDF2-optimized mononuclear complex was taken as zero. Other dinuclear isomers resulted unstable towards dissociation to mononuclear complexes.

Scheme S1. Proposed pathway to the formation of complex 3. M06 calculations, C-PCM implicit salvation model for dichloromethane. Relative Gibbs energies are referred to Nb₂Cl₉(*L*-prolinate), A (G = 0 kcal mol⁻¹). The Gibbs energy variations associated with side-reactions (e.g. NbOCl₃ polymerisation, interaction of HCl with bases) are not considered.

