Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide

Dong Seok Shin,^{†,a} Hyun Gu Kim,^{†,b} Ho Seon Ahn,^{†,c} Hu Young Jeong,^d Yeon Jung Kim,^e Dorj Odkhuu,^a N. Tsogbadrakh,^f Han-Bo-Ram Lee^{*,b} and Byung Hoon Kim^{*,a}

^{a.} Department of Physics, Incheon National University, Incheon 22012, Republic of Korea. E-mail: kbh37@inu.ac.kr

^{b.} Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea. E-mail: hbrlee@inu.ac.kr

^{c.} Department of Mechanical Engineering, Incheon National University, Incheon 22012, Republic of Korea.

- ^{d.} UNIST Central Research Facilities (UCRF) and School of Materials Science and Engineering, UNIST, Ulsan 44919, Republic of Korea.
- ^{e.} Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea.

f. Department of Physics, National University of Mongolia, Ulaanbaatar 14201, Mongolia

[†] These author contributed equally to this work.

	Bridge-site	Hollow-site	Top-site
Top -View			
Side -View		•	
E _b	-2.48 eV		-2.23 eV

FIG. S1: The top and side views of the adsorption sites of a single epoxide functional group on graphene: bridge, hollow, and top sites. Red sphere denotes the oxygen atom. The corresponding binding energies E_b are shown at the bottom. The bridge-site is the most stable and the hollow-site exhibit the positive binding energy, which indicates an unfavorable adsorption.

FIG. S2: The top and side views of the adsorption sites of a single hydroxyl functional group on graphene: bridge, hollow, and top sites. Red and blue spheres denote the oxygen and hydrogen atoms, respectively. The corresponding binding energies E_b are shown at the bottom. The hydroxyl groups adsorb onto the graphene sheet only with the top-site.

FIG. S3: The top views of the adsorption sites of two epoxide functional groups on graphene. The corresponding binding energies E_b are shown at the bottom. The epoxide groups adsorb on graphene with two-side in close proximity pattern.

	Type-1 (<u>ortho</u>)	Type-2 (meta)	Type-3 (para)	Туре-4		
	One-side					
Top -View						
E _b	-2.08 eV	-1.96 eV	-1.61 eV	-1.33 eV		
	Both-side					
Top -View						
E _b	-2.67 eV	-2.39 eV	-2.02 eV	-1.53 eV		

FIG. S4: The top views of the adsorption sites of two hydroxyl functional groups on graphene. The corresponding binding energies E_b are shown at the bottom. Similar to the epoxide case, the hydroxyl groups adsorb on graphene with two-side in close proximity pattern.

FIG. S5: The top and side views of the one-side and two-side adsorptions of nine epoxide functional groups on graphene. The corresponding binding energies E_b are shown at the bottom. The epoxide groups adsorb onto the graphene with the two-side configuration, which is also the case for the hydroxyl groups (not shown).

Systems	Spin-polarized		Spin-non-j	Spin-non-polarized	
Systems	uniform	domain	uniform	domain	
1-epoxide/graphene	-668.301		-668.300		
1-hydroxyl/graphene	-672.027		-672.	-672.032	
9-epoxide/graphene	-703.852	-706.836	-703.852	-706.836	
8-hydroxyl/graphene	-733.029	-740.299	-733.028	-740.299	
pristine graphene	-664.399		-664.399		
oxygen	-1.534		-0.472		
hydrogen	-1.113		-0.188		

TABLE S1: Total energies (eV) of one and nine (eight) epoxide (hydroxyl) functional groups on graphene for the spin-polarized and spin-non-polarized calculations. Those for the pristine graphene and the isolated O and H atoms in a vacuum are also listed.