Supplementary Information

Free-standing $Ti_3C_2T_x$ electrode with ultrahigh volumetric capacitance

Qishan Fu^a, Jing Wen^a, Na Zhang^b, Lili Wu^{a, c}, Mingyi Zhang^a, Shuangyan Lin^a,

Hong Gao^a, and Xitian Zhang^{*a,}

^a Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of

Education, School of Physics and Electronic Engineering, Harbin Normal University,

Harbin 150025, P. R. China.

^b Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY.

^cCenter for Engineering Training and Basic Experimentation, Heilongjiang

University of Science and Technology, Harbin 150022, P. R. China.

* Corresponding author: Tel.: +86-451-88060349. Email:

xtzhangzhang@hotmail.com (Prof. X. T. Zhang)

Fig. S1 A digital photograph of a free-standing $Ti_3C_2T_x$ -Li paper obtained from vacuum filtration. Inset presents a digital photograph of such a flexible paper.

Fig. S2 A TEM image of carbon particle clusters. It can be produced by etching Ti_3AlC_2 powder. In particular, some nanoparticles tightly adhere to the ultrathin $Ti_3C_2T_x$ -Li sheet edge.

Fig. S3 Measured thicknesses at different positions of the TCTL-I sample. The average thickness of the paper is calculated to be approximately $8.8 \mu m$.

Fig. S4 EDX spectrum of the TCTL-I is mainly composed of Ti, C, O, F, and Cl as well as trace Al content. Their atom percentages are 33.5, 30.5, 22.1, 10.4, 3, 0.5%, respectively. The carbon content in the TCTL-I is about 8.2% according to the stoichiometry of Ti_3C_2 .

Fig. S5 Raman scattering spectrum of the TCTL-II with the typical D and G bands of graphitic carbon located at 1371 cm⁻¹ and 1573 cm⁻¹, respectively. The intensity ratio (I_D/I_G) of D and G bands is 0.74, indicating that these clusters are well graphitized, which is consistent with HRTEM results. However, D and G bands of graphitic carbon are not found in the Raman spectrum of the Ti₃AlC₂ powder.

Fig. S6 CV curves of the other paper electrode sample (a) at a scan rate of 2 mV/s and (b) at different scan rates.

Fig. S7 Galvanostatic charge-discharge (GCD) curves of the TCTL-II electrode at various current densities with the nearly triangular shape. It confirms the high reversibility of the redox reactions of the tested electrode.

Fig. S8 A EIS spectrum of the TCTL-II electrode. Inset is the magnified section in the high frequency region.

Fig. S9 We have designed two different experiments to explore the effect of the posttreatment of as-prepared MXenes in LiCl solution on the interlayer space. The XRD peak (0002) of the as-prepared MXenes washed by LiCl solution locates at 6.16°, the corresponding the c-LP is 28.7 Å (Red curve). However the XRD peak (0002) of the sample unwashed by LiCl solution locates at 6.76°, the corresponding the c-LP is 26.1 Å (Black curve). So, it is essential to immerse the as-prepared MXenes in LiCl solution in order to increase the interlayer space. Red and black curves represent the XRD patterns of the as-prepared MXenes washed and unwashed by LiCl solution, respectively.

Region	BE[eV]	Assigned to	Substance	Reference
Ti 2p _{3/2} (2p _{1/2})	454.9 (461.1)	Ti-C	Ti ₃ C ₂ T _x	[1]
	455.8 (462.4)	Ti-O	$TiO_{x}(1.5 < x < 2)$	This work
	456.6 (463.2)	Ti-O	$TiO_x(1.5 < x < 2)$	This work
	458.5 (464.5)	Ti-O	TiO ₂	[2,3]
C 1s	281.9	C-Ti	$Ti_3C_2T_x$	[1]
	285.1	C-C	С	[4]
	286.4	C-0	С	[5]
	287.1	C=O	С	[5]
	288.9	O-C=O	С	[5]
O 1s	529.5	O-Ti	TiO ₂	[2]
	530.5	O-Ti	$TiO_x(1.5 < x < 2)$	This work
	531.1	O-Ti	$TiO_{x}(1.5 < x < 2)$	This work
		-0	$Ti_3C_2O_x$	[1,6]
	531.6	C=O	С	[7,8]
	532.2	О-Н	Ti ₃ C ₂ (OH) _x	[7,8]
	533.5	O-C, O-C=O	С	[7,8]
		Н-О-Н	Ti ₃ C ₂ (OH) _x -H ₂ O _{ads}	[6]
F 1s	684.6	-F	$Ti_3C_2F_x$	[9]
Li 1s	59.8	-Li	$Ti_3C_2Li_x$	This work

Table S1. XPS peak fitting results for $Ti_3C_2T_x$ -Li. The numbers in brackets in column II are peak positions of Ti $2p_{1/2}$.

References

- 1 J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen and M. W. Barsoum, *Appl. Surf. Sci.*, 2016, **362**, 406.
- 2 W. E. Slinkard and P. B. Degroot, J. Catal., 1981, 68, 423.
- 3 D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier and R. Dormoy, *Surf. Sci.*, 1991, **254**, 81.
- 4 S. W. Lee, B. S. Kim, S. Chen, Y. Shao-Horn and P. T. Hammond, J. Am. Chem. Soc., 2009, 131, 671.
- 5 D. X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Jr. Ventrice and R. S. Ruoff, *Carbon*, 2009, 47, 145.
- 6 J. Halim, S. Kota, M. R. Lukatskaya, M. Naguib, M. Q. Zhao, E. J. Moon, J. Pitock, J. Nanda, S. J. May, Y. Gogotsi and M. W. Barsoum, *Adv. Funct. Mater.*, 2016, 26, 3118.
- 7 H. R. Byon, B. M. Gallant, S. Woo and Y. Shao-Horn, *Adv. Funct. Mater.*, 2013, 23, 1037.
- 8 S. H. Kundu, Y. M. Wang, W. Xia and M. Muhler, *J. Phys. Chem. C*, 2008, **112**, 16869.
- 9 Y. Dall'Agnese, M. R. Lukatskaya, K. M. Cook, P-L. Taberna, Y. Gogotsi and P. Simon, *Electrochem. Commun.*, 2014, **48**, 118.