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Fig. S1 A digital photograph of a free-standing Ti3C2Tx-Li paper obtained from 
vacuum filtration. Inset presents a digital photograph of such a flexible paper. 
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Fig. S2 A TEM image of carbon particle clusters. It can be produced by etching 
Ti3AlC2 powder. In particular, some nanoparticles tightly adhere to the ultrathin 
Ti3C2Tx-Li sheet edge.
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Fig. S3 Measured thicknesses at different positions of the TCTL-I sample. The 
average thickness of the paper is calculated to be approximately 8.8 m.
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Fig. S4 EDX spectrum of the TCTL-I is mainly composed of Ti, C, O, F, and Cl as 
well as trace Al content. Their atom percentages are 33.5, 30.5, 22.1, 10.4, 3, 0.5%, 
respectively. The carbon content in the TCTL-I is about 8.2% according to the 
stoichiometry of Ti3C2.
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Fig. S5 Raman scattering spectrum of the TCTL-II with the typical D and G bands of 
graphitic carbon located at 1371 cm-1 and 1573 cm-1, respectively. The intensity ratio 
(ID/IG) of D and G bands is 0.74, indicating that these clusters are well graphitized, 
which is consistent with HRTEM results. However, D and G bands of graphitic 
carbon are not found in the Raman spectrum of the Ti3AlC2 powder.  
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Fig. S6 CV curves of the other paper electrode sample (a) at a scan rate of 2 mV/s and 
(b) at different scan rates.
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Fig. S7 Galvanostatic charge-discharge (GCD) curves of the TCTL-II electrode at 
various current densities with the nearly triangular shape. It confirms the high 
reversibility of the redox reactions of the tested electrode.
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Fig. S8 A EIS spectrum of the TCTL-II electrode. Inset is the magnified section in the 

high frequency region. 
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Fig. S9 We have designed two different experiments to explore the effect of the post-

treatment of as-prepared MXenes in LiCl solution on the interlayer space. The XRD 

peak (0002) of the as-prepared MXenes washed by LiCl solution locates at 6.16o，the 

corresponding the c-LP is 28.7 Å (Red curve). However the XRD peak (0002) of the 

sample unwashed by LiCl solution locates at 6.76o, the corresponding the c-LP is 26.1 

Å (Black curve). So, it is essential to immerse the as-prepared MXenes in LiCl 

solution in order to increase the interlayer space. Red and black curves represent the 

XRD patterns of the as-prepared MXenes washed and unwashed by LiCl solution, 

respectively.
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Region BE[eV] Assigned to Substance Reference
Ti 2p3/2 (2p1/2) 454.9 (461.1) Ti-C Ti3C2Tx [1]

455.8 (462.4) Ti-O TiOx (1.5<x<2) This work
456.6 (463.2) Ti-O TiOx (1.5<x<2) This work
458.5 (464.5) Ti-O TiO2 [2,3]

C 1s 281.9 C-Ti Ti3C2Tx [1]
285.1 C-C C [4]
286.4 C-O C [5]
287.1 C=O C [5]
288.9 O-C=O C [5]

O 1s 529.5 O-Ti TiO2 [2]
530.5 O-Ti TiOx (1.5<x<2) This work
531.1 O-Ti

-O
TiOx(1.5<x<2) 
Ti3C2Ox

This work
[1,6]

531.6 C=O C [7,8]
532.2 O-H Ti3C2(OH)x [7,8]
533.5 O-C，O-C=O

H-O-H
C
Ti3C2(OH)x-H2Oads

[7,8]
[6]

F 1s 684.6 -F Ti3C2Fx [9]
Li 1s 59.8 -Li Ti3C2Lix This work

Table S1. XPS peak fitting results for Ti3C2Tx-Li. The numbers in brackets in column 
II are peak positions of Ti 2p1/2.
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