Design and Synthesis of Dodecahedral Carbon Nanocages Incorporated with Fe₃O₄

Siyuan Xiang¹, Yanhong Shi², Kai Zhang¹*, Yixin Chen¹, Rui Ge¹, Ce Wu¹, Haizhu, Sun², Bai Yang¹

¹State Key Laboratory of Supramolecular Structure and Materials, College of

Chemistry, Jilin University, Changchun 130012, People's Republic of China.

²Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.

The author to whom correspondence should be addressed. E-mail: <u>zk@jlu.edu.cn</u>; Fax: +86-431-85193423; Tel: +86-431-85168283.

Table of Contents

Table S1 Elemental analysis of Fe₃O₄/C NCs.

Table S2 ICP results of Fe_3O_4/C NCs.

Figure S1 TEM image of Fe_3O_4 NPs (A), optical photographs of Fe_3O_4/C without (left) and with magnet placing on the side wall of glass vial (right) and M-H curves of Fe_3O_4 NPs and Fe_3O_4/C NCs (C) and (D).

Figure S2 Complex images of Fe_3O_4/PDA NCs (A) and Fe_3O_4/C NCs (B), elemental mapping images of C (red, C and D) and Fe (green, E and F).

Figure S3 TEM images of $Fe_3O_4/ZIF-8$ nanostructure with different quantity of Fe_3O_4 NPs with 1mg (A), 2mg (C), and 5 mg (E) and the corresponding Fe_3O_4/C NCs (B, D, and F). The insets are the TEM images of corresponding $Fe_3O_4/ZIF-8$ nanostructure and Fe_3O_4/C NCs with high magnification.

Figure S4 TEM image of Fe₃O₄/C NCs with high magnification.

Figure S5 Cyclic voltammograms between 10 mV and 3V at a scan rate of 0.1 mV s⁻¹ (A), charge-discharge voltage profiles (B) and rate capability at various current rates (C) of the C NCs.

Figure S6 SEM images of Fe₃O₄/C NCs electrode after cycling (A) and the a broken Fe_3O_4/C NCs with high magnification.

Figure S1 TEM image of Fe_3O_4 NPs (A), optical photographs of Fe_3O_4/C without (left) and with magnet placing on the side wall of glass vial (right) and M-H curves of Fe_3O_4 NPs and Fe_3O_4/C NCs (C) and (D).

Figure S2 Complex images of Fe_3O_4/PDA NCs (A) and Fe_3O_4/C NCs (B), elemental mapping images of C (red, C and D) and Fe (green, E and F).

Table S1. Elemental analysis of Fe₃O₄/C NCs.

Elements The weight percent	
С	36.1
Ν	2.8
Н	1.5

Table S2. ICP results of Fe₃O₄/C NCs.

Elements	Concentration /ppm	The weight percentage /% (Characterizaiton)	The weight percentage /% (Calculation)
Zn	30.9	30.0	37.4 (ZnO)
Fe	5.0	4.9	20.3 (Fe ₃ O ₄)

Figure S3 TEM images of $Fe_3O_4/ZIF-8$ nanostructure with different quantity of Fe_3O_4 NPs with 1mg (A), 2mg (C), and 5 mg (E) and the corresponding Fe_3O_4/C NCs (B, D and F). The insets are the TEM images of corresponding $Fe_3O_4/ZIF-8$ nanostructure and Fe_3O_4/C NCs with high magnification.

Figure S4 TEM image of Fe_3O_4/C NCs with high magnification.

Figure S5 Cyclic voltammograms between 10 mV and 3V at a scan rate of 0.1 mV s⁻¹ (A), charge-discharge voltage profiles (B) and rate capability at various current rates (C) of the C NCs.

Figure S6 SEM images of Fe_3O_4/C NCs electrode after cycling (A) and the a broken Fe_3O_4/C NCs with high magnification.