Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Poly(L-lysine) modified zein nanofibrous membranes as efficient scaffold for adhesion, proliferation and differentiation of neural stem cells

Yingling Miao^{a,b,2}, Ruirui Yang^{c,d,2}, David YB Deng^{c*,1} and Li-Ming Zhang^{b*,1}

^a Department of Polymer and Materials Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou 510275, China

^b School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

^c Research Center of Translational Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Sun Yat-sen University, Guangzhou 510080, China

^d Department of Pathophysiology, Taishan Medical University, Taian 271016, China

E-mail addresses: dengyub@mail.sysu.edu.cn (David YB Deng), ceszhlm@mail.sysu.edu.cn (Li-Ming Zhang).

² Both authors contributed equally to this work.

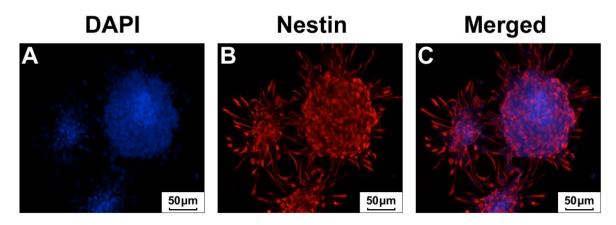


Fig. S1 The cells used in this study have characteristics of neural stem/progenitor cells.

NSCs were cultured in the growth medium formed neurospheres. These cells exhibited neural stem/ progenitor cells, Nestin (B, C and red). Nuclei were stained with DAPI (A, blue).

¹ Both corresponding authors contributed equally to this work.