Supporting Information

The synthesis and mechanistic studies of a highly active nickel

phosphide catalyst for naphthalene hydrodearomatization

Guoxia Yun,^a Qingxin Guan,^{*a} Wei Li^{*ab}

a. College of chemistry, Key laboratory of advanced energy materials chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China.

b. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300071, China.

*Corresponding author: weili@nankai.edu.cn, qingxinguan@nankai.edu.cn

Fig. S1 Low-angle powder X-ray diffraction patterns of MCM-41, Al-M, physical mixture (M+Al) supports and the Pt-, Ni-, Ni_xP-based catalysts.

Fig. S2 XRD patterns of Al-M support along with the corresponding Pt-loaded catalyst.

Fig. S3 The SEM (a), mapping image (cyan dot refer to platinum atom) (b), and EDS (c) of 0.5 wt% Pt-Al-M catalyst.

Fig. S4 HAADF-STEM micrographs of 15 wt% Ni_xP-Al-M-(1.25).

Fig. S5 The N₂ adsorption-desorption isotherms of (a) 15 wt% Ni_xP-Al-M with various initial Ni/P molar ratios, (b) Ni_xP-Al-M-(1.25) with different Ni_xP loadings, (c) MCM-41, Al-M, physical mixture (M+Al) supports, 0.5 wt% Pt-Al-M catalyst and (d) the corresponding BJH pore size distributions of supports and 0.5 wt% Pt-Al-M catalyst.

Fig. S6 Temperature programmed desorption of ammonia (NH₃-TPD) profiles for supports MCM-41, physical mixture (M+Al), Al-M supports, and 0.5 wt% Pt-Al-M catalyst.

Table S1

Textural and structural properties of the different supports and prepared catalysts obtained from N_2 physisorptic	on
measurements.	

Samples		$S_{BET}^{a} (m^2 g^{-1})$	$V_{BJH}^{b}(\text{cm}^{3}\text{g}^{-1})$	D _{mp} ^c (nm)	Average crystallite
					sized _(nm)
	MCM-41	893	0.96	3.3	-
Support	Al-M	720	0.79	3.3	-
	M+A1	777	0.85	3.3	-
	0.5 wt% Pt-Al-M-	595	0.61	2.4	-
	(1.25)				
	15 wt% Ni _x P-	471	0.40	2.4	16.85
	MCM-41-(1.25)				
Catalysts	15 wt% Ni-Al-M-	420	0.42	2.4	13.68
with	(1.25)				
different	10 wt% Ni _x P-Al-	387	0.38	2.4	-
loadings	M-(1.25)				
	15 wt% Ni _x P-Al-	357	0.44	2.4	15.35
	M-(1.25)				
	20 wt% Ni _x P-Al-	234	0.32	2.4	23.43
	M-(1.25)				
	25 wt% Ni _x P-Al-	213	0.18	2.4	17.46
	M-(1.25)				
	30 wt% Ni _x P-Al-	170	0.18	2.4	26.62
	M-(1.25)				
Catalysts	15 wt% Ni _x P-Al-	170	0.18	2.4	23.69
with	M-(0.5)				
different	15 wt% Ni _x P-Al-	184	0.22	2.4	18.27
initial Ni/P	M-(1.0)				
molar ratios	15 wt% Ni _x P-Al-	357	0.44	2.4	15.35
	M-(1.25)				
	15 wt% Ni _x P-Al-	433	0.43	2.4	19.16
	M-(1.5)				
	15 wt% Ni _x P-Al-	473	0.45	2.4	20.28
	M-(2.0)				
	15 wt% Ni _x P-Al-	492	0.47	2.4	20.32
	M-(3.0)				

a $\;\;$ BET surface area calculated from the adsorption branch of the N_2 isotherm.

 $b \quad \mbox{Total pore volumes calculated from the N_2 adsorption at relative pressure (P/P_0) of 0.98.}$

c Mesopore diameter calculated from the adsorption branch of the N_2 isotherm using the BJH method.

^d The crystallite size calculated from Scherrer's equation according to the full width at half maximum (FWHM) applied to the most intense diffraction peak.

-: The species was not detected.

Samples	Metal content (wt.%)		Theoretical Ni/P	Observed Ni/P molar ratio
			molar ratio	
	Al	Ni		
Al-M	4.7	-	-	-
15 % Ni _x P-Al-M-(0.5)	4.7	8.95	0.5	0.84
15 % Ni _x P-Al-M-(1.0)	4.7	10.3	1.0	1.81
15 % Ni _x P-Al-M-(1.25)	4.7	10.0	1.25	2.14
15 % Ni _x P-Al-M-(1.5)	4.7	10.7	1.5	2.60
15 % Ni _x P-Al-M-(2.0)	4.7	11.3	2.0	3.54
15 % Ni _x P-Al-M-(3.0)	4.7	11.0	3.0	5.12

Observed metal content and Ni/P molar ratio of catalysts compared to theoretical Ni/P using ICP-OES.

-: The species was not detected.

Table S3

Table S2

XPS analysis results along with (Ni/P) nominal atomic ratio.

	superficial	Ni (wt	Р	Binding	energy	Binding	energy
Samples	atomic	%)	(wt %)	(eV)		(eV)	
	ratio(Ni/P)			Ni 2p _{3/2}		Р 2р	
				Ni ²⁺	Ni^{δ^+}	PO4 ³⁻	Р ^{δ-}
15 wt% Ni _x P-MCM-	0.48	1.2	2.5	856.4	852.3	134.5	129.5
41-(1.25)							
15 wt% Ni _x P-Al-M-	0.53	0.8	1.5	856.4	852.3	134.5	129.5
(1.25)							

Table S4

The corresponding NH₃-TPD characterization, CO chemisorption uptakes, and turnover frequency (TOF) of the samples.

Samples		NH ₃ -TPD ^a		CO	TOF
	Peak temperature	Area percentage	Total acidity	uptakes	(S ⁻¹)
	(°C)	in parenthesis	normalized to	$(\mu mol g^{-1})$	
			the acidity of		
			pure Al-M		
MCM-41	94	(100%)	0.66	-	-
Al+M	98	(100%)	0.62	-	-
Al-M	115	(100%)	1.00	-	-
15 wt% Ni _x P-	116	(100%)	0.28	2.8	0.42
MCM-41-(1.25)					
15 wt% Ni-Al-M-	112	(65%);	0.81	3.1	0.44
(1.25)	425	(45%)	0.56		
15 wt% Ni _x P-Al-	-	-	-	2.8	0.43
M-(0.5)					
15 wt% Ni _x P-Al-	117	(100%)	1.48	3.0	0.43

M-(1.0)					
15 wt% Ni _x P-Al-	112	(100%)	1.47	3.1	0.44
M-(1.25)					
15 wt% Ni _x P-Al-	105	(100%)	1.19	3.0	0.44
M-(1.5)					
15 wt% Ni _x P-Al-	99	(100%)	1.06	2.9	0.43
M-(2.0)					
15 wt% Ni _x P-Al-	108	(100%)	0.64	2.8	0.43
M-(3.0)					

 $^{\rm a}$ As determined by the TPD-NH $_{\rm 3}$ analysis and normalized to the acidity of pure Al-M.

-: The species was not detected.

Fig. S7 Product distribution of naphthalene HYD over Ni_xP -Al-M-(1.25) with different Ni_xP loadings as a function of temperature, (a) 10 wt%, (b) 15 wt%, (c) 20 wt%, (d) 25 wt%, and (e) 30 wt%.

Fig. S8 Product distribution of naphthalene HYD over 15 wt% Ni_x P-Al-M with the precursor of different Ni/P molar ratio as a function of temperature. (a) 0.5, (b) 1.0, (c) 1.25, (d) 2.0, (e) 2.0, and (f) 3.0.

Fig. S10 Product distribution of naphthalene HYD over different catalysts as a function of temperature. (a) 15 wt% Ni-Al-M, (b) 15 wt% Ni_xP-Al-M, (c) 15 wt% Ni_xP-MCM-41, (d) 15 wt% Ni_xP-(M+Al), and (e) 0.5 wt% Pt-Al-M.

Fig. S11 Long-term stability test with reaction temperature at 270 °C for the 15 wt% Ni_xP-Al-M-(1.25) catalyst.