Electronic Supplementary Information

Rational use and reuse of Nafion 212 membrane in vanadium flow batteries

Ying Zhou,^{a,b} Lihong Yu,*c Jianshe Wang,^d Le Liu,^b Feng Liang,*a and Jingyu Xi*b

^a The State Key Laboratory for Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China. E-mail: feng_liang@wust.edu.cn

^b Institute of Green Chemistry and Energy, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China. E-mail: xijy@tsinghua.edu.cn

^c School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China. *E-mail: yulihong@szptu.edu.cn*

^d School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450000, China

Fig. S1. Rate performances of three parallel wet N212: (a) CE, (b) VE, (c) EE, and (d) discharge capacity.

Fig. S2. Digital photos of N212 under various recover methods in ten rounds of repeated using.

Fig. S3. The dimensional stability of N212 during ten rounds of testing. Round number 0 corresponds to the fresh wet N212.

Fig. S4. Running time of used N212 in ten rounds of testing. Round number 0 corresponds to the fresh wet N212.