Supporting Information:

Selective water-based oxychlorination of phenol with hydrogen

peroxide catalyzed by manganous sulfate

Hongchuan Xin,^a Shilei Yang,^b Baigang An,^{*b} and Zengjian An^{*a}

a Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China

b School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China

(A) General Remarks

All materials and reagents were commercial received from Sinopharm Chemical Reagent Co. Ltd. and used without treatment.

Gas chromatography analyses were carried out on a Varian 450-GC with HP-5 column (30m×0.25mm, 1.0um) and a Varian CP-8400 autosampler. Analyses of gas chromatography-mass spectrometer and high performance liquid chromatography Liquid chromatography were performed on an Agilent 7890A-5975C with HP-5 column (15m×0.25mm, 1.0um) and a Waters 1525 with 2489 UV-Vis detector and 2707 autosampler using Eclipe Plus C18 column (250mm×4.6mm, 5.0um),

respectively. ¹H and ¹³C-NMR were recorded on a Bruker AVANCE-III 600 MHz in CDCl₃ (chemical shifts in δ with TMS as internal standard). Column chromatography was carried out using silica gel 200-300 mesh.

Table 1S.	Results f	or oxychlor	ination of	phenol d	lerivatives	calculate	۶d
from GC	data.						

Run	Substrata	Droduct	Time	Conversion ^a	Yield ^b
	Substrate	Product	(h)	(%)	(%)
1 ^c	р- сі		4	100	96
2 ^c	0- CI	1b CI	4	100	94
3	За	3b CI	3	100	75
4	4a	4b	3	100	81
5	5а	5b CI	3	100	86
6 ^d	6a	6b CI	3	100	82

Reaction conditions: substrate: 21.3 mmol, catalyst: 1 mol%, HCI: 44.7 mmol, H_2O_2 (30% aq. solution): 6.08 ml, 58.8 mmol, H_2O : 9.8 ml, 80 °C. a: conversion (%)=[the converted substrate (mol)/initial substrate (mol)]×100; b: yield (%)=[target product (mol)/initial substrate (mol)]×100; c: HCI: 23.4 mmol; d: t-butylammonium bromide: 0.1 mmol.

(B) ¹H NMR and ¹³C NMR spectra of products

