Enhanced removal of Cd(II) from aqueous solution using CaCO₃ nanoparticles modified sewage sludge biochar

Weiqi Zuo^{1, 2}, Chen Chen ^{1, 2}, Hao-Jie Cui^{1,2*} and Ming-Lai Fu^{1,2*}

¹ Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese

Academy of Sciences, Xiamen 361021, China

² University of Chinese Academy of Sciences, Beijing 100039, China.

E-mail: hjcui@iue.ac.cn; mlfu@iue.ac.cn.

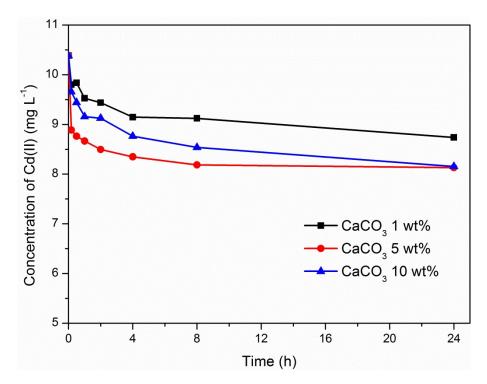

Adsorbent	Pseudo-first-order ^a		Pseudo-second-order ^b		Elovich equation ^c		
	q _e	R ²	q _e	R ²	α	β	R ²
	$(mg \cdot g^{-1})$		$(mg \cdot g^{-1})$		[mg/(g·min)]	$(g \cdot mg^{-1})$	
SSB	9.60	0.935	10.0	0.970	6.68×10 ⁵	1.568	0.990
CMSSB	32.1	0.964	33.3	0.984	1.06×10 ⁷	0.522	0.998

Table S1 Kinetic parameters for Cd(II) adsorption on SSB and CMSSB materials

a: The kinetic model as proposed $\log(q_e-q_t) = \log q_e-k_1*t/2.303$, q_e and q_t are the amounts of Cd(II) adsorption (mg·g⁻¹) at equilibrium and at any instant of time t (min), respectively, and k_1 is the rate constant of pseudo-first-order adsorption (min⁻¹).

b: The kinetic model as proposed $t/q_t=1/(k_2*q_e^2)+t/q_e$, q_e and q_t are the amounts of Cd(II) adsorption $(mg \cdot g^{-1})$ at equilibrium and at any instant of time t (min), respectively, and k_2 is the equilibrium rate constant of pseudo-second-order adsorption (g/(mg·min)).

c: The kinetic model as proposed $q_t = (1/\beta)*\ln(\alpha*\beta) + (1/\beta)*\ln(t)$, q_t are the amounts of adsorbed Cd(II) at time t, α is the initial adsorption rate of the Elovich equation (mg/(g·min)) and β is the desorption constant related to the extent of surface coverage and activation energy for chemisorption (g·mg⁻¹).

Fig. S1 Adsorption kinetics of Cd(II) onto the CMSSB materials with different CaCO₃/SSB ratio (wt/wt): adsorbent dose, 0.1 g·L⁻¹; Cd(II) concentration, 10.4 mg·L⁻¹; initial pH 6.0.

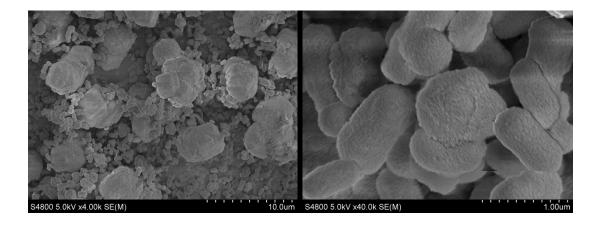


Fig. S2 SEM images of the as-obtained calcite in the absence of SSB.

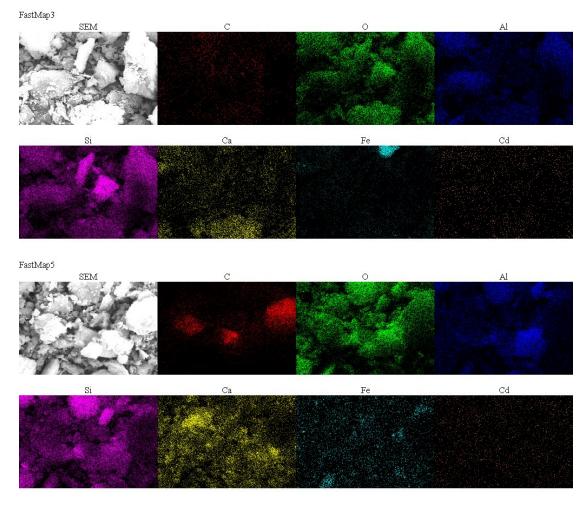


Fig. S3 SEM images and elemental mapping of SSB and CMSSB samples.

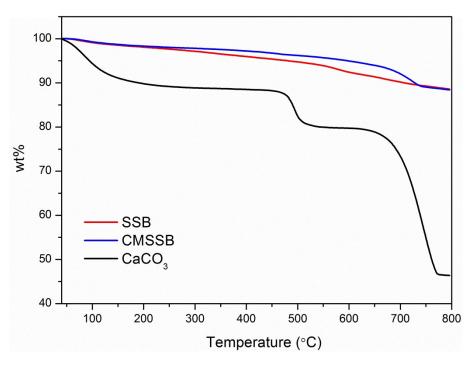
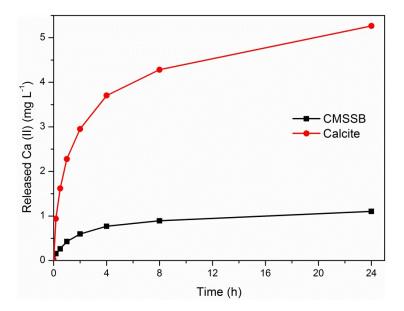



Fig. S4 TG curves of the samples at a heating rate of 10 °C/min in N_2 .

Fig. S5 Dissolution kinetics of calcite and CMSSB samples in water at pH 5.0 (adsorbents: 15 mg; water: 150 mL).

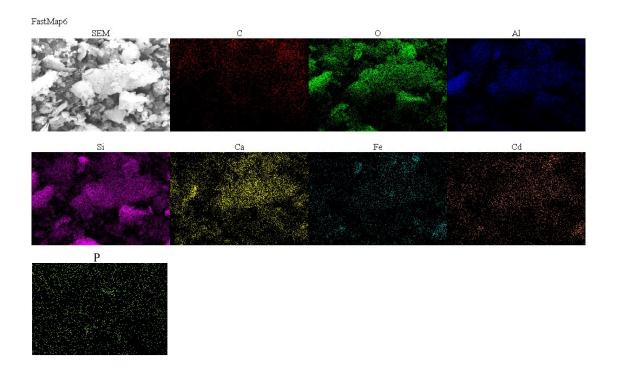


Fig. S6 SEM image and EDX elemental mapping of the Cd(II) loaded CMSSB samples.