Electronic Supporting Information (ESI)

Improved Performance of Schiff Based Ionophore Modified with MWCNT For Fe(II) Sensing By Potentiometry and Voltammetry Supported With DFT Studies

Sanjeev Kumar^a, Susheel K Mittal^a*, Navneet Kaur^b & Ravneet Kaur^b

^aSchool of Chemistry and Biochemistry, Thapar University, Patiala, Punjab 147004, India

^bDepartment of Chemistry, Panjab University Chandigarh, Punjab 160014, India

Email- smittal@thapar.edu

Figure Caption:

Fig. S1 ¹H NMR spectra of IFE.

Fig. S2 ¹³C NMR spectra of IFE.

Fig. S3 Effect of pH on the emf response of the Fe(II) selective electrode, at 1.0×10^{-4} mol/L concentration of iron ion without and with MWCNTs (1%)

Fig. S4: Plots of emf vs response time for Fe(II) selective electrode with and without MWCNTs

Fig. S5: (a) Cyclic voltammogram of IFE at different scan rates. (b) Calibration plot showing the variation of peak current with square root of scan rate (GC as working electrode, Ag/Ag^+ as reference electrode and TBHP as supporting electrolyte)

Fig. S6: Cyclic voltammogram of (a) 5×10^{-4} mol/L IFE alone (b) 5×10^{-4} mol/L IFE and 10^{-3} M Fe(II) at Glassy carbon electrode in DMSO, 0.1 mol/L TBHP. Scan rate: 50mVs⁻¹

Fig. S7: Job's plot for determining the binding stoichiometry of IFE with Fe(II). Absorbance at 320 nm was plotted as a function of the molar ratio *X*. The total concentrations of Fe(II) with IFE were 1.0×10^{-4} mol/L

190

170

150

130

110 90 f1 (ppm) 80 70

60 50 40 30 20 10

-0.4 -0.3 -0.2

-0.1 -0.0 --0.1

0

