Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Index

1. Synthesis of the precursor azo-dyes

1.1 Synthesis of the (E)-2-(4-(phenyldiazenyl)phenyl)-5,8,11-trioxa-2-azatridecan-13-ol (3)

1.2 Synthesis of the (E)-4-((4-((2-(2-(2 (2hydroxyethoxy)ethoxy)ethoxy)ethyl) (methyl)amino)phenyl)diazenyl)benzonitrile (6)

2. ¹³C NMR spectrum of the fullerene C₆₀-azobenzene derivatives

Fig. S1. ¹³C NMR spectrum of the fullerene C₆₀-azobenzene derivative 16

Fig. S2. ¹³C NMR spectrum of the fullerene C₆₀-azobenzene derivative 17

Fig. S3. ¹³C NMR spectrum of the fullerene C₆₀-azobenzene derivative 18

Fig. S4. ¹³C NMR spectrum of the fullerene C_{60} -azobenzene derivative 19

Fig. S5. ¹³C NMR spectrum of the fullerene C_{60} -azobenzene derivative 20

Fig. S6. Optical properties of the fullerene C₆₀-azobenzene derivatives in DMF solution

1 Synthesis of the precursor azo-dyes

1.1 Synthesis of the (E)-2-(4-(phenyldiazenyl)phenyl)-5,8,11-trioxa-2-azatridecan-13-ol (3)
The intermediate 2-(2-{2-[2-(Methyl-phenyl-amino)-ethoxy]-ethoxy}-ethoxy)-ethanol (aminoalcohol AA) was synthesized according to the method previously reported by us [Ref. 30].

However, the diazonium salts were prepared *in situ*, since these salts are not commercially available. Aniline (1 g, 10.7 mmol) and NaNO₂ (0.74 g, 10.7 mmol) were dissolved in an HCl solution 30% (50 mL) at 0°C with vigorous stirring. Then, **AA** (3.04 g, 10.7 mmol) was added dropwise and the reaction mixture was stirred for 4 h. Afterwards, it was neutralized with a NaOH solution (10%). The crude product was extracted with CHCl₃ and the organic phase was dried with anhydrous MgSO₄, filtered and concentrated at reduced pressure. The resulting product was purified by column chromatography in silica gel, using mixtures ethyl acetate/hexane 6:4 and 7:3 as eluent, to yield the precursor dye **3**. Yield 80%. FTIR (Film) ν/cm^{-1} : 3440 (OH), 2918, 2869(CH₃, CH₂), 1598, 1499 (C=C, Ar), 1452 (N-N), 1347 (CH), 1298, 1248(COC) and 1108 (COC).

¹H NMR (400 MHz, CDCl₃) (Scheme S1a): δ = 7.87 (d, *J*= 8.90 Hz, 2 H, H³), 7.83 (d, *J*= 7.54 Hz, 2 H, H²), 7.49-7.35 (m, 3 H, H⁴-H), 6.78 (d, *J*= 9.13, 2 H, H¹), 3.73-3.59 (m, 16 H, NCH₂ and OCH₂), 3.11 (s, 3 H, NCH₃) ppm.

¹³C NMR (100 MHz, CDCl₃) (Scheme S1a): $\delta = 160.94$ (1 C, C^a), 152.33 (1 C, C^e), 146.65 (1 C, C^d), 130.07 (1 C, C^h), 128.69 (2 C, C^g), 124.39 (2 C, C^c), 122.23 (2 C, C^f), 113.48 (2

C, C^b), 72.41 (1 C, HO(CH₂)₂), 70.68-70.22 (4 C, OCH₂ of the tetra(ethylene glycol) chain), 68.44 (1 C, N(CH₂)₂), 61.62 (1 C, HOCH₂), 52.06 (1 C, NCH₂), 39.24 (1 C, NCH₃) ppm.

1.2 Synthesis of the (E)-4-((4-((2-(2-(2 (2hydroxyethoxy)ethoxy)ethoxy)ethyl) (methyl)amino)phenyl)diazenyl)benzonitrile (**6**)

4-Aminobenzonitrile (1 g, 8.47 mmol) and NaNO₂ (0.58 g, 8.47 mmol) were dissolved in an HCl solution 30% (80 mL) at 0°C with vigorous stirring. Then, **AA** (2.39 g, 8.47 mmol) was added dropwise and the reaction mixture was stirred for 4 h. Afterwards, it was neutralized with a NaOH solution 10%. The crude product was extracted with CHCl₃ and the organic solution was dried with anhydrous MgSO₄, filtered and concentrated under vacuum. The resulting product was purified by column chromatography in silica gel using mixtures ethyl acetate/hexane (6:4 and 7:3) as eluent, to yield precursor dye (**6**). Yield 65% FTIR (Film) ν/cm^{-1} : 3411 (OH), 2919, 2866(CH₃, CH₂), 2219 (CN), 1595, 1515 (C=C, Ar), 1443 (N-N), 1373 (CH), 1311, 1249(COC) and 1099 (COC).

¹H NMR (400 MHz, CDCl₃) (Scheme S1b): $\delta = 7.87$ (d, J = 8.75 Hz, 2 H, H³), 7.86 (d, J = 9.16 Hz, 2 H, H²), 7.72 (d, J = 8.83 Hz, 2 H, H⁴), 6.77 (d, J = 9.20 Hz, 2 H, H¹), 3.70-3.57 (m, 16 H, OCH₂ of the tetra(ethylene glycol) chain and NCH₂), 3.12 (s, 3 H, NCH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) (Scheme S1b): $\delta = 155.37$ (1 C, C^e), 152.30 (1 C, C^a), 143.51 (1 C, C^d), 132.97 (1 C, C^g), 125.82 (2 C, C^f), 122.61 (2 C, C^c), 118.92 (2 C, C^h), 111.71 (1 C, PhCN), 111.41 (2 C, C^b), 72.41 (1 C, HO(CH₂)₂), 70.68-70.22 (4 C, OCH₂), 68.44 (1 C, N(CH₂)₂), 61.62 (1 C, HOCH₂), 52.06 (1 C, NCH₂), 39.24 (1 C, NCH₃) ppm.

[Scheme S1b]

a) R = H b) R = CN

Scheme S1

2. ¹³C NMR spectrum of fullerene C60-azobenzene derivatives

Fig. S1. ¹³C NMR spectrum of fullerene C₆₀-azobenzene derivative 16

Fig. S2. 13 C NMR spectrum of fullerene C₆₀-azobenzene derivative **17**

Fig. S3. ¹³C NMR spectrum of fullerene C₆₀-azobenzene derivative **18**

Fig. S4. ¹³C NMR spectrum of fullerene C₆₀-azobenzene derivative 19

Fig. S5. 13 C NMR spectrum of fullerene C₆₀-azobenzene derivative **20**

Fig. S6. Optical properties of the precursor malonic azo-dyes in DMF solution