Supporting information

Polypeptide-Participating Complex Nanoparticles with Improved Salt-tolerance As Excellent Candidates for Intelligent Insulin Delivery

Yuqiang Li, ${ }^{a}$ Yunyan Zhang, ${ }^{a}$ Junjiao Yang, ${ }^{b}$ Jing Yang ${ }^{a}$

[^0]

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of MPEG $_{110}-b-$ PPBDEMA $_{75}$.

Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{MPEG}_{110}-b-\mathrm{PBLG}_{20}$.

Fig. S3 GPC curves of $\mathrm{MPEG}_{110}-b-$ PPBDEMA $_{75}$ and macroinitiator MPEG-Br.

Fig. S4 GPC curves of MPEG $_{110}-b-$ PBLG $_{20}$ and macroinitiator MPEG-NH 2 .

Fig. S5 CMCs of MPEG- b-PPBDEMA (A) and MPEG- b-PBLG (B).

Fig. S6 TEM images of CNPs with 30% content of $\mathrm{P}-2$ (A); 50% content of $\mathrm{P}-2$ (B);

Fig. S7 FTIR spectra of complex nanoparticles with different weight fraction of P-2 in the solid state.

Fig. S8 The salt stability of the nanoparticles formed from P-2 alone at varying salt concentration.

Scheme S1. Synthesis routes of MPEG-b-PLA and MPEG-b-PS.
Synthesis of MPEG-block-PLA. Into 25 mL Schlenk was added L-lactide $(1.5 \mathrm{~g}$, $10.5 \mathrm{mmol})$, MPEG-OH ($220 \mathrm{mg}, 0.052 \mathrm{mmol}$), $\mathrm{Sn}(\mathrm{Oct})_{2}(42.3 \mathrm{mg}, 1.05 \mathrm{mmol})$ and 3.0 mL toluene. The reaction was maintained at $70^{\circ} \mathrm{C}$ oil bath for 4 h . Subsequently, the reaction was diluted in CHCl_{3} and precipitated in methanol three times. The product was dried in vacuum and afforded in yield of 78.0%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 4.95-5.53\left(\mathrm{~m}, \mathrm{nH}, \mathrm{OCHCH}_{3} \mathrm{COO}\right), 4.26-4.36\left(\mathrm{~m}, 4 \mathrm{H},-\underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right) \mathrm{C}-\right.$ $\mathrm{OH}), 3.48-3.82\left(\mathrm{~m}, \mathrm{nH},-\mathrm{OCH}_{2}-\right), 1.36-1.72\left(\mathrm{~m}, \mathrm{nH},-\mathrm{CH}_{3}, \mathrm{OCHCH}_{3} \mathrm{COO}\right)$.
Preparation of RAFT macroCTA (CTA-PEG). Into one 100 mL three-neck bottle containing MPEG-OH ($4.5 \mathrm{~g}, 1.1 \mathrm{mmol}$), DCC ($0.9 \mathrm{~g}, 4.4 \mathrm{mmol}$), DMAP (0.06 mg , $0.5 \mathrm{mmol})$ and $80 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was droplet added the solution of 4-cyanopentanoic acid dithiobenzoate (CPADTBA, $0.9 \mathrm{mg}, 3.3 \mathrm{mmol}$) in $20 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. The reaction was maintained at room temperature for 24 h . Then, the concentrated reaction solution was precipitated in ethyl ether, and the pink solid was obtained after vacuum in a yield of $71 \%(3.4 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 7.93(s, 2 \mathrm{H}, o-$ $\mathrm{C}_{6} H_{5}$), $7.68\left(m, 1 \mathrm{H}, p-\mathrm{C}_{6} H_{5}\right), 7.51\left(s, 2 \mathrm{H}, m-\mathrm{C}_{6} H_{5}\right), 3.39-3.67(m, 4 \mathrm{mH}$, $\mathrm{mOCH} \mathrm{CH}_{2} \mathrm{O}$). m represented repeating unit number.
Preparation of poly(ethylene glycol)-block-polystyrene (PEG-b-PS). Similar RAFT polymerization operation was conducted to fabricate PEG-block-PS except using styrene ($1.3 \mathrm{~g}, 13.0 \mathrm{mmol}$) as monomer, AIBN ($4.3 \mathrm{mg}, 0.026 \mathrm{mmol}$) as initiator, PEG-block-PS ($0.6 \mathrm{~g}, 0.13 \mathrm{mmol}$) and 3.0 mL toluene at $65^{\circ} \mathrm{C}$ for 15 h . The reaction solution was precipitated into ethyl ether to afford pink polymer. Subsequently, the pink polymer dissolved in toluene was reacted with AIBN $(0.4 \mathrm{~g}$, 2.6 mmol) under N_{2} atmosphere at $65^{\circ} \mathrm{C}$ for 10 h . The solution was precipitated in the ethyl ether for three times, and the slight yellow solid was afforded in yield of 49% (0.9 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 6.85-7.30\left(m, 3 \mathrm{nH}, \mathrm{nC}_{6} H_{5}\right.$),
6.20-6.80 ($m, 2 \mathrm{nH}, \mathrm{nC}_{6} \mathrm{H}_{5}$), 3.39-3.67 ($m, 4 \mathrm{mH}, \mathrm{mOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 1.80-2.01 ($m, \mathrm{nH}, \mathrm{CH}$ on the backbone), $1.30-1.50\left(m, 2 \mathrm{nH}, \mathrm{CH}_{2}\right.$ on the backbone $)$.

Fig. S9 (A) Effect of PEG- b-PLA weight ratio on the stability of the complex nanoparticles formed from P-1 and PEG-b-PLA. (B) Effect of PEG-b-PS weight ratio on the stability of the complex nanoparticles formed from P-1 and MPEG-b-PS at 0.15 M PBS, pH 7.4 and $37^{\circ} \mathrm{C}$.

Fig. S10. Standard curve of fluorescence intensity at various concentration of FITCinsulin.

Fig. S11 (A) CD spectra of CNPs with different P-2 content in 0.15 M PBS ; (B) CD curves of CNPs with 75% content of P-2 at $0.15 \mathrm{M} \mathrm{PBS}, \mathrm{pH} 7.4$ and $37^{\circ} \mathrm{C}$ for 60 h measurement.

Fig. S12 CD curves of CNPs with 75% content of P-2 in the process of glucose response at $3.0 \mathrm{mg} / \mathrm{mL}$ glucose, $0.15 \mathrm{M} \mathrm{PBS}, \mathrm{pH} 7.4$ and $37^{\circ} \mathrm{C}$.

Fig. S13 Cell viability assay in NIH3T3 mouse broblast cell. The cells were treated with the nanoparticles formed from $\mathrm{P}-1$ at various concentrations at $37^{\circ} \mathrm{C}$ for 24,48 and 72 h , respectively.

[^0]: ${ }^{a}$ State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. ${ }^{b}$ College of Science, Beijing University of Chemical Technology, Beijing 100029, China.

