Supporting Information

Mn₃O₄ hollow microcubes and solid nanospheres derived from a metal formate framework for electrochemical capacitor applications

Zhihe Liu, Li Zhang*, Guancheng Xu, Lu Zhang, Dianzeng Jia* Chuyang Zhang

Key Laboratory of Energy Materials Chemistry (Xinjiang University), Ministry of Education.
Key Laboratory of Advanced Functional Materials, Autonomous Region.
Physics and Chemistry Detecting Center, Xinjiang University, Urumqi, 830046, Xinjiang, P.
R.

Fig. S1 FT-IR spectra of the precursor (a) and the obtained product by NaOH treatment of precursor (b).

Fig. S2 XRD pattern of Mn_3O_4 hollow microcubes synthesized by reaction for 12 h.

Fig. S3 SEM (a, c) and TEM images (b, d) of Mn_3O_4 hollow microcubes synthesized by reaction for 6 h and 12 h.

Fig. S4 XRD pattern (a) and SEM image (b) of Mn_3O_4 nanoparticles synthesized by reaction of precursor with alkaline solution in a molar ratio of 1:2 for 6 h.

Fig. S5 CV (a, b) and GCD (c, d) curves of Mn_3O_4 hollow microcubes (a,c) and solid nanospheres (b,d).

Materials	Electrolyte	Test condition	Cs(F/g)	Specific capacitance retention after cycle	Ref
Mn ₃ O ₄ hollow- tetrakaidecahedrons	1 M Na ₂ SO ₄	5 mV/s	148	100% after 400 cycles	1
Mn ₃ O ₄ hexagonal plate	1 M Na ₂ SO ₄	0.5 A/g	82	100% after 1000 cycles	2
Mn ₃ O ₄ nanorod/graphene	1 M Na ₂ SO ₄	0.5 A/g	121`	100% after 1000 cycles	3
nitrogen-doped carbon/Mn ₃ O ₄	1 M Na ₂ SO ₄	0.5 A/g	73	94% after 1000 cycles	4
graphene/ Mn ₃ O ₄	1 M Na ₂ SO ₄	0.5 A/g	142	92% after 800 cycles	5
Mn ₃ O ₄ solid nanospheres	1 M Na ₂ SO ₄	0.5 A/g	131	86% after 8000 cycles	This work
Mn ₃ O ₄ hollow microcubes	1 M Na ₂ SO ₄	0.5 A/g	152	95% after 8000 cycles	This work

Table S1. Comparison of the electrochemical performances of Mn_3O_4 electrode materials prepared in the present work with other reported Mn_3O_4 based electrode materials.

Supplementary references

- M. Fang, X. L. Tan, M. Liu, S. H. Kang, X. Y. Hu and L. D. Zhang, *CrystEngComm*, 2011, 13, 4915-4920.
- Z. Z. X. Liu, Y. Xing, S. M. Fang, X. W. Qu, D. P. Wu, A. Q. Zhang and B. Xu, *RSC Adv.*, 2015, 5, 54867-54872.
- 3. Lee. J. W, Hall. A. S, Kim. J. D, Mallouk. T. E, Chem. Mater., 2012, 24, 1158-1164.
- 4. K. B. Wang, X. B. Shi, A. M. Lu, X. Y. Ma, Z. Y. Zhang, Y. N. Lu and H. J. Wang, *Dalton Trans.*, 2014, 44, 151-157.

 J. Y. Qu, F. Gao, Q. Zhou, Z. Y. Wang, H. Han, B. B. Li, W. B. Wan, X. Z. Wang and J. S. Qiu, *Nanoscale*, 2013, 5, 2999-3005.