Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Assessing the effective factors on the conformational preferences and the early and late transition states of the unimolecular retro-ene decomposition reactions of ethyl cyanate, ethyl thiocyanate and ethyl selenocyanate

Hooshang Atabaki, Davood Nori-Shargh* and Mohamad Momen-Heravi

ZPE ΔZPE ΔH E_{o} Η S G $\Delta E_{\rm o}$ ΔS ΔG Geometry -246.644394 0.079617^a -246.568090a 74.170^a 0.00^a 0.00^a 0.00^a 0.00^a 1-gauche -246.574604ª -246.603330a 0.000a 0.076203^b -246.89629^b -246.889679^b 74.779^b -246.925209b 0.00^{b} 0.00^b 0.00^{b} 0.000^{b} 0.00^b 0.09^a -0.15^a 1-anti 0.079400^a -246.574457a -246.567767a 75.362 a -246.603574ª -0.14^a 0.20^a 1.192^a 0.076065^b -246.896211b -246.889493^b 75.150^b -246.925199^b 0.09^b 0.05^b 0.12^b 0.371^b 0.01^b **1**-*TS* 70.797^a 0.073215^a -246.524863ª -246.519017a -246.552655a -4.017 31.21 30.79 -3.373 31.80^a 31.68^b 0.068660^b -246.846455b -246.840118 72.828 -246.874721b -4.733 31.27 31.10 -1.951 77.923ª 0.08^a 0.00^a 0.00^a 0.000a 0.00^a 2-gauche 0.076094a -569.188551ª -569.181485ª -569.218509a 0.072760^b -569.52857^b -569.521394^b 78.578^b -569.558729b 0.02^{b} 0.00^{b} 0.00^{b} 0.000^{b} 0.00^b 79.794^a 0.075960^a -569.186766a -569.179492^a -569.217404a 0.00 1.25^a 1.871ª 0.69^a 1 1 2^a 2-anti 0.00^b 0.86^b 0.93^b 0.072733^b -569.527201b -569.519914^b 79.250^b -569.557568b 0.672^b 0.73^b 1.00±0.07° 1.68±0.07^d **2**-*TS* 74.094^a -4.145 39.86 39.39 40.53^a 0.069488a -569.125025a -569.118716^a -569.153920a -3.829 40.538 0.065461^b -569.463968b -569.457013b 77.271^b -4.580 40.40 -1.307 40.79^b -569.493727^b 3-gauche 0.074752^a -2571.439534ª -2571.432128ª 81.532^a -2571.470867a 0.07^a 0.00^a 0.00^a 0.000^a 0.00^a 0.071571^b -2572.007183^b 82.306^b 0.02^b 0.00^b 0.00^b 0.000^b 0.00^b -2572.014730b -2572.046289b 3-anti 0.074635^a -2571.437632a -2571.430061a 83.012^a -2571.469502a 0.00 1.19^a 1.30^a 1.480^a 0.86^a 0.071537^b -2572.013301b -2572.005656^b 83.093^b 0.00^b 0.90^b 0.96^b 0.787^b 0.72^b -2572.045136b **3**-*TS* 0.068305^a -2571.376455a -2571.369847a 77.468^a -2571.406655a -4.046 39.58 39.09 -4.064 40.29^a 0.064442^b -2571.949412b -2571.942138b 80.996^b -2571.980623b -4.474 40.99 40.82 -1.310 41.21^b

Table SI-1. MP2/6-311++G**(a) and G3MP2^(b) calculated zero-point energies (ZPE, in hartree), relative ZPE (ΔZPE in kcal mol⁻¹), corrected electronic energies (E_0 , in hartree), ΔE_0 , thermodynamic parameters [ΔH , ΔG (in kcal mol⁻¹)] and ΔS (in cal mol⁻¹K⁻¹) at 25 °C and 1 atm pressure for the *gauche*- and *anti*-conformations of compounds 1-3.

^cFrom infrared spectroscopy, [Ref. 26]. ^d From Raman spectroscopy, [Ref. 25].

	300 K			400 K			500 K			600		
	ΔH^{a}	ΔS^{a}	ΔG^{a}	ΔH^{a}	ΔS^{a}	ΔG^{a}	ΔH^{a}	ΔS^{a}	ΔG^{a}	ΔH^{a}	ΔS^{a}	ΔG^{a}
Geometries												
1-gauche	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.00	0.00
$(1\text{-}gauche \rightarrow [TS]^{\neq} \rightarrow 1\text{-}P)$	30.79	-3.373	31.80	30.74	-3.536	32.15	30.73	-3.561	32.51	30.73	-3.551	32.86
1- <i>P</i>	-6.29	36.859	-17.28	-6.18	37.160	-21.05	-6.18	37.206	-24.78	-6.23	37.112	-28.50
2- gauche	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
$(2\text{-}gauche \rightarrow [TS]^{\neq} \rightarrow 2\text{-}P)$	39.39	-3.829	40.53	39.34	-3.980	40.93	39.34	-3.976	41.33	39.36	-3.933	41.72
2 - <i>P</i>	21.50	35.959	10.78	21.54	36.068	7.11	21.49	35.987	3.50	21.39	35.809	-0.09
3- gauche	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
$(3$ -gauche $\rightarrow [TS]^{\neq} \rightarrow 3$ -P)	39.08	-4.064	40.29	39.02	-4.239	40.72	39.02	-4.254	41.14	39.03	-4.228	41.57
3- P	23.34	35.321	12.80	23.34	35.348	9.20	23.27	35.219	5.66	23.16	35.013	2.15

Table SI-2. MP2/6-311++G** calculated thermodynamic parameters [ΔH , ΔG (in kcal mol⁻¹) and ΔS (in cal mol⁻¹ K⁻¹)] at 300, 400, 500 and 600 K for the retro-ene decomposition reactions of compounds **1-3**.

	1			2			3					
	gauche	anti	TS	Р	gauche	anti	TS	Р	gauche	anti	TS	Р
Bond lengths (Å)												
r _{N1-C2}	1.180	1.179	1.214	1.225	1.181	1.181	1.220	1.217	1.182	1.182	1.218	1.213
r _{C2-X3}	1.293	1.294	1.220	1.173	1.693	1.692	1.594	1.568	1.842	1.842	1.738	1.716
<i>к</i> _{Х3-С4}	1.466	1.464	2.013	-	1.827	1.829	2.479	-	1.972	1.974	2.667	-
r _{C4-C5}	1.513	1.510	1.410	1.339	1.521	1.525	1.400	1.339	1.521	1.525	1.396	1.339
<i>r</i> _{С5-Н9}	1.093	1.092	1.275	-	1.093	1.093	1.390	-	1.093	1.093	1.403	-
$d_{ m H9-N1}$	3.114	5.000	1.443	1.009	3.063	5.456	1.252	1.007	3.092	5.619	1.240	1.007
Bond angles (°)												
$\theta_{\text{N1-C2-X3}}$	178.7	178.7	159.6	171.5	179.4	179.2	155.8	172.5	179.6	179.6	155.7	173.3
$ heta_{ ext{C2-X3-C4}}$	113.3	113.2	100.7	-	98.1	98.4	84.9	-	95.1	95.8	80.4	-
$ heta_{ ext{X3-C4-C5}}$	111.3	106.8	107.9	-	113.2	108.2	110.8	-	113.4	108.7	111.1	-
$ heta_{ ext{C4-C5-H9}}$	111.0	110.6	104.8	121.4	110.9	111.3	108.1	121.4	110.9	111.3	109.0	121.4
$ heta_{ ext{C5-H9-N1}}$	112.5	68.3	162.0	-	123.4	65.0	163.2	-	126.7	64.7	164.7	-
$ heta_{ ext{H9-N1-C2}}$	57.0	12.1	85.1	122.9	61.3	19.5	97.1	131.9	61.9	21.7	99.1	135.1
Torsion angles (°)												
<i>∲</i> N1-C2-X3-C4	-	-	0.0	-	-	-	0.0	-	0.0	-	0.1	-
<i>ϕ</i> _{C2-X3-C4-C5}	-64.8	179.8	0.0	-	-61.1	180.0	0.0	-	-59.3	180.0	-0.1	-
<i>ф</i> хз-с4-с5-Н9	62.9	-60.6	0.0	-	62.5	-60.7	0.0	-	62.4	-60.7	0.1	-
Ф с4-с5-н9-N1	-29.8	18.6	0.0	-	-27.0	12.9	0.0	-	-28.1	11.9	-0.3	-
<i>ф</i> с5-H9-N1-С2	0.5	67.4	0.0	-	-5.4	96.1	-0.3	-	-5.4	99.8	0.2	-
<i>ф</i> н9-N1-C2-X3	-	-	0.0	178.8	-	-	0.1	180.0	-	-	-0.1	180.0

Table SI-3. MP2/6-311++G** calculated structural parameters for the ground and transition structures of compounds 1-3.

	300 K			400 K			500 K			600 K		
	Ea	А	k	E_{a}	А	k	Ea	А	k	E_{a}	Α	k
$1\text{-}GS \rightarrow [TS]^{\neq} \rightarrow 1\text{-}P$	31.38	3.07×10 ¹²	2.50×10 ⁻¹¹	31.33	3.79×10 ¹²	1.95×10-5	31.32	4.69×10 ¹²	5.70×10 ⁻²	31.92	5.65×10 ¹²	1.21×10+1
$2\text{-}GS \rightarrow [TS]^{\neq} \rightarrow 2\text{-}P$	39.98	2.44×10^{12}	0.95×10 ⁻¹⁷	39.93	3.03×10^{12}	2.99×10 ⁻¹⁰	39.93	3.79×10 ¹²	7.70×10 ⁻⁶	39.95	4.66×10 ¹²	2.99×10-3
$3\text{-}GS \rightarrow [TS]^{\neq} \rightarrow 3\text{-}P$	39.67	2.17×10^{12}	1.42×10 ⁻¹⁷	39.61	2.66×10^{12}	3.90×10 ⁻¹⁰	39.61	3.30×10 ¹²	9.36×10-6	39.62	4.01×10^{12}	7.94×10 ⁻³

Table SI-4. MP2/6-311++G** calculated rate constants (in s⁻¹), Arrhenius A factors (in s⁻¹) and activation energies (in kcal mol⁻¹) of the thermal decomposition reactions of compounds **1-3** at 300, 400, 500 and 600 K.

Table SI-5. The Cartesian coordinates of the optimized structures of the *gauche-* and *anti-*conformations of compounds 1-3 and their corresponding decomposition and isomerization transition state structures at the MP2/6-311++G** level of theory.

Ethyl cyanate (1), gauche-conformation	Ethyl cyanate (1), anti-conformation	Ethyl cyanate (1), TS-decomposition	Ethyl cyanate (1), TS-isomerization
$\begin{array}{c} C, 0, -2.1144133675, -0.3280127618, 0.0136295773\\ C, 0, -0.6540242092, 0.0631893881, -0.0456258597\\ O, 0, -0.3083443573, 0.9913445253, 1.0348527363\\ C, 0, -0.9137036532, 2.1302851934, 0.9447375528\\ N, 0, -1.4520107741, 3.1782688825, 0.8846089387\\ H, 0, -2.7592365019, 0.5418863212, -0.1332737448\\ H, 0, -2.348242517, -0.7877164094, 0.9764263345\\ H, 0, -2.3247264642, -1.0503602687, -0.7804898983\\ H, 0, 0.0083802124, -0.7829310472, 0.1332183508\\ H, 0, -0.390036368, 0.5403841767, -0.9934529877\\ \end{array}$	$\begin{array}{l} C, 0, -2.0874727644, -0.1072577269, 0.0157337226\\ C, 0, -0.5782182147, -0.08630136, -0.0086943179\\ O, 0, -0.1529753944, 0.9497999229, 0.9347980749\\ C, 0, 1.1325340918, 1.070241801, 1.0134137537\\ N, 0, 2.3012441037, 1.2021218047, 1.1012522235\\ H, 0, -2.4901184849, 0.8604100481, -0.290067729\\ H, 0, -2.4523011634, -0.3467845412, 1.0164979552\\ H, 0, -2.4466813865, -0.871048359, -0.6796095132\\ H, 0, -0.1463481989, -1.0358221865, 0.3183971973\\ H, 0, -0.1843945883, 0.1754845968, -0.9943293671\\ \end{array}$	$\begin{array}{c} C, 0, -0.9061458453, -0.0697128138, -1.23168727\\ C, 0, 0.4957790458, 0.0508373966, -1.3265686787\\ H, 0, -1.4823507919, 0.835066152, -1.4132506152\\ H, 0, -1.3400367702, -0.9865990318, -1.62495601\\ H, 0, 0.9548615107, 1.0275007707, -1.4284047646\\ H, 0, 1.0972176979, -0.7946894775, -1.64018363\\ H, 0, -1.1345580463, -0.2320520522, 0.011683672\\ O, 0, 1.258927304, -0.1053092055, 0.5298873459\\ C, 0, 0.2389666537, -0.2607297818, 1.1815667663\\ N, 0, -0.9419397037, -0.3823406539, 1.434169106\\ \end{array}$	$\begin{array}{c} C, 0, -0.3069327838, -0.5281831375, -0.296009388\\ C, 0, -1.7533500319, -0.5476965825, 0.0247361398\\ H, 0, 0.3440741345, -1.2212736443, 0.2272171272\\ H, 0, -0.0636422466, -0.3901586279, -1.341540798\\ H, 0, -2.1719333252, -1.347695345, -0.6077164455\\ H, 0, -2.2334604559, 0.38538956, -0.2785426847\\ H, 0, -1.9403161238, -0.7456546776, 1.07713553\\ N, 0, 0.0851564087, 0.6615179154, 1.8613331695\\ C, 0, 0.3469618432, 0.9793084883, 0.7127554484\\ O, 0, 0.6447935808, 1.388639051, -0.4315510974\\ \end{array}$
Ethyl thicyanate (2), gauche-conformation	Ethyl thiocyanate (2), anti-conformation	Ethyl thiocyanate (2), TS-decomposition	Ethyl thiocyanate (2), TS-isomerization
$\begin{array}{c} C, 0, -2.1169568315, -0.3398785633, -0.015411074\\ C, 0, -0.6256058405, -0.046438454, -0.0758225837\\ S, 0, -0.0367427869, 0.9843378193, 1.3134223748\\ C, 0, -0.9813111388, 2.3557472384, 1.0096032149\\ N, 0, -1.6425196024, 3.3140661177, 0.808782365\\ H, 0, -2.6991930338, 0.5821568279, -0.08588694\\ H, 0, -2.3767245019, -0.8422727869, 0.9194002887\\ H, 0, -2.3991502815, -0.9880212644, -0.8506851217\\ H, 0, -0.0365254277, -0.9631637091, 0.0227723575\\ H, 0, -0.3416065549, 0.4398567746, -1.0116048809 \end{array}$	$\begin{array}{c} C, 0, -2.3399269843, -0.2231522168, -0.08634002\\ C, 0, -0.8164622908, -0.1634087483, -0.0768501391\\ S, 0, -0.3027628353, 1.1355330482, 1.104284797\\ C, 0, 1.373259612, 0.9904340708, 0.9199626026\\ N, 0, 2.5451114543, 0.9013163915, 0.8012043205\\ H, 0, -2.7726060881, 0.7292030387, -0.4035335581\\ H, 0, -2.7335651328, -0.473805617, 0.9021047767\\ H, 0, -2.6673281838, -0.9949602698, -0.7877041597\\ H, 0, -0.3889874735, -1.1142950832, 0.2461679219\\ H, 0, -0.4281410777, 0.0927863858, -1.0641865417\\ \end{array}$	$\begin{array}{c} C, 0, -0.7776827485, -0.1063053463, -1.060473518\\ C, 0, 0.6107057812, 0.0335270316, -1.1703937881\\ S, 0, 1.6874576433, -0.0720177575, 1.0605853991\\ C, 0, 0.2037786195, -0.260471916, 1.6115698129\\ N, 0, -1.0089727589, -0.3651844183, 1.530148542\\ H, 0, -1.3882267043, 0.7827700088, -1.203036448\\ H, 0, -1.2168656625, -1.0514027898, -1.37265735\\ H, 0, 1.0349041405, 1.0194831124, -1.3264062035\\ H, 0, 1.2058536141, -0.8123327257, -1.497096151\\ H, 0, -1.0907009245, -0.2596851991, 0.285122712\\ \end{array}$	$\begin{array}{c} C,0,-0.2887184565,-0.5374758687,-0.40295944\\ C,0,-1.674510632,-0.4401686742,0.1114000869\\ N,0,0.0494601123,1.8127610345,-0.157927214\\ C,0,0.6653632795,0.9774331084,0.4747401658\\ S,0,1.5745736364,0.0034824908,1.4392028267\\ H,0,0.2530900193,-1.4315526338,-0.133825914\\ H,0,-0.0881269582,-0.1825140423,-1.40737804\\ H,0,-2.1833103516,-1.3347929256,-0.28380136\\ H,0,-2.1792755492,0.4610403561,-0.227940160\\ H,0,-1.6998381002,-0.5076898453,1.200272060\\ \end{array}$

Table SI-5 continud			
Ethyl selenocyanate (3), gauche-conformation	Ethyl selenocyanate (3), anti-conformation	Ethyl selenocyanate (3), TS-decomposition	Ethyl selenocyanate (3), TS-isomerization
$\begin{array}{l} C,0,-2.1242018422,-0.3493055266,-0.0182811242\\ C,0,-0.6253491611,-0.102078761,-0.1023341277\\ Se,0,0.0715518677,0.9922158303,1.3830297374\\ C,0,-0.9964431718,2.4506380327,1.0277372319\\ N,0,-1.6872951908,3.3832247766,0.8037305819\\ H,0,-2.678833335,0.5903887695,-0.0795144465\\ H,0,-2.3878236118,-0.8470180431,0.9179480938\\ H,0,-2.4370786383,-0.9850909158,-0.8531013158\\ H,0,-0.0518135523,-1.029881465,-0.0126715068\\ H,0,-0.3390483659,0.3932993024,-1.0319741241\\ \end{array}$	C,0,-2.2323546536,-0.9883079823,-0.8607960119 C,0,-0.7082528486,-0.9378162842,-0.8482967772 Se,0,-0.1328059811,0.4587925663,0.4225582521 C,0,1.6740567194,0.2156680607,0.1583373006 N,0,2.8345690476,0.0653861079,-0.006362705 H,0,-2.6598344937,-0.0339948756,-1.1806163315 H,0,-2.630477734,-1.2360156387,0.1270101805 H,0,-2.5642748292,-1.7590168661,-1.5621006256 H,0,-0.2744296018,-1.8810746278,-0.5135898053 H,0,-0.3037947403,-0.6751249962,-1.8267635708	C,0,-0.7872732487,-0.1055091581,-1.07651276 C,0,0.5945627994,0.0366925505,-1.2181432974 Se,0,1.8166567685,-0.0689692176,1.150481584 C,0,0.1683220021,-0.2691153749,1.6652115868 N,0,-1.0366942146,-0.3677249079,1.517158543 H,0,-1.4011177772,0.7830762742,-1.20973195 H,0,-1.2295663996,-1.0527438747,-1.37855471 H,0,1.028584867,1.0217147487,-1.3533241588 H,0,1.1997986489,-0.8104661652,-1.522970935 H,0,-1.0930224461,-0.258574875,0.2837491138	C,0,-0.3052367012,-0.5389365853,-0.421389058 C,0,-1.6844395921,-0.4457728435,0.1113345336 N,0,0.0583894783,1.8248189867,-0.2049841088 C,0,0.6547277757,1.0013316363,0.4512436614 Se,0,1.6498916493,-0.0217818869,1.5591381703 H,0,0.2623664113,-1.4155267742,-0.148483348 H,0,-0.1180931853,-0.1805399831,-1.427147004 H,0,-2.1975561898,-1.3341244086,-0.293408377 H,0,-2.1940368138,0.4583497673,-0.213662105 H,0,-1.6973058326,-0.5272949087,1.19914063