Supporting Information for

Promotional Effect of Ti Doping on the Ketonization of Acetic Acid

over CeO₂ Catalyst

Feipeng Lu^a, BinBo Jiang^a*, Jingdai Wang^a, Zhengliang Huang^a, Zuwei Liao^a, Yongrong

Yang^a, Jie Zheng^{b*}

^a State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China

^bDepartment of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio, USA 44325

Results

Fig.S1. CO₂ formation rate in the ketonization of acetic acid of $Ce_{1-x}Ti_xO_{2-\delta}$ catalysts at 350 °C.

Table S1	Ketonization	activity o	f acetic	acid into	acetone	over different	catalysts

Entry	Catalyst	Conv./	Yield/	Select.	Reaction condition	Ref.
		%	%	/%		
1	CeO ₂	51	51		350°C, WHSV=5.6 h ⁻¹	[1]
2	Pr_6O_{11}	80	80		350°C, WHSV=5.6 h ⁻¹	[1]
3	ZnO-Al ₂ O ₃	89			350°C, WHSV=0.57 h ⁻¹	[2]
	(3:1) ^a					
4	Zn-Cr (10:1)	86		100	350°C,W/F=4 h·g·mol ⁻¹	[3]
5	CeO ₂ -ZrO ₂	95			450°C, WHSV=~146 h ⁻¹	[4]
6	CeO ₂ -Mn ₂ O ₃	72			450°C, WHSV=~146 h ⁻¹	[4]

^a layered double hydroxides

Fig.S2. N_2 adsorption-desorption isotherms (A) and pore size distributions (B) of $Ce_{1-x}Ti_xO_{2-\delta}$ catalysts.

Fig.S3. TEM micrographs of the $Ce_{0.7}Ti_{0.3}O_{2-\delta}$ sample.

Figure S4. FTIR spectra of $Ce_{1-x}Ti_xO_{2-\delta}$ catalysts at (a) x=0, (b) x=0.1, (c) x=0.3, (d) x=0.5,

(e) x=0.7, and (f) x=1.

Table S2 Hydrogen Consumption Estimated from Temperature-Programmed Reduction								
X	H ₂ consumption(mmol/g) ^a	Peak value						
0	0.183	504.4						
0.1	0.53854	507.7						
0.3	0.62496	510.3						
0.5	0.86899	553.1						
0.7	0.77552	589.6						
1	0.06781							

Ludragon Congruention Estimated for d D a duratio

^a The H₂ consumption was calculated from the integration of TPR area.

Table S3 Acid sites distribution based on NH3-TPD data and basic sites distribution based on CO2-TPD data for $Ce_{1-x}Ti_xO_{2-\delta}$ catalysts.

	Aci	d sites/µmol∙m ⁻²	Basic sites/µmol·m ⁻²					
x	Weak (323-523	Strong (523-773	Tota	Weak (323-523	Strong (523-773	Tota		
	K)	K)	1	K)	K)	1		
0	1.87	0.24	2.11	2.82	0.07	2.89		
0.1	2.81	0.39	3.21	2.70	0.21	2.91		
0.3	3.67	0.73	4.40	3.57	0.51	4.08		
0.5	2.88	2.17	5.05	2.25	0.75	3.00		
0.7	2.79	2.18	4.98	2.26	1.46	3.72		
1	2.14	3.91	6.05	1.72	3.36	5.09		

Table S4 Ce3d XPS results of $Ce_xTi_{1-x}O_{2-\delta}$ catalysts

Catalyst	BE, eV							Binding energy, eV			
	v	v'	$\mathbf{v}^{"}$	v'''	u	u'	u"	u'''	O_{α}	O_{β}	O_{γ}
CeO ₂	882.7	885.2	888.8	898.2	901.2	903.7	907.3	916.7	529.1	531.2	
Ce _{0.9} Ti _{0.1} O ₂₋	882.4	885.0	889.2	898.9	900.9	903.5	907.7	917.4	529.2	531.2	
δ											
$Ce_{0.7}Ti_{0.3}O_{2-}$	882.8	885.8	888.9	898.2	901.3	904.3	907.4	917.6	529.3	531.3	
δ											
Ce _{0.5} Ti _{0.5} O ₂₋	882.8	885.6	889.5	899.2	901.3	904.1	908.0	917.7	529.4	531.3	533.4
δ											
Ce _{0.3} Ti _{0.7} O ₂₋	883.4	886.0	890.3	900.4	901.9	904.5	908.8	918.9	529.7	531.5	533.5
δ											

Figure S5. XRD results of postreaction catalysts.

Figure S6. FTIR results of postreaction catalysts.

Figure S7. XPS results of the spent and fresh $Ce_{0.7}Ti_{0.3}O_{2-\delta}$ catalyst.

References:

[1] Y. Yamada, M. Segawa, F. Sato, T. Kojima, S. Sato, J. Mole. Catal. A: Chem., 346 (2011) 79 86.

- [2] J. Das, K. Parida, React. Kinet. Catal. Lett., 69 (2000) 223-229.
- [3] H. Bayahia, E. F. Kozhevnikova, I. V. Kozhevnikov, Appl. Catal. B, 165 (2015) 253-259.
- [4] C. Liu, A. M. Karim, V. M. Lebarbier, D. Mei, Y. Wang, Top. Catal., 56 (2013) 1782-1789.