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Fig. S1  (a) Scheme of the set-up for the mechanochemical reaction of the Eu:MPS 

particles and (b) the photograph of the equipment top view during the milling. (c): Possible 

forces being generated between medium balls and Eu:MPS particles during the milling.



Scheme S1

Scheme S1  Scheme of the FA incorporation into the external and internal nanopore 

surfaces. The internal nanopore size after the immobilization with monolayer APTES 

becomes approx. 0.5 nm ever if overestimated, indicating the difficulty in the FA 

incorporation into the nanopore.
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Scheme S2  Scheme of the representative incident, scattering, and luminescence light 

intensity spectra for the calculation of internal quantum efficiency. The integrated peak 

intensities attributed to the incident, scattering, and luminescence were abbreviated as I0, I1 

and I2, respectively.



Fig. S2

Fig. S2  TEM images of the (a) Eu:MPS, (b) MC1-Eu:MPS, (c) MC2-Eu:MPS and (d) 

MC3-Eu:MPS particles. 



Fig. S3

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 2 4 6 8 100
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 2 4 6 8 10


V/

D

(m
L

g-1
n

m
-1

)

BJH pore size distribution (nm)

1.92 nm(a) (b)

(c) (d)

2.72 nm

2.72 nm

2.72 nm

Fig. S3  BJH pore size distributions of the (a) Eu:MPS, (b) MC1-Eu:MPS, (c) MC2-

Eu:MPS and (d) MC3-Eu:MPS particles. 



Fig. S4

Fig. S4  Photographs of (a) bright-field and (b) fluorescent images of the MC3-Eu:MPS in 

PBS at the concentration of 500 g/mL. The excitation in (b) was conducted using the 

fluorescent microscope light at the wavelength of 380–420 nm.



Fig. S5

80012001600200024002800320036004000

Tr
an

sm
itt

an
ce

 / 
a.

u

Wavenumber / cm-1

Eu:MPS

MC3-Eu:MPS

Fig. S5  FT-IR spectra of the Eu:MPS and MC3-Eu:MPS particles.


