Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Porous 3D Carbon Decorated Fe₃O₄ Nanocomposite Electrode for Highly Symmetrical Supercapacitor Performance

You Sing Lim, Chin Wei Lai*, Sharifah Bee Abd Hamid

Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3, IPS Building, University of Malaya (UM), 50603 Kuala Lumpur, Malaysia

SUPPORTING INFORMATION

Supplementary table

Composite materials	Specific surface area, (m ² g ⁻¹)	Electrolyte	Capacitance, Fg ⁻¹ (Current density)	Capacitive retention, % (cycles)	Energy density (Whkg ⁻¹)	Power density (Wkg ⁻¹)	(Year) [Ref.]
Fe ₃ O ₄ /CNT		1 mol L ⁻¹ Na ₂ SO ₃	165.0 (0.2 A g ⁻¹)	-	-	-	(2011) ¹
Ultrathin nanoporous	229	1 mol L ⁻¹ Na ₂ SO ₃	163.4 (1 A g ⁻¹)	-	-	-	(2013) ²
Fe ₃ O ₄ /CNS Fe ₃ O ₄ /Gr	-	1 mol L ⁻¹ Na ₂ SO ₄	154 (1 A g ⁻¹) 236 (TX-100	-	-	-	(2015) ³
4wt% Fe ₃ O ₄ /Ac Fe ₃ O ₄ /Ac	949.03 1197 (AC) 25 (Fe ₃ O ₄)	1 mol L ⁻¹ Na ₂ SO ₃ 6 mol L ⁻¹ KOH	86 (10mV s ⁻¹) 37.9 (0.5 mA cm ⁻²)	85.1% (1000)	-	-	(2013) ⁴ (2009) ⁵
Nanosized Fe ₃ O ₄ -Modified	-	$0.5 \text{ mol } \mathrm{L}^{-1}$ Na ₂ SO ₄	154.3 (5 mA cm ⁻¹)	79.6% (1000)	-	-	(2013) ⁶
Fe ₃ O ₄ /Fe-CNTs	-	3 mol L ⁻¹ KOH	1065 (1A g ⁻¹)	82.1% (1000)	29.9 ^a 18 54 ^b	897 a 8139 51 b	(2016) ⁷
Fe ₃ O ₄ @C	-	1 mol L ⁻¹ KOH	110.8 (0.5A g ⁻¹)	95.6% (2000)	34.6 ^a 91 ^b	375 a 3000 b	(2014) 8
Fe ₃ O ₄ @carbon nanosheets	-	6 mol L ⁻¹ KOH	586 (0.5 A g ⁻¹)	70.8% (5000)	18.3	351	(2016) ⁹
Fe3O4/Carbon	344	1 mol L ⁻¹ Na ₂ SO ₄	136.2 (1 A g ⁻¹)	84.5% (1000)	27.2	705.5	(2016) ¹⁰
Active carbon- Fe ₃ O ₄ nanocomposite	-	6 mol L ⁻¹ KOH	120 (5 A g ⁻¹)	93.66% (1000)	15.97	-	(2014) 11

Table 1: Type of Fe₃O₄ composite and reported electrochemical performance

oxidised activated carbon	2356.6	1 mol L ⁻¹ Na ₂ SO ₃	202.6 (10 mVs ⁻¹)	94% (5000)	-	-	(2015) 12
Porous 5%	1712.3	1 M Na ₂ SO ₄	245.3 (1 Ag ⁻¹) - initial	95.1% (5000)	27.6 ^a	2490.6 ª	This
Fe/HC			233.5 -5000th cycle		22.4 ^b	15186.7 ^b	work

*Footnote: a = maximum energy density condition, b = maximum power density condition

Samples	BET surface area m ² g ⁻¹	Micropore volume cm ³ g ⁻¹	Micropore area m ² g ⁻¹	External surface area	Average pore diameter/ Å
				$m^2 g^{-1}$	
p-HC	1117.6922	0.150571	351.0773	766.6149	38.5
5%Fe/HC	1712.7953	0.263566	602.6501	1110.1452	37.2

Table 2: The textural properties of p-HC and porous 5%Fe/HC nanocomposite

Table 3: Electrochemical performance of p-HC symmetric cell at 1 mol L⁻¹ Na₂SO₄

Current density	Specific	Energy density	Power density	Coulombic
(Ag ⁻¹)	capacitance (Fg ⁻¹)	(Whkg ⁻¹)	(Wkg^{-1})	Efficiency (%)
0.5	204.7	23.0	1309.6	95.8
1	172.6	19.4	2618.5	96.4
2	157.7	17.7	5554.6	94.3
3	145.6	16.4	8672.3	93.2
4	137.3	15.4	12359.0	90.0
5	129.8	14.6	16426.8	84.2

Table 4: Electrochemical performance of p-Fe/HC symmetric cell at 1 mol L⁻¹ Na₂SO₄

Current density	Specific	Energy density	Power density	Coulombic
(Ag ⁻¹)	capacitance (Fg ⁻¹)	(Whkg ⁻¹)	(Wkg^{-1})	Efficiency (%)
0.5	259.3	29.2	1212.8	96.3
1	245.4	27.6	2490.6	97.3
2	224.7	25.3	5260.7	96.1
3	213.0	24.0	8216.0	93.8
4	204.4	23.0	11498.1	92.3
5	198.7	22.4	15186.7	88.3

Supplementary figures

Electrochemical impedance spectroscopy was performed for both symmetric cell before and after chargedischarge cycle. It was observed that the slope of p-HC and p-Fe/HC was not steeper as before and bending Walburg diffusion region. This might due to fast charge-discharge cycle causing partial damage of charge transfer channels, results in decay of specific capacitance. However, overall variation on the nyquist plot show that p-HC and p-Fe/HC nanocomposites electrodes had good stability and charge-discharge rate.

Fig S1: Nyquist plot of 1st and 500th cycles (a) p-HC electrode and (b) p-Fe/HC nanocomposite electrode

References:

- 1. Y.-H. Kim and S.-J. Park, Current Applied Physics, 2011, 11, 462-466.
- D. Liu, X. Wang, X. Wang, W. Tian, J. Liu, C. Zhi, D. He, Y. Bando and D. Golberg, *Journal of Materials Chemistry A*, 2013, 1, 1952-1955.
- 3. S. Ghasemi and F. Ahmadi, *Journal of Power Sources*, 2015, 289, 129-137.
- 4. P. Khiew, M. Ho, T. Tan, W. Chiu, R. Shamsudin, M. A. Abd-Hamid and C. Chia, 2013.
- 5. X. Du, C. Wang, M. Chen, Y. Jiao and J. Wang, *The Journal of Physical Chemistry C*, 2009, **113**, 2643-2646.
- 6. P. He, K. Yang, W. Wang, F. Dong, L. Du and H. Liu, *Russian Journal of Electrochemistry*, 2013, **49**, 354-358.
- 7. J. Sun, P. Zan, X. Yang, L. Ye and L. Zhao, *Electrochimica Acta*, 2016, **215**, 483-491.

- 8. J. Pu, L. Shen, S. Zhu, J. Wang, W. Zhang and Z. Wang, *Journal of Solid State Electrochemistry*, 2014, **18**, 1067-1076.
- 9. H. Fan, R. Niu, J. Duan, W. Liu and W. Shen, *ACS Applied Materials & Interfaces*, 2016, **8**, 19475-19483.
- 10. N. Sinan and E. Unur, *Materials Chemistry and Physics*, 2016, **183**, 571-579.
- 11. G. Wang, H. Xu, L. Lu and H. Zhao, *Journal of Energy Chemistry*, 2014, 23, 809-815.
- 12. I. Oh, M. Kim and J. Kim, *Microelectronics Reliability*, 2015, 55, 114-122.