Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Promotional Effect of Lanthana on High Temperature Thermal Stability of Pt/TiO₂ Sulfur

Resistance Diesel Oxidation Catalyst

Zhengzheng Yang, Na Zhang, Yi Cao, Yunxiang Li, Yunwen Liao, Youping Li, Maochu Gong, Yaoqiang Chen

Fig. 1 The CO (a) and C₃H₆ (b) oxidation conversion over as-prepared Pt/TiO₂, Pt/TiO₂-La₂O₃ and commercial Pt/Al₂O₃, Pt-Pd/CeO₂-ZrO₂-Al₂O₃ catalysts

Reaction conditions: C_3H_6 : 330 ppm, CO: 1000 ppm, NO: 200 ppm, O₂: 10%, CO₂: 8%, vapor: 7%, SO₂: 50 ppm, N₂: balance, GHSV = 60,000 h⁻¹. Commercial Pt/Al₂O₃, Pt-Pd/CeO₂-ZrO₂-Al₂O₃ DOC catalysts were supplied by Sichuan provincial vehicular exhaust gases abatement engineering technology center. All catalysts were pre-treated at 500 °C for 3h under the reaction atmosphere before running the performance test.

Fig. 2 The CO and C₃H₆ oxidation conversion over Pt/TiO₂(850) and Pt/TiO₂-La₂O₃ (850) catalysts

Reaction conditions: C_3H_6 : 330 ppm, CO: 1000 ppm, NO: 200 ppm, O₂: 10%, CO₂: 8%, vapor: 7%, SO₂: 50 ppm, N₂: balance, GHSV = 60,000 h⁻¹. The Pt/TiO₂(850) and Pt/TiO₂-La₂O₃(850) catalysts were obtained by baking the fresh monolithic catalysts at 850 °C for 3h under the air. All catalysts were pre-treated at 500 °C for 3h under the reaction atmosphere before running the performance test.

Fig. 3 The CO and C₃H₆ oxidation conversion over Pt/TiO₂(A) and Pt/TiO₂-La₂O₃ (A) catalysts

Reaction conditions: C_3H_6 : 330 ppm, CO: 1000 ppm, NO: 200 ppm, O_2 : 10%, CO₂: 8%, vapor: 7%, SO₂: 50 ppm, N₂: balance, GHSV = 60,000 h⁻¹. The simulative 160 000 km vehicle aged catalysts, Pt/TiO₂(A) and Pt/TiO₂-La₂O₃(A), obtained by following the reference [J. Andersson et. al., Appl. Catal. B: Environ., 72 (2007) 71-81]. The fresh monolithic catalysts were placed in the reactor and aged at 670 °C for 15 h and then at 250 °C for 15 h in the aging gases: 600 ppm C₃H₆, 1500 ppm CO, 200 ppm NO, 50 ppm SO₂, 5% O₂, 4% CO₂, 8% vapor, and N₂ balance at 800 mL/min flow rate. All catalysts were pre-treated at 500 °C for 3h under the reaction atmosphere before running the performance test.

Fig. 4 The CO and C_3H_6 oxidation conversion over fresh and high temperature treated Pt/TiO₂-YO_x, Pt/TiO₂-La₂O₃ catalysts

Reaction conditions: C₃H₆: 330 ppm, CO: 1000 ppm, NO: 200 ppm, O₂: 10%, CO₂: 8%, vapor: 7%, SO₂: 50 ppm, N₂: balance, GHSV = 60,000 h⁻¹. The Pt/TiO₂-YO_x(750) and Pt/TiO₂-YO_x(850) catalysts were obtained by baking the fresh Pt/TiO₂-YO_x monolithic catalysts at 750 °C and 850 °C for 3h under the air, respectively. All catalysts were pre-treated at 500 °C for 3h under the reaction atmosphere before running the performance test.

Fig. 5 TEM micrographs of the fresh Pt/TiO_2 (a)(b) and Pt/TiO_2 -La₂O₃ (c)(d) catalysts

Fig. 6 XPS (Pt 4f) spectra of the Pt/TiO₂, Pt/TiO₂-La₂O₃, Pt/TiO₂(A) and Pt/TiO₂-La₂O₃(A) catalysts