Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Incorporating ¹³¹I into a PAMAM (G5.0) Dendrimer-conjugate: Design of a Theranostic Nanosensor for Medullary Thyroid Carcinoma

Rui He¹, Hongwang Wang², Yuling Su¹, Cuihua Chen¹, Lijun Xie¹, Lilin Chen¹, Jing Yu², Yubisela Toledo¹, Gayani S. Abayaweera¹, Gaohong Zhu^{1*}, Stefan H. Bossmann^{2*}

¹ Department of Nuclear Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China

² Department of Chemistry, Kansas State University, Manhattan, KS, USA

(Corresponding authors :Gaohong Zhu, email: <u>1026909611@qq.com</u>, Stefan H. Bossmann, email: sbossman@ksu.edu

Supplementary Information

Figure S1: ¹H-NMR spectrum (Varian, 400MHz) of the maleimide linker used in this study.

Figure S2: MALDI-TOF of KYKYKYC (M+ peak).

Figure S3: MALDI-TOF of GPLPLRC (M+ peak).

How many ¹³¹I atoms are bonded to each PAMAM Starburst dendrimer?

1) How many 131 I atoms are present in a 3mCi Na 131 I?

The **Curie** is defined as $3.7 \cdot 10^{10} \text{ s}^{-1}$, or 37 GBq. 3 mCi = $1.11 \times 10^8 \text{ s}^{-1}$.

The decay constant λ of ¹³¹I is 9.94 x 10⁻⁷ s⁻¹.

The rate of decay is defined as:

$$-\frac{dN}{dt} = \lambda N = 9.94 \ x \ 10^{-7} s^{-1} \ x \ N$$

 $N = 1.1167 \times 10^{14} I^{131}$ I atoms. This corresponds to 1.8544 x 10⁻¹⁰ moles of I³¹ I atoms.

The molecular weight of PAMAM G5.0 is 28,826 g mol⁻¹. According to our ICP analysis, each dendrimer is linked to 18 units of KYKYKYC (995.20 g mol⁻¹ per unit). Furthermore, G5.0-VTP is additionally linked to 9 units of GPLPLRC (754.95 g mol⁻¹ per unit). Therefore, the molecular weights of the functionalized dendrimers are: G5.0: (28,826 + 18 x 995.20) g mol⁻¹ = 46,739.6 g mol⁻¹. G5.0-VTP: (28,826 + 18 x 995.20 + 9 x 754.95) g mol⁻¹ = 53,534.15g mol⁻¹.

10 micrograms of $G5.0 = 2.139 \times 10^{-10}$ moles 10 micrograms of G5.0-VTP = 1.868×10^{-10} moles

According to our experimental design, the maximal labeling degrees are: G5.0: $1.8544 \ge 10^{-10}$ moles of 131 I atoms / $2.139 \ge 10^{-10}$ moles = 0.87 G5.0-VTP: $1.8544 \ge 10^{-10}$ moles of 131 I atoms / $1.868 \ge 10^{-10}$ moles = 0.99.

When considering the obtained labelling rates of $93 \pm 1\%$ and $85 \pm 2\%$, respectively, each mole of G5.0 was chemically linked to 0.81 moles of ¹³¹I, whereas each mole of G5.0-VTP was coupled to 0.84 moles of ¹³¹I.

Reference:

CRC Handbook of Chemistry and Physics, 86th Edition, edited by David R. Lide (National Institute of Standards and Technology). CRC Press (an imprint of Taylor and Francis Group): Boca Raton, FL 2005. 2544 pp. ISBN 0-8493-0486-5.