
Supplementary Material

Synchrotron X-ray tomographic quantification of microstructural evolution in ice cream - a multi-phase soft solid

Authors: Enyu Guo ^{a,b,**}, Guang Zeng ^{a,b}, Daniil Kazantsev ^{a, b}, Peter Rockett ^a, Julian Bent ^c, Mark Kirkland ^c, Gerard Van Dalen ^c, David S Eastwood ^{a, b}, David StJohn ^d, Peter D Lee ^{a,b,*}

*Peter D Lee: <u>peter.lee@manchester.ac.uk</u>; Tel: +44 (0)1235 567789 or 7701

^{**}Enyu Guo: enyu.guo@manchester.ac.uk; Tel: +44 (0)1235 567886

Supplementary Fig. 1. Comparison of the size distributions as measured by 2D cryo-SEM and 3D tomography for: (a, b) the ice crystals; and (c, d) air cells.

^a School of Materials, The University of Manchester, Manchester, M13 9PL, U. K.

^b Research Complex at Harwell, RAL, Didcot, OX11 0FA, U. K.

^c Unilever R&D, Colworth, MK44 1LQ, U. K

^d School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia

^{*, **}Corresponding authors: