Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

For

Three-Component 1D and 2D Metal Phosphonates: Structural Variability, Topological Analysis and Catalytic Hydrocarboxylation of Alkanes

By

Konstantinos D. Demadis, Zafeiria Anagnostou, Aggeliki Panera, Gellert Mezei, Marina V. Kirillova, and Alexander M. Kirillov

1. TGA traces for all compounds

Figure S-1. TGA trace for $[Cu_2(phen)_2(EDPA)_2(H_2O)_4]_{\infty}$ (1).

Figure S-2. TGA trace for $[Co(phen)(EDPA)(H_2O)_2]_{\infty}$ (1a).

Figure S-3. TGA trace for $\{[Cu(phen)(MDPA)] \cdot H_2O]\}_{\infty}$ (2).

Figure S-4. TGA trace for $[Mn(bpy)(EDPA)(H_2O)_2]_{\infty}$ (3).

Figure S-5. TGA trace for $[Zn(bpy)(EDPA)]_{\infty}$ (4).

Figure S-6. TGA trace for [Ni(phen)(H₂O)₄](EDPA) (5).

2. Calculated and measured powder XRD patterns for all compounds.

Figure S-X. Calculated (blue, lower) and measured (red, upper) powder XRD powder patterns for $[Cu_2(phen)_2(EDPA)_2(H_2O)_4]_{\infty}$ (1).

Figure S-X. Calculated (blue, lower) and measured (red, upper) powder XRD powder patterns for $[Co(phen)(EDPA)(H_2O)_2]_{\infty}$ (1a).

Figure S-X. Calculated (red, upper) and measured (blue, lower) powder XRD powder patterns for $\{[Cu(phen)(MDPA)] \cdot H_2O]\}_{\infty}$ (2)

Figure S-X. Calculated (red, upper) and measured (blue, lower) powder XRD powder patterns for $[Mn(bpy)(EDPA)(H_2O)_2]_{\infty}$ (3).

Figure S-X. Calculated (red, lower) and measured (black, upper) powder XRD powder patterns for $[Zn(bpy)(EDPA)]_{\infty}$ (4).

Figure S-X. Calculated (red, upper) and measured (blue, lower) powder XRD powder patterns for $[Ni(phen)(H_2O)_4](EDPA)$ (5).