Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Note after first publication: This version of the Electronic Supporting Information replaces the version originally published on March 16, 2017.

Supporting Information

Modified chemical synthesis of MnS nanoclusters on nickel foam for high-performance allsolid-state asymmetric supercapacitors

Vijay S. Kumbhar, Yong Rok Lee,¹ Choon Sup Ra,² Dirk Tuma,³ Bong-Ki Min,⁴ and Jae-Jin Shim*

¹School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea

²Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea

³BAM Federal Institute for Materials Research and Testing, Berlin, Germany

⁴Central Instrumental Analysis Center, Yeungnam University, Gyeongsan, Gyeongbuk,

Republic of Korea

Equation for calculating the specific capacitance from the CV data

$$C_{s} = \frac{\int_{V_{1}}^{V_{2}} i dV}{(V_{2} - V_{2}) m}$$
 (S1)

where C_s is the specific capacitance, i is the current response to the given voltage V, V_1 is the lower potential limit, V_2 is the upper potential limit, v is the scan rate, and m is the mass of electrode (g).

Equation for calculating the specific capacitance from the charge-discharge data

$$C_{S} = \frac{I \cdot \Delta t}{m \Delta V}, \tag{S2}$$

where C_s is the specific capacitance (F g^{-1}), I is the discharge current (A), m is the mass of electrode (g), and ΔV is the potential window (V).

Fig. S1. XRD pattern of the hydrothermally reduced GO.

Fig. S2. (a) CV curves of MnS@NF electrodes at a fixed scan rate of 100 mV s⁻¹ in 6M KOH and (b) their variation of C_s upon the number of SILAR cycles.

Fig. S3. (a, b) FE-SEM images of the hydrothermally reduced GO on NF, (c) CVs of rGO@NF electrode in 6 M KOH at various scan rates, and (d) the variation of C_s of rGO@NF as a function of the scan rate.

Fig. S4 Coulombic efficiency of the MnS@NF//rGO@NF ASC at various potential windows.

Table S1. Parameter values for fitting the Nyquist plots of the as-prepared MnS@NF electrode before cycling and after 5000 cycles in a 3 electrode system.

Parameter	Before cycling	Parameter	After 5000 cycles		
C (mF)	0.49	C' (mF)	0.50		
$R_s(\Omega)$	0.48	$R'_{s}(\Omega)$	0.63		
$R_{ct}(\Omega)$	1.20	$A'_{w1} (\Omega s^{-0.5})$	14.2		
$A_w \left(\Omega \ s^{-0.5}\right)$	65.6	$A'_{w2} (\Omega s^{-0.5})$	99.5		
$W_{or}(\Omega s^{-0.5})$	15.5	-	-		
$W_{oc}(\Omega s^{-0.5})$	0.082	-	-		

Table S2. Parameter values for fitting the Nyquist plots of the as-prepared

Parameter	Before cycling	Parameter	After 2000 cycles		
$R_s(\Omega)$	0.72	C' ₁ (mF)	1.40		
$R_{ct1}\left(\Omega\right)$	1083	C' ₂ (mF)	1.19		
$R_{\text{ct2}}(\Omega)$	12.4	$R'_{s}(\Omega)$	1.66		
\mathbf{P}_1	0.00019	$R'_{ct}(\Omega)$	2078		
n_1	0.78	$A'_{w} (\Omega s^{-0.5})$	4947		
P_2	0.00029	-	-		
n_2	0.63	-	-		

MnS@NF//rGO@NF ASC before cycling and after 2000 cycles.

Table S3. Comparison of the energy and power densities of different MnS-based asymmetric supercapacitors

Ref. No.	Symmetric/Asymmetric supercapacitor		Electrolyte	Potential	Cs	Highest energy	Highest power
	Positive electrode	Negative electrode		window (V)	(F g ⁻¹)	density (Wh kg ⁻¹) (density (kW kg ⁻¹)

6.	MnS nanoclusters (This work)	rGO	PVA- KOH gel	0~1.6	104 F g ⁻¹ at 5 mV s ⁻¹	34.1	12.8
5.	MnS microfibers	MnS microfibers	PVA- KOH gel	-0.6 ~ 0.6	68.3 F g ⁻¹ at 3 mA	18.9	0.25
4.	MnS/GO-NH ₃	Activated carbon	2 M KOH aqueous	0 ~ 1.6	73.6 F g ⁻¹ at 1 mV s ⁻¹	14.9	4.6
3.	α-MnS/ N-doped rGO	Nitrogen- doped rGO	3 M KOH aqueous	0 ~ 1.6	77.9 F g ⁻¹ at 1 A g ⁻¹	27.7	20
2.	Tetrapod nanorod MnS nanocrystals	Activated carbon	2 M KOH aqueous	0 ~ 1.6	59.8 F g ⁻¹ at 1 mV s ⁻¹	13.1	4.45
1.	MnS nanocrystals	Activated carbon	KOH agar gel	0 ~ 1.6	110.4 F g ⁻¹ at 1 A g ⁻¹	37.6	5.9

References:

- 1. T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo, J. Song, S. Mu, S. Yu, Y. Zhao and F. Gao, *Sci. Rep.*, 2016, 6, 23289-23297.
- 2. Y. Tang, T. Chen and S. Yu, Chem. Comm., 2015, 51, 9018-9021.
- 3. H. Quan, B. Cheng, D. Chen, X. Su, Y. Xiao and S. Lei, *Electrochim. Acta*, 2016, 210, 557-566.
- 4. Y. Tang, T. Chen, S. Yu, Y. Qiao, S. Mu, J. Hu and F. Gao, *J. Mater. Chem. A*, 2015, 3, 12913-12919.
- 5. R. B. Pujari, A. C. Lokhande, A. A. Yadav, J. H. Kim and C. D. Lokhande, *Mater. Des.*, 2016, 108, 510-517.