1	Supporting Information
23	Chemoenzymatic epoxidation of alkenes with Candida antarctica lipase B and
4	hydrogen peroxide in deep eutectic solvents
5 6	Pengfei Zhou, ^a Xuping Wang, ^b Bo Yang, ^a Frank Hollmann ^c and Yonghua Wang ^{b,*}
7	
8	"School of Pioceiance and Pioceaning South Ching University of Technology
9 10	Guangzhou 510006, P.R China.
11	^b School of Food Science and Engineering, South China University of Technology,
12	Guangzhou 510640, P.R China. E-Mail: yonghw@scut.edu.cn, Tel/fax: 0086 (0)20
13	8711 3842
14	^c Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,
15	2629HZ, Delft, The Netherlands
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
_,	
30	

Fig. S1. Comparison of the synthesis trees for BMIM[BF₄] (upper)¹ and ChCl/sorbitol (lower).

S3

51 ¹³C NMR (CDCl₃): δ 52.40 (CH), 47.12 (CH₂), 32.50 (CH₂), 31.85 (CH₂), 29.48 (d, *J* = 9.3 Hz, 2CH₂), 29.21

52 (CH₂), 25.97 (CH₂), 22.65 (CH₂), 14.08 (CH₃).

60 29.45 (CH₂), 29.36 (CH₂), 25.97 (CH₂), 22.69 (CH₂), 14.10 (CH₃).

77 13 C NMR (CDCl₃): δ 137.63 (C), 128.52 (2CH), 128.20 (CH), 125.52 (2CH), 52.37 (CH), 51.18 (CH₂).

85 (CH₃).

Fig. S14. CD spectra of CalB in different solvents.

88

Fig. S15. GC graph of 1-octadecene (A) and 1- octadecene oxide (B).

90

91 References

92 1 P. G. Jessop, *Green Chem.*, 2011, **13**, 1391–1398.

93