SUPPORTING INFORMATION

Unusual crystal structure and chirality of uridine 5' -monophosphate

coordination polymer

Leilei Gu,^a Qi-ming Qiu,^a Pei Zhou, ^a Liang Hao,^a Minghua Liu^b, and Hui Li*^a

^a Key Laboratory of Cluster Science of Ministry of Education, School of

Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing

100081, P. R. China.

**E-mail address:* <u>lihui@bit.edu.cn</u>; *Fax:* +86-10-68914780-804; *Tel:* 86-10-68912667

^bBeijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

Content

Section 1 IR Spectra	1
Section 2 UV-vis Spectra	1
Section 3 Crystallography Structural Graphs	3
Section 4 Selected Bond Distances and Angles	7
Section 5 PXRD Patterns	9
Section 6 TGA Curve	10

Fig. S1 The infrared spectra of complexes Cu-UMP-bpda/bpe and their ligands.

Section 2 UV-vis Spectra

Solution(mL)	А	В	С	D	Е	F	G	Н	Ι	J	K	L	М	Ν	0	Р	Q
V _{Cu-UMP}	8	7.5	7	6.5	6	5.5	5	4.5	4	3.5	3	2.5	2	1.5	1	0.5	0
V _{auxiliary ligand}	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8

Table S1. Volume ratio of each compositon in the final solution.

Fig. S2 The UV-vis profile of complexes Cu-UMP-bpda/bpe and their ligands. $[UMP] = 1.0 \times 10^{-4}$ mol/L, $[UMP-Cu] = 3.0 \times 10^{-5}$ mol/L (UMP:Cu = 1:1), $[UMP-Cu-bpda] = 3.0 \times 10^{-5}$ mol/L, $[UMP-bpe-Cu] = 3.0 \times 10^{-5}$ mol/L.

Fig. S3 Plot of the complex formation of Cu-UMP-bpda/bpe, monitored with a UV spectrophotometer.

Section 3 Crystallography Structural graphs

Fig. S5 Cartoon picture used to express the interaction between 1D double bridges visually.

Fig. S6 3D supramolecular framework based on hydrogen bonding viewed down from *a* axis of 1.

Fig. S7 Helix based on hydrogen bond forming between oxygen of phosphate group and hydroxy group of pentose of 1.

Fig. S8 The Cu…Cu distances in 2D fremwork of complex 2 view down from *c* axis.

Fig. S9 2D coordination network of complex 2 view down from *c* axis.

Fig. S10 The dihedral between the adjacent bpe of 2.

Fig. S11 The dihedral angle of the bpe is 9.7° (*ab* plane) and 7.1° (vector direction) respectively of 2.

Fig. S12 3D supramolecular architecture of complex 2.

Bond lengths (Å)		Bond angles (°)	
Cu(1)–O(10)	1.880(8)	O(10)–Cu(1)–O(18)	158.4(4)
Cu(1)–O(18)	1.967(9)	O(10)–Cu(1)–N(4)	91.9(4)
Cu(1)–N(4)	2.011(9)	O(18)–Cu(1)–N(4)	89.7(4)
Cu(1)–N(1)#1	2.056(9)	O(10)-Cu(1)-N(1)#1	90.8(4)
Cu(1)–O(19)	2.231(9)	O(18)-Cu(1)-N(1)#1	87.0(4)
Cu(2)–O(1)	1.959(8)	N(4)-Cu(1)-N(1)#1	176.6(4)
Cu(2)–O(11)	1.961(8)	O(10)–Cu(1)–O(19)	109.0(4)
Cu(2)–N(8)	2.036(10)	O(18)–Cu(1)–O(19)	92.6(4)
Cu(2)–N(5)#1	2.051(9)	N(4)-Cu(1)-O(19)	88.8(4)
Cu(2)–O(21)	2.338(9)	N(1)#-Cu(1)-O(19)	92.2(4)
O(10)–P(2)	1.539(9)	O(1)–Cu(2)–O(11)	165.6(3)
O(11)–P(2)	1.519(9)	O(1)–Cu(2)–N(8)	90.2(4)
O(12)–P(2)	1.529(9)	O(11)–Cu(2)–N(8)	90.4(4)
O(13)–P(2)	1.598(9)	O(1)-Cu(2)-N(5)#1	89.8(4)
		O(11)-Cu(2)-N(5)#1	88.5(4)
		N(8)-Cu(2)-N(5)#1	175.3(4)
		O(1)–Cu(2)–O(21)	98.2(3)
		O(11)–Cu(2)–O(21)	96.1(3)
		N(8)-Cu(2)-O(21)	90.7(4)
		N(5)#1-Cu(2)-O(21)	94.0(4)

Section 4 Selected bond distances (Å) and angles (°) of complexes 1–2.

 Table S2 Selected bond Distances (Å) and Angles (°) for Complex 1.

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y+1/2,-z+2

Table S3 H-bonding Distances (A	(Å) and Angles (°) for Complex 1.
---------------------------------	-----------------------------------

D–H	d(D–H)	d(H···A)	∠DHA	d(D…A)	Α
N10-H10A	0.860	2.023	170.94	2.876	O17 [x+1, y, z+1]
N12-H12	0.860	1.935	168.33	2.782	O8 [x-1, y, z-1]
O6–H6	0.820	1.891	163.24	2.687	O12 [-x+2, y-1/2, -z+2]
O7–H7	0.820	1.995	158.66	2.775 (022 [-x+1, y-1/2, -z+2] 014–
H14A	0.820	1.727	174.96	2.545 O2	0 [-x+1, y+1/2, -z+1]
O15-H15A	0.820	2.060	175.85	2.879	O28
O18-H18B	0.850	2.069	141.38	2.784	031
O18-H18C	0.850	1.701	167.63	2.538	O3 [x-1, y, z]
O19-H19C	0.850	1.904	170.57	2.746	01
O19-H19D	0.850	1.902	170.54	2.744	O26
O21-H21B	0.850	1.965	140.18	2.674	03
O21-H21C	0.850	1.927	162.47	2.749	O25 [x+1, y, z]
O22–H22C	0.850	1.857	179.75	2.707	O12 [x-1, y, z]
O22-H22D	0.850	2.076	179.25	2.926	O24 [-x+1, y+1/2, -z+1]

O23-H23C 0.850 2.034 173.63 2.881 $O9 [x-1, y, z-1]$ $O23-H23D$ 0.850 2.006 173.08 2.852 $O31 [-x+1, y+1/2, -z+1]$ $O24-H24C$ 0.850 2.308 179.35 3.158 $N2$ $O24-H24D$ 0.850 1.763 177.52 2.613 $O28 [-x+1, y-1/2, -z+1]$ $O25-H25E$ 0.850 1.965 174.24 2.812 $O6 [-x+2, y+1/2, -z+2]$ $O25-H25F$ 0.850 2.036 173.64 2.882 $O24 [-x+1, y+1/2, -z+1]$ $O26-H26C$ 0.850 2.021 174.23 2.868 $O22 [-x+1, y-1/2, -z+2]$ $O26-H26D$ 0.850 1.993 174.60 2.841 $O23 [-x+1, y-1/2, -z+1]$ $O27-H27C$ 0.850 2.076 150.65 2.848 $O7 [x-1, y, z-1]$ $O27-H27D$ 0.850 2.345 113.72 2.798 $O20$ $O28-H28C$ 0.850 1.644 174.83 2.492 $O29 [x-1, y, z]$ $O28-H28D$ 0.850 1.644 174.83 2.492 $O29 [x-1, y, z]$						
023-H23D 0.850 2.006 173.08 2.852 $031 [-x+1, y+1/2, -z+1]$ $024-H24C$ 0.850 2.308 179.35 3.158 $N2$ $024-H24D$ 0.850 1.763 177.52 2.613 $028 [-x+1, y-1/2, -z+1]$ $025-H25E$ 0.850 1.965 174.24 2.812 $06 [-x+2, y+1/2, -z+2]$ $025-H25F$ 0.850 2.036 173.64 2.882 $024 [-x+1, y+1/2, -z+1]$ $026-H26C$ 0.850 2.021 174.23 2.868 $022 [-x+1, y-1/2, -z+2]$ $026-H26D$ 0.850 1.993 174.60 2.841 $023 [-x+1, y-1/2, -z+1]$ $027-H27C$ 0.850 2.076 150.65 2.848 $07 [x-1, y, z-1]$ $027-H27D$ 0.850 2.345 113.72 2.798 020 $028-H28C$ 0.850 1.864 173.41 2.710 $011 [x-1, y, z]$ $028-H28D$ 0.850 1.644 174.83 2.492 $029 [x-1, y, z]$ $029-H29C$ 0.850 1.717 170.18 2.559 $027 [-x+1, y+1/2, -z+1]$	O23-H23C	0.850	2.034	173.63	2.881	O9 [x-1, y, z-1]
O24-H24C 0.850 2.308 179.35 3.158 $N2$ $O24-H24D$ 0.850 1.763 177.52 2.613 $O28 [-x+1, y-1/2, -z+1]$ $O25-H25E$ 0.850 1.965 174.24 2.812 $O6 [-x+2, y+1/2, -z+2]$ $O25-H25F$ 0.850 2.036 173.64 2.882 $O24 [-x+1, y+1/2, -z+1]$ $O26-H26C$ 0.850 2.021 174.23 2.868 $O22 [-x+1, y-1/2, -z+2]$ $O26-H26D$ 0.850 1.993 174.60 2.841 $O23 [-x+1, y-1/2, -z+1]$ $O27-H27C$ 0.850 2.076 150.65 2.848 $O7 [x-1, y, z-1]$ $O27-H27D$ 0.850 2.345 113.72 2.798 $O20$ $O28-H28C$ 0.850 1.864 173.41 2.710 $O11 [x-1, y, z]$ $O28-H28D$ 0.850 1.644 174.83 2.492 $O29 [x-1, y, z]$ $O29-H29C$ 0.850 1.717 170.18 2.559 $O27 [-x+1, y+1/2, -z+1]$	O23-H23D	0.850	2.006	173.08	2.852	O31 [-x+1, y+1/2, -z+1]
O24-H24D 0.850 1.763 177.52 2.613 $O28 [-x+1, y-1/2, -z+1]$ $O25-H25E$ 0.850 1.965 174.24 2.812 $O6 [-x+2, y+1/2, -z+2]$ $O25-H25F$ 0.850 2.036 173.64 2.882 $O24 [-x+1, y+1/2, -z+1]$ $O26-H26C$ 0.850 2.021 174.23 2.868 $O22 [-x+1, y-1/2, -z+2]$ $O26-H26D$ 0.850 1.993 174.60 2.841 $O23 [-x+1, y-1/2, -z+1]$ $O27-H27C$ 0.850 2.076 150.65 2.848 $O7 [x-1, y, z-1]$ $O27-H27D$ 0.850 2.491 152.23 3.267 $O8 [x-1, y, z-1]$ $O27-H27D$ 0.850 2.345 113.72 2.798 $O20$ $O28-H28C$ 0.850 1.644 174.83 2.492 $O29 [x-1, y, z]$ $O28-H28D$ 0.850 1.644 174.83 2.492 $O29 [x-1, y, z]$ $O29-H29C$ 0.850 1.717 170.18 2.559 $O27 [-x+1, y+1/2, -z+1]$	O24-H24C	0.850	2.308	179.35	3.158	N2
O25-H25E 0.850 1.965 174.24 2.812 $O6[-x+2, y+1/2, -z+2]$ $O25-H25F$ 0.850 2.036 173.64 2.882 $O24[-x+1, y+1/2, -z+1]$ $O26-H26C$ 0.850 2.021 174.23 2.868 $O22[-x+1, y-1/2, -z+2]$ $O26-H26D$ 0.850 1.993 174.60 2.841 $O23[-x+1, y-1/2, -z+1]$ $O27-H27C$ 0.850 2.076 150.65 2.848 $O7[x-1, y, z-1]$ $O27-H27D$ 0.850 2.491 152.23 3.267 $O8[x-1, y, z-1]$ $O27-H27D$ 0.850 2.345 113.72 2.798 $O20$ $O28-H28C$ 0.850 1.644 174.83 2.492 $O29[x-1, y, z]$ $O29-H29C$ 0.850 1.717 170.18 2.559 $O27[-x+1, y+1/2, -z+1]$	O24-H24D	0.850	1.763	177.52	2.613	O28 [-x+1, y-1/2, -z+1]
O25-H25F 0.850 2.036 173.64 2.882 $O24 [-x+1, y+1/2, -z+1]$ $O26-H26C$ 0.850 2.021 174.23 2.868 $O22 [-x+1, y-1/2, -z+2]$ $O26-H26D$ 0.850 1.993 174.60 2.841 $O23 [-x+1, y-1/2, -z+1]$ $O27-H27C$ 0.850 2.076 150.65 2.848 $O7 [x-1, y, z-1]$ $O27-H27D$ 0.850 2.491 152.23 3.267 $O8 [x-1, y, z-1]$ $O27-H27D$ 0.850 2.345 113.72 2.798 $O20$ $O28-H28C$ 0.850 1.644 174.83 2.492 $O29 [x-1, y, z]$ $O29-H29C$ 0.850 1.717 170.18 2.559 $O27 [-x+1, y+1/2, -z+1]$	O25-H25E	0.850	1.965	174.24	2.812	O6 [-x+2, y+1/2, -z+2]
O26-H26C 0.850 2.021 174.23 2.868 O22 [-x+1, y-1/2, -z+2] O26-H26D 0.850 1.993 174.60 2.841 O23 [-x+1, y-1/2, -z+1] O27-H27C 0.850 2.076 150.65 2.848 O7 [x-1, y, z-1] O27-H27D 0.850 2.491 152.23 3.267 O8 [x-1, y, z-1] O27-H27D 0.850 2.345 113.72 2.798 O20 O28-H28C 0.850 1.864 173.41 2.710 O11 [x-1, y, z] O28-H28D 0.850 1.644 174.83 2.492 O29 [x-1, y, z] O29-H29C 0.850 1.717 170.18 2.559 O27 [-x+1, y+1/2, -z+1]	O25-H25F	0.850	2.036	173.64	2.882	O24 [-x+1, y+1/2, -z+1]
O26-H26D 0.850 1.993 174.60 2.841 O23 [-x+1, y-1/2, -z+1] O27-H27C 0.850 2.076 150.65 2.848 O7 [x-1, y, z-1] O27-H27D 0.850 2.491 152.23 3.267 O8 [x-1, y, z-1] O27-H27D 0.850 2.345 113.72 2.798 O20 O28-H28C 0.850 1.864 173.41 2.710 O11 [x-1, y, z] O28-H28D 0.850 1.644 174.83 2.492 O29 [x-1, y, z] O29-H29C 0.850 1.717 170.18 2.559 O27 [-x+1, y+1/2, -z+1]	O26-H26C	0.850	2.021	174.23	2.868	O22 [-x+1, y-1/2, -z+2]
O27-H27C 0.850 2.076 150.65 2.848 O7 [x-1, y, z-1] O27-H27D 0.850 2.491 152.23 3.267 O8 [x-1, y, z-1] O27-H27D 0.850 2.345 113.72 2.798 O20 O28-H28C 0.850 1.864 173.41 2.710 O11 [x-1, y, z] O28-H28D 0.850 1.644 174.83 2.492 O29 [x-1, y, z] O29-H29C 0.850 1.717 170.18 2.559 O27 [-x+1, y+1/2, -z+1]	O26-H26D	0.850	1.993	174.60	2.841	O23 [-x+1, y-1/2, -z+1]
O27-H27D 0.850 2.491 152.23 3.267 O8 [x-1, y, z-1] O27-H27D 0.850 2.345 113.72 2.798 O20 O28-H28C 0.850 1.864 173.41 2.710 O11 [x-1, y, z] O28-H28D 0.850 1.644 174.83 2.492 O29 [x-1, y, z] O29-H29C 0.850 1.717 170.18 2.559 O27 [-x+1, y+1/2, -z+1]	O27-H27C	0.850	2.076	150.65	2.848	O7 [x-1, y, z-1]
O27-H27D 0.850 2.345 113.72 2.798 O20 O28-H28C 0.850 1.864 173.41 2.710 O11 [x-1, y, z] O28-H28D 0.850 1.644 174.83 2.492 O29 [x-1, y, z] O29-H29C 0.850 1.717 170.18 2.559 O27 [-x+1, y+1/2, -z+1]	O27-H27D	0.850	2.491	152.23	3.267	O8 [x-1, y, z-1]
O28-H28C0.8501.864173.412.710O11 [x-1, y, z]O28-H28D0.8501.644174.832.492O29 [x-1, y, z]O29-H29C0.8501.717170.182.559O27 [-x+1, y+1/2, -z+1]	O27-H27D	0.850	2.345	113.72	2.798	O20
O28-H28D 0.850 1.644 174.83 2.492 O29 [x-1, y, z] O29-H29C 0.850 1.717 170.18 2.559 O27 [-x+1, y+1/2, -z+1]	O28-H28C	0.850	1.864	173.41	2.710	O11 [x-1, y, z]
O29-H29C 0.850 1.717 170.18 2.559 O27 [-x+1, y+1/2, -z+1]	O28-H28D	0.850	1.644	174.83	2.492	O29 [x-1, y, z]
	O29-H29C	0.850	1.717	170.18	2.559	O27 [-x+1, y+1/2, -z+1]
O29-H29D 0.850 2.285 169.82 3.125 O30 [-x+1, y+1/2, -z+1]	O29-H29D	0.850	2.285	169.82	3.125	O30 [-x+1, y+1/2, -z+1]
O30-H30B 0.850 2.442 113.05 2.883 O2 [x-1, y, z]	O30-H30B	0.850	2.442	113.05	2.883	O2 [x-1, y, z]
O31-H31C 0.850 1.874 178.70 2.724 O2 [x-1, y, z]	O31-H31C	0.850	1.874	178.70	2.724	O2 [x-1, y, z]
O31-H31D 0.850 2.065 179.55 2.915 O14 [-x+1, y-1/2, -z+1]	O31-H31D	0.850	2.065	179.55	2.915	O14 [-x+1, y-1/2, -z+1]

Table S4 Selected bond Distances (Å) and Angles (°) for Complex 2.

	Bond lengths (Å)	Bond	d angles (°)
Cu(1)–O(6)	1.955(6)	O(6)–Cu(1)–O(5)	176.9(2)
Cu(1)–O(5)	1.965(5)	O(6)–Cu(1)–N(2)	89.6(2)
Cu(1)–N(2)	2.017(5)	O(5)–Cu(1)–N(2)	88.5(2)
Cu(1)–N(1)	2.046(5)	O(6)–Cu(1)–N(1)	90.8(2)
Cu(1)–O(8)	2.299(6)	O(5)–Cu(1)–N(1)	90.7(2)
Cu(2)–O(1)	1.958(7)	N(2)–Cu(1)–N(1)	171.7(2)
Cu(2)–O(3)	1.980(7)	O(6)–Cu(1)–O(8)	91.2(2)
Cu(2)–N(4)	2.020(6)	O(5)–Cu(1)–O(8)	91.6(2)
Cu(2)–N(3)	2.029(6)	N(2)–Cu(1)–O(8)	101.4 (2)
Cu(2)–O(22)	2.324(13)	N(1)–Cu(1)–O(8)	86.9(2)
P(3)–O(5)	1.503(5)	O(1)–Cu(2)–O(3)	168.2(3)
P(3)–O(10)	1.526(6)	O(1)–Cu(2)–N(4)	89.8(3)
P(3)–O(6)#1	1.531(6)	O(3)–Cu(2)–N(4)	87.6(3)
P(3)–O(9)	1.606(5)	O(1)–Cu(2)–N(3)	90.2(3)
P(4)–O(21)	1.474(8)	O(3)–Cu(2)–N(3)	94.0(3)
P(4)-O(3)#2	1.491(7)	N(4)-Cu(2)-N(3)	171.3(3)
P(4)–O(1)	1.548(7)	O(1)–Cu(2)–O(22)	80.3(4)
P(4)–O(2)	1.600(6)	O(3)–Cu(2)–O(22)	88.9(4)
		N(4)-Cu(2)-O(22)	101.9(4)
		N(3)-Cu(2)-O(22)	86.6(4)

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y+1/2,-z+2 #2 -x-1/2,y-1/2,-z+1 #3 x+1,y,z+ #4 x-1,y,z-1 #5 -x-1/2,y+1/2,-z+1 #6 -x+1/2,y-1/2,-z+2

	Table S5 H-b	onding Dista	inces (A) at	nd Angles (°) for	Complex 2.
D–H	d(D–H)	d(H…A)	∠DHA	d(D…A)	Α
O8-H8A	0.850	1.927	157.99	2.734	O25 [-x+1/2, y+1/2, -z+2]
O8-H8B	0.820	2.525	152.27	3.274	O16 [x+1/2, y+1/2, z+1]
O12-H12A	0.840	1.929	137.04	2.607	O24
O16-H16A	0.840	1.871	168.04	2.698	O6 [x-1/2, y-1/2, z-1]
O17-H17A	0.851	2.044	166.40	2.878	O10 [-x, y-1, -z+1]

Section 5 PXRD Patterns

Fig. S13 The experimental PXRD.patterns of Cu-UMP-bpda/bpe (a) (b) is agreement well with its simulated ones, which indicates the phase purity of Cu-UMP-bpda/bpe.

Section 6 TGA Curve

Fig. S14 TGA curve for complexes Cu-UMP-bpda/bpe. (a) The first weight loss due to the removal of in the temperature range 40–100°C is assigned to the loss of ten guest water solvates and three coordinated water molecules (exp. 15.9%, cal. 16.4%), the second weight loss at 200°C corresponding to the decomposition of its backbone. (b) The first weight loss in the temperature range 40–130°C due to the removal of seven guest water solvates and two coordinated water molecules (exp. 12.4%, cal. 12.5%), the second weight loss at 220°C corresponding to the decomposition of its backbone.